1
|
Ferreira EA, Pacheco CC, Pinto F, Pereira J, Lamosa P, Oliveira P, Kirov B, Jaramillo A, Tamagnini P. Expanding the toolbox for Synechocystis sp. PCC 6803: validation of replicative vectors and characterization of a novel set of promoters. Synth Biol (Oxf) 2018; 3:ysy014. [PMID: 32995522 PMCID: PMC7445879 DOI: 10.1093/synbio/ysy014] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 11/14/2022] Open
Abstract
Cyanobacteria are promising 'low-cost' cell factories since they have minimal nutritional requirements, high metabolic plasticity and can use sunlight and CO2 as energy and carbon sources. The unicellular Synechocystis sp. PCC 6803, already considered the 'green' Escherichia coli, is the best studied cyanobacterium but to be used as an efficient and robust photoautotrophic chassis it requires a customized and well-characterized toolbox. In this context, we evaluated the possibility of using three self-replicative vectors from the Standard European Vector Architecture (SEVA) repository to transform Synechocystis. Our results demonstrated that the presence of the plasmid does not lead to an evident phenotype or hindered Synechocystis growth, being the vast majority of the cells able to retain the replicative plasmid even in the absence of selective pressure. In addition, a set of heterologous and redesigned promoters were characterized exhibiting a wide range of activities compared to the reference P rnpB , three of which could be efficiently repressed. As a proof-of-concept, from the expanded toolbox, one promoter was selected and assembled with the ggpS gene [encoding one of the proteins involved in the synthesis of the native compatible solute glucosylglycerol (GG)] and the synthetic device was introduced into Synechocystis using one of the SEVA plasmids. The presence of this device restored the production of the GG in a ggpS deficient mutant validating the functionality of the tools/device developed in this study.
Collapse
Affiliation(s)
- Eunice A Ferreira
- i3S - Instituto de Investigação e Inovação em Saúde Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular Universidade do Porto, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar Universidade do Porto, Porto, Portugal
| | - Catarina C Pacheco
- i3S - Instituto de Investigação e Inovação em Saúde Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular Universidade do Porto, Porto, Portugal
| | - Filipe Pinto
- i3S - Instituto de Investigação e Inovação em Saúde Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular Universidade do Porto, Porto, Portugal.,School of Biological Sciences, University of Edinburgh, Edinburgh, UK.,Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, UK
| | - José Pereira
- i3S - Instituto de Investigação e Inovação em Saúde Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular Universidade do Porto, Porto, Portugal
| | - Pedro Lamosa
- Instituto de Tecnologia Química e Biológica António Xavier, ITQB NOVA, Oeiras, Portugal
| | - Paulo Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular Universidade do Porto, Porto, Portugal
| | - Boris Kirov
- CNRS-UMR8030 Laboratoire iSSB and Université Paris-Saclay and Université d'Évry and CEA DRF, IG, Genoscope, Évry, France.,ANP - Faculty of Automatics, TU - Sofia, Sofia, Bulgaria.,BioInfoTech Lab - RDIC, Sofia Tech Park, Sofia, Bulgaria
| | - Alfonso Jaramillo
- CNRS-UMR8030 Laboratoire iSSB and Université Paris-Saclay and Université d'Évry and CEA DRF, IG, Genoscope, Évry, France.,Warwick Integrative Synthetic Biology Centre and School of Life Sciences, University of Warwick, Coventry, UK.,Institute for Integrative Systems Biology (I2SysBio) University of Valencia-CSIC, Paterna, Spain
| | - Paula Tamagnini
- i3S - Instituto de Investigação e Inovação em Saúde Universidade do Porto, Porto, Portugal.,IBMC - Instituto de Biologia Molecular e Celular Universidade do Porto, Porto, Portugal.,Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
2
|
Ge H, Fang L, Huang X, Wang J, Chen W, Liu Y, Zhang Y, Wang X, Xu W, He Q, Wang Y. Translating Divergent Environmental Stresses into a Common Proteome Response through the Histidine Kinase 33 (Hik33) in a Model Cyanobacterium. Mol Cell Proteomics 2018; 16:1258-1274. [PMID: 28668777 DOI: 10.1074/mcp.m116.068080] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 05/07/2017] [Indexed: 01/18/2023] Open
Abstract
The histidine kinase Hik33 plays important roles in mediating cyanobacterial response to divergent types of abiotic stresses including cold, salt, high light (HL), and osmotic stresses. However, how these functions are regulated by Hik33 remains to be addressed. Using a hik33-deficient strain (Δhik33) of Synechocystis sp. PCC 6803 (Synechocystis) and quantitative proteomics, we found that Hik33 depletion induces differential protein expression highly like that induced by divergent types of stresses. This typically includes downregulation of proteins in photosynthesis and carbon assimilation that are necessary for cell propagation, and upregulation of heat shock proteins, chaperons, and proteases that are important for cell survival. This observation indicates that depletion of Hik33 alone mimics divergent types of abiotic stresses, and that Hik33 could be important for preventing abnormal stress response in the normal condition. Moreover, we found most proteins of plasmid origin were significantly upregulated in Δhik33, though their biological significance remains to be addressed. Together, the systematically characterized Hik33-regulated cyanobacterial proteome, which is largely involved in stress responses, builds the molecular basis for Hik33 as a general regulator of stress responses.
Collapse
Affiliation(s)
- Haitao Ge
- From the ‡State Key Laboratory of Microbial Technology, College of Life Science, Shandong University, Jinan 250100, China
| | - Longfa Fang
- §State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd., Beijing 100101, China.,¶University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiahe Huang
- §State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd., Beijing 100101, China
| | - Jinlong Wang
- §State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd., Beijing 100101, China.,¶University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiyang Chen
- §State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd., Beijing 100101, China.,¶University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ye Liu
- §State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd., Beijing 100101, China.,¶University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanya Zhang
- §State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd., Beijing 100101, China
| | - Xiaorong Wang
- §State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd., Beijing 100101, China.,¶University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wu Xu
- ‖Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Louisiana 70504
| | - Qingfang He
- From the ‡State Key Laboratory of Microbial Technology, College of Life Science, Shandong University, Jinan 250100, China; .,**Department of Applied Science, University of Arkansas at Little Rock, Little Rock, Arkansas
| | - Yingchun Wang
- §State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Rd., Beijing 100101, China; .,¶University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Albers SC, Peebles CAM. Evaluating Light-Induced Promoters for the Control of Heterologous Gene Expression inSynechocystis sp. PCC 6803. Biotechnol Prog 2016; 33:45-53. [DOI: 10.1002/btpr.2396] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/07/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Stevan C. Albers
- Cell and Molecular Biology Graduate Program; Colorado State University; Fort Collins CO 80523
| | - Christie A. M. Peebles
- Cell and Molecular Biology Graduate Program; Colorado State University; Fort Collins CO 80523
- Dept. of Chemical and Biological Engineering; Colorado State University; Fort Collins CO 80523
| |
Collapse
|
4
|
Cheah YE, Zimont AJ, Lunka SK, Albers SC, Park SJ, Reardon KF, Peebles CA. Diel light:dark cycles significantly reduce FFA accumulation in FFA producing mutants of Synechocystis sp. PCC 6803 compared to continuous light. ALGAL RES 2015. [DOI: 10.1016/j.algal.2015.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
5
|
Huang HH, Lindblad P. Wide-dynamic-range promoters engineered for cyanobacteria. J Biol Eng 2013; 7:10. [PMID: 23607865 PMCID: PMC3724501 DOI: 10.1186/1754-1611-7-10] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/05/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Cyanobacteria, prokaryotic cells with oxygenic photosynthesis, are excellent bioengineering targets to convert solar energy into solar fuels. Tremendous genetic engineering approaches and tools have been and still are being developed for prokaryotes. However, the progress for cyanobacteria is far behind with a specific lack of non-native inducible promoters. RESULTS We report the development of engineered TetR-regulated promoters with a wide dynamic range of transcriptional regulation. An optimal 239 (±16) fold induction in darkness (white-light-activated heterotrophic growth, 24 h) and an optimal 290 (±93) fold induction in red light (photoautotrophic growth, 48 h) were observed with the L03 promoter in cells of the unicellular cyanobacterium Synechocystis sp. strain ATCC27184 (i.e. glucose-tolerant Synechocystis sp. strain PCC 6803). By altering only few bases of the promoter in the narrow region between the -10 element and transcription start site significant changes in the promoter strengths, and consequently in the range of regulations, were observed. CONCLUSIONS The non-native inducible promoters developed in the present study are ready to be used to further explore the notion of custom designed cyanobacterial cells in the complementary frameworks of metabolic engineering and synthetic biology.
Collapse
Affiliation(s)
- Hsin-Ho Huang
- Microbial Chemistry, Department of Chemistry - Ångström Laboratory, Uppsala University, P,O, Box 523, SE-75120, Uppsala, Sweden.
| | | |
Collapse
|
6
|
Wang B, Wang J, Zhang W, Meldrum DR. Application of synthetic biology in cyanobacteria and algae. Front Microbiol 2012; 3:344. [PMID: 23049529 PMCID: PMC3446811 DOI: 10.3389/fmicb.2012.00344] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 09/05/2012] [Indexed: 11/16/2022] Open
Abstract
Cyanobacteria and algae are becoming increasingly attractive cell factories for producing renewable biofuels and chemicals due to their ability to capture solar energy and CO2 and their relatively simple genetic background for genetic manipulation. Increasing research efforts from the synthetic biology approach have been made in recent years to modify cyanobacteria and algae for various biotechnological applications. In this article, we critically review recent progresses in developing genetic tools for characterizing or manipulating cyanobacteria and algae, the applications of genetically modified strains for synthesizing renewable products such as biofuels and chemicals. In addition, the emergent challenges in the development and application of synthetic biology for cyanobacteria and algae are also discussed.
Collapse
Affiliation(s)
- Bo Wang
- Center for Biosignatures Discovery Automation, The Biodesign Institute, Arizona State University Tempe, AZ, USA ; Biological Design Graduate Program, Arizona State University Tempe, AZ, USA
| | | | | | | |
Collapse
|
7
|
Moronta-Barrios F, Espinosa J, Contreras A. In vivo features of signal transduction by the essential response regulator RpaB from Synechococcus elongatus PCC 7942. MICROBIOLOGY-SGM 2012; 158:1229-1237. [PMID: 22322959 DOI: 10.1099/mic.0.057679-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The NblS-RpaB signalling pathway, the most conserved two-component system in cyanobacteria, regulates photosynthesis and acclimatization to a variety of environmental conditions and is involved in negative regulation of high-light-induced genes. However, relevant regulatory details of the NblS-RpaB signalling pathway remain to be elucidated. We recently showed that the response regulator RpaB is regulated by specific (de)phosphorylation from the histidine kinase NblS and that RpaB and its phosphorylatable residue Asp56 are both required for viability of Synechococcus elongatus PCC 7942. We show here that the phosphorylated form of RpaB is present in cells growing under standard laboratory conditions and that high light stress affected the ratio of phosphorylated to non-phosphorylated RpaB. It also decreased the amount of rpaB transcripts without appreciably changing the total levels of RpaB. Quantitative Western blotting and confocal microscopy analyses were consistent with RpaB being a very abundant regulator, with nucleoid localization. A genetically engineered RpaB-GFP (green fluorescent protein) fusion protein rescued lethality of the rpaB null mutant, indicating that it was functional. This is, to our knowledge, the first study demonstrating in a cyanobacterium, and for a two-component response regulator, that the in vivo ratio of phosphorylated to non-phosphorylated protein changes in response to environmental conditions.
Collapse
Affiliation(s)
- Félix Moronta-Barrios
- División de Genética, Facultad de Ciencias, Universidad de Alicante, E-03080 Alicante, Spain
| | - Javier Espinosa
- División de Genética, Facultad de Ciencias, Universidad de Alicante, E-03080 Alicante, Spain
| | - Asunción Contreras
- División de Genética, Facultad de Ciencias, Universidad de Alicante, E-03080 Alicante, Spain
| |
Collapse
|
8
|
Muramatsu M, Hihara Y. Acclimation to high-light conditions in cyanobacteria: from gene expression to physiological responses. JOURNAL OF PLANT RESEARCH 2012; 125:11-39. [PMID: 22006212 DOI: 10.1007/s10265-011-0454-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 08/23/2011] [Indexed: 05/04/2023]
Abstract
Photosynthetic organisms have evolved various acclimatory responses to high-light (HL) conditions to maintain a balance between energy supply (light harvesting and electron transport) and consumption (cellular metabolism) and to protect the photosynthetic apparatus from photodamage. The molecular mechanism of HL acclimation has been extensively studied in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Whole genome DNA microarray analyses have revealed that the change in gene expression profile under HL is closely correlated with subsequent acclimatory responses such as (1) acceleration in the rate of photosystem II turnover, (2) downregulation of light harvesting capacity, (3) development of a protection mechanism for the photosystems against excess light energy, (4) upregulation of general protection mechanism components, and (5) regulation of carbon and nitrogen assimilation. In this review article, we survey recent progress in the understanding of the molecular mechanisms of these acclimatory responses in Synechocystis sp. PCC 6803. We also briefly describe attempts to understand HL acclimation in various cyanobacterial species in their natural environments.
Collapse
Affiliation(s)
- Masayuki Muramatsu
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Ibaraki, 305-8602, Japan
| | | |
Collapse
|
9
|
Takahashi T, Nakai N, Muramatsu M, Hihara Y. Role of multiple HLR1 sequences in the regulation of the dual promoters of the psaAB genes in Synechocystis sp. PCC 6803. J Bacteriol 2010; 192:4031-6. [PMID: 20511509 PMCID: PMC2916386 DOI: 10.1128/jb.00444-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Accepted: 05/17/2010] [Indexed: 11/20/2022] Open
Abstract
Previously, we analyzed the promoter architecture of the psaAB genes encoding reaction center subunits of photosystem I (PSI) in the cyanobacterium Synechocystis sp. PCC 6803. There exist two promoters, P1 and P2, both of which show typical high-light (HL) response of PSI genes; their activities are high under low-light (LL) conditions but rapidly downregulated upon the shift to HL conditions. In this study, it was suggested that a response regulator RpaB binds to multiple high-light regulatory 1 (HLR1) sequences in the upstream region of the psaAB genes. We explored the regulatory role of cis-elements, including these HLR1 sequences on the individual activity of P1 and P2. Under LL conditions, the most influential cis-element is HLR1C (-62 to -45, relative to the transcriptional starting point of P1) working for positive regulation of P1. The other HLR1 sequences also affect the promoter activity under LL conditions; HLR1A (-255 to -238) is involved in repression of P1, whereas HLR1B (-153 to -126) works for activation of P2. Upon the shift to HL conditions, regulation via HNE2 located within the region from -271 to -177 becomes active in order to downregulate both P1 and P2 activities. A positive effect of HLR1B on P2 may persist under HL. These results suggest that cis-elements, including multiple HLR1 sequences, differently regulate the activities of dual promoters of the psaAB genes to achieve the fine-tuning of the gene expression.
Collapse
Affiliation(s)
- Tomoko Takahashi
- Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, 255 Shimo-okubo, Saitama 338-8570, Japan
| | - Nanako Nakai
- Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, 255 Shimo-okubo, Saitama 338-8570, Japan
| | - Masayuki Muramatsu
- Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, 255 Shimo-okubo, Saitama 338-8570, Japan
| | - Yukako Hihara
- Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, 255 Shimo-okubo, Saitama 338-8570, Japan
| |
Collapse
|
10
|
Comparative genomics reveals 104 candidate structured RNAs from bacteria, archaea, and their metagenomes. Genome Biol 2010; 11:R31. [PMID: 20230605 PMCID: PMC2864571 DOI: 10.1186/gb-2010-11-3-r31] [Citation(s) in RCA: 295] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 01/18/2010] [Accepted: 03/15/2010] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Structured noncoding RNAs perform many functions that are essential for protein synthesis, RNA processing, and gene regulation. Structured RNAs can be detected by comparative genomics, in which homologous sequences are identified and inspected for mutations that conserve RNA secondary structure. RESULTS By applying a comparative genomics-based approach to genome and metagenome sequences from bacteria and archaea, we identified 104 candidate structured RNAs and inferred putative functions for many of these. Twelve candidate metabolite-binding RNAs were identified, three of which were validated, including one reported herein that binds the coenzyme S-adenosylmethionine. Newly identified cis-regulatory RNAs are implicated in photosynthesis or nitrogen regulation in cyanobacteria, purine and one-carbon metabolism, stomach infection by Helicobacter, and many other physiological processes. A candidate riboswitch termed crcB is represented in both bacteria and archaea. Another RNA motif may control gene expression from 3'-untranslated regions of mRNAs, which is unusual for bacteria. Many noncoding RNAs that likely act in trans are also revealed, and several of the noncoding RNA candidates are found mostly or exclusively in metagenome DNA sequences. CONCLUSIONS This work greatly expands the variety of highly structured noncoding RNAs known to exist in bacteria and archaea and provides a starting point for biochemical and genetic studies needed to validate their biologic functions. Given the sustained rate of RNA discovery over several similar projects, we expect that far more structured RNAs remain to be discovered from bacterial and archaeal organisms.
Collapse
|
11
|
Simultaneous inactivation of sigma factors B and D interferes with light acclimation of the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 2009; 191:3992-4001. [PMID: 19363110 DOI: 10.1128/jb.00132-09] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In cyanobacteria, gene expression is regulated mainly at the level of transcription initiation, which is mediated by the RNA polymerase holoenzyme. The RNA polymerase core is catalytically active, while the sigma factor recognizes promoter sequences. Group 2 sigma factors are similar to the principal sigma factor but are nonessential. Group 2 sigma factors SigB and SigD are structurally the most similar sigma factors in Synechocystis sp. strain PCC 6803. Under standard growth conditions, simultaneous inactivation of sigB and sigD genes did not affect the growth, but the photosynthesis and growth of the DeltasigBD strain were slower than in the control strain at double light intensity. Light-saturated electron transfer rates and the fluorescence and thermoluminescence measurements showed that photosynthetic light reactions are fully functional in the DeltasigBD strain, but absorption and 77 K emission spectra measurements suggest that the light-harvesting system of the DeltasigBD strain does not acclimate normally to higher light intensity. Furthermore, the DeltasigBD strain is more sensitive to photoinhibition under bright light because impaired upregulation of psbA genes leads to insufficient PSII repair.
Collapse
|
12
|
Seino Y, Takahashi T, Hihara Y. The response regulator RpaB binds to the upstream element of photosystem I genes to work for positive regulation under low-light conditions in Synechocystis sp. Strain PCC 6803. J Bacteriol 2009; 191:1581-6. [PMID: 19074384 PMCID: PMC2648220 DOI: 10.1128/jb.01588-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Accepted: 12/05/2008] [Indexed: 11/20/2022] Open
Abstract
The coordinated high-light response of genes encoding subunits of photosystem I (PSI) is achieved by the AT-rich region located just upstream of the core promoter in Synechocystis sp. strain PCC 6803. The upstream element enhances the basal promoter activity under low-light conditions, whereas this positive regulation is lost immediately after the shift to high-light conditions. In this study, we focused on a high-light regulatory 1 (HLR1) sequence included in the upstream element of every PSI gene examined. A gel mobility shift assay revealed that a response regulator RpaB binds to the HLR1 sequence in PSI promoters. Base substitution in the HLR1 sequence or decrease in copy number of the rpaB gene resulted in decrease in the promoter activity of PSI genes under low-light conditions. These observations suggest that RpaB acts as a transcriptional activator for PSI genes. It is likely that RpaB binds to the HLR1 sequence under low-light conditions and works for positive regulation of PSI genes and for negative regulation of high-light-inducible genes depending on the location of the HLR1 sequence within target promoters.
Collapse
Affiliation(s)
- Yurie Seino
- Department of Biochemistry and Molecular Biology, Saitama University, Japan
| | | | | |
Collapse
|
13
|
Muramatsu M, Sonoike K, Hihara Y. Mechanism of downregulation of photosystem I content under high-light conditions in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology (Reading) 2009; 155:989-996. [DOI: 10.1099/mic.0.024018-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Downregulation of photosystem I (PSI) content is an essential process for cyanobacteria to grow under high-light (HL) conditions. In a pmgA (sll1968) mutant of Synechocystis sp. PCC 6803, the levels of PSI content, chlorophyll and transcripts of the psaAB genes encoding reaction-centre subunits of PSI could not be maintained low during HL incubation, although the causal relationship among these phenotypes remains unknown. In this study, we modulated the activity of psaAB transcription or that of chlorophyll synthesis to estimate their contribution to the regulation of PSI content under HL conditions. Analysis of the psaAB-OX strain, in which the psaAB genes were overexpressed under HL conditions, revealed that the amount of psaAB transcript could not affect PSI content by itself. Suppression of chlorophyll synthesis by an inhibitor, laevulinic acid, in the pmgA mutant revealed that chlorophyll availability could be a determinant of PSI content under HL. It was also suggested that chlorophyll content under HL conditions is mainly regulated at the level of 5-aminolaevulinic acid synthesis. We conclude that, upon the shift to HL conditions, activities of psaAB transcription and of 5-aminolaevulinic acid synthesis are strictly downregulated by regulatory mechanism(s) independent of PmgA during the first 6 h, and then a PmgA-mediated regulatory mechanism becomes active after 6 h onward of HL incubation to maintain these activities at a low level.
Collapse
Affiliation(s)
- Masayuki Muramatsu
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Box 101, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Kintake Sonoike
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Box 101, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Yukako Hihara
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama 338-8570, Japan
| |
Collapse
|
14
|
Summerfield TC, Sherman LA. Role of sigma factors in controlling global gene expression in light/dark transitions in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 2007; 189:7829-40. [PMID: 17720783 PMCID: PMC2168720 DOI: 10.1128/jb.01036-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report on differential gene expression in the cyanobacterium Synechocystis sp. strain PCC 6803 after light-dark transitions in wild-type, DeltasigB, and DeltasigD strains. We also studied the effect of day length in the presence of glucose on a DeltasigB DeltasigE mutant. Our results indicated that the absence of SigB or SigD predominately altered gene expression in the dark or in the light, respectively. In the light, approximately 350 genes displayed transcript levels in the DeltasigD strain that were different from those of the wild type, with over 200 of these up-regulated in the mutant. In the dark, removal of SigB altered more than 150 genes, and the levels of 136 of these were increased in the mutant compared to those in the wild type. The removal of both SigB and SigE had a major impact on gene expression under mixotrophic growth conditions and resulted in the inability of cells to grow in the presence of glucose with 8-h light and 16-h dark cycles. Our results indicated the importance of group II sigma factors in the global regulation of transcription in this organism and are best explained by using the sigma cycle paradigm with the stochastic release model described previously (R. A. Mooney, S. A. Darst, and R. Landick, Mol. Cell 20:335-345, 2005). We combined our results with the total protein levels of the sigma factors in the light and dark as calculated previously (S. Imamura, S. Yoshihara, S. Nakano, N. Shiozaki, A. Yamada, K. Tanaka, H. Takahashi, M. Asayama, and M. Shirai, J. Mol. Biol. 325:857-872, 2003; S. Imamura, M. Asayama, H. Takahashi, K. Tanaka, H. Takahashi, and M. Shirai, FEBS Lett. 554:357-362, 2003). Thus, we concluded that the control of global transcription is based on the amount of the various sigma factors present and able to bind RNA polymerase.
Collapse
Affiliation(s)
- Tina C Summerfield
- Department of Biological Sciences, Purdue University, 201 S. University St., Hansen Hall, West Lafayette, IN 47907, USA
| | | |
Collapse
|