1
|
Tucker AE, Brown SP. Sampling a gradient of red snow algae bloom density reveals novel connections between microbial communities and environmental features. Sci Rep 2022; 12:10536. [PMID: 35732638 PMCID: PMC9217940 DOI: 10.1038/s41598-022-13914-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
Snow algae blooms and associated microbial communities play large roles in snow ecosystem processes. Patterns and mechanisms underpinning snow algae bloom spatial distribution and associated microbial community assembly dynamics are poorly understood. Here we examine associations of microbial communities and environmental measures between/within snow algae blooms. Snows from the Cascade Mountains and the Rocky Mountains (USA) were collected from medial (M), peripheral (P), and adjacent (A) zones of red snow algae blooms. Medial snow shows increased levels of pollen, lower oxidation–reduction potential, decreased algal and increased bacterial richness, and increased levels of potassium when compared to A and P within the same bloom. Between the Cascade and Rocky Mountains, fungal communities are distinct but bacterial and algal communities show little differentiation. A weighted OTU co-expression analysis (WOCNA) explores OTU modules and their differential correlation with environmental features, suggesting certain subcommunities may be altered by ecological patterns. Individual OTU interaction networks (fungi and bacteria) show high levels of connectivity compared to networks based on the red snow alga Sanguina nivaloides, which underscores associative differences between algal dominated networks and other taxa.
Collapse
Affiliation(s)
- Avery E Tucker
- Department of Biological Sciences, The University of Memphis, Memphis, TN, 38152, USA. .,Center for Biodiversity Research, The University of Memphis, Memphis, TN, 38152, USA.
| | - Shawn P Brown
- Department of Biological Sciences, The University of Memphis, Memphis, TN, 38152, USA.,Center for Biodiversity Research, The University of Memphis, Memphis, TN, 38152, USA
| |
Collapse
|
2
|
Shen JD, Cai X, Ni YW, Jin LQ, Liu ZQ, Zheng YG. Structural insights into the thermostability mechanism of a nitrile hydratase from Caldalkalibacillus thermarum by comparative molecular dynamics simulation. Proteins 2021; 89:978-987. [PMID: 33749895 DOI: 10.1002/prot.26076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/19/2021] [Accepted: 03/13/2021] [Indexed: 11/07/2022]
Abstract
Nitrile hydratase (NHase), an excellent bio-catalyst for the synthesis of amide compounds, was composed of two heterologous subunits. A thermoalkaliphilic NHase NHCTA1 (Tm = 71.3°C) obtained by in silico screening in our study exhibited high flexibility of α-subunit but excellent thermostability, as opposed to previous examples. To gain a deeper structural insight into the thermostability of NHCTA1, comparative molecular dynamics simulation of NHCTA1 and reported NHases was carried out. By comparison, we speculated that β-subunit played a key role in adjusting the flexibility of α-subunit and the different conformations of linker in "α5-helix-coil ring" supersecondary structure of β-subunit can affect the interaction between β-subunit and α-subunit. Mutant NHCTA1-α6 C with a random coil linker and mutant NHCTA1-αβγ with a truncated linker were therefore constructed to understand the impact on NHCTA1 thermostability by varying the supersecondary structure. The varied thermostability of NHCTA1-α6 C and NHCTA1-αβγ (Tmα6C = 74.4°C, Tmαβγ = 65.6°C) verified that the flexibility of α-subunit adjusted by β-subunit was relevant to the stability of NHCTA1. This study gained an insight into the NNHCTA1 thermostability by virtual dynamics comparison and experimental studies without crystallization, and this approach could be applied to other industrial-important enzymes.
Collapse
Affiliation(s)
- Ji-Dong Shen
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Xue Cai
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Ye-Wen Ni
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Li-Qun Jin
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
3
|
de Jong SI, van den Broek MA, Merkel AY, de la Torre Cortes P, Kalamorz F, Cook GM, van Loosdrecht MCM, McMillan DGG. Genomic analysis of Caldalkalibacillus thermarum TA2.A1 reveals aerobic alkaliphilic metabolism and evolutionary hallmarks linking alkaliphilic bacteria and plant life. Extremophiles 2020; 24:923-935. [PMID: 33030592 PMCID: PMC7561548 DOI: 10.1007/s00792-020-01205-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 09/23/2020] [Indexed: 12/28/2022]
Abstract
The aerobic thermoalkaliphile Caldalkalibacillus thermarum strain TA2.A1 is a member of a separate order of alkaliphilic bacteria closely related to the Bacillales order. Efforts to relate the genomic information of this evolutionary ancient organism to environmental adaptation have been thwarted by the inability to construct a complete genome. The existing draft genome is highly fragmented due to repetitive regions, and gaps between and over repetitive regions were unbridgeable. To address this, Oxford Nanopore Technology's MinION allowed us to span these repeats through long reads, with over 6000-fold coverage. This resulted in a single 3.34 Mb circular chromosome. The profile of transporters and central metabolism gives insight into why the organism prefers glutamate over sucrose as carbon source. We propose that the deamination of glutamate allows alkalization of the immediate environment, an excellent example of how an extremophile modulates environmental conditions to suit its own requirements. Curiously, plant-like hallmark electron transfer enzymes and transporters are found throughout the genome, such as a cytochrome b6c1 complex and a CO2-concentrating transporter. In addition, multiple self-splicing group II intron-encoded proteins closely aligning to those of a telomerase reverse transcriptase in Arabidopsis thaliana were revealed. Collectively, these features suggest an evolutionary relationship to plant life.
Collapse
Affiliation(s)
- Samuel I de Jong
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | | - Alexander Y Merkel
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | | | - Falk Kalamorz
- The New Zealand Institute for Plant and Food Research, Lincoln, New Zealand
| | - Gregory M Cook
- Department of Microbiology and Immunology, The University of Otago, Dunedin, New Zealand
| | | | - Duncan G G McMillan
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
4
|
Krah A, Zarco-Zavala M, McMillan DGG. Insights into the regulatory function of the ɛ subunit from bacterial F-type ATP synthases: a comparison of structural, biochemical and biophysical data. Open Biol 2018; 8:170275. [PMID: 29769322 PMCID: PMC5990651 DOI: 10.1098/rsob.170275] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/24/2018] [Indexed: 01/07/2023] Open
Abstract
ATP synthases catalyse the formation of ATP, the most common chemical energy storage unit found in living cells. These enzymes are driven by an electrochemical ion gradient, which allows the catalytic evolution of ATP by a binding change mechanism. Most ATP synthases are capable of catalysing ATP hydrolysis to varying degrees, and to prevent wasteful ATP hydrolysis, bacteria and mitochondria have regulatory mechanisms such as ADP inhibition. Additionally, ɛ subunit inhibition has also been described in three bacterial systems, Escherichia coli, Bacillus PS3 and Caldalkalibacillus thermarum TA2.A1. Previous studies suggest that the ɛ subunit is capable of undergoing an ATP-dependent conformational change from the ATP hydrolytic inhibitory 'extended' conformation to the ATP-induced non-inhibitory 'hairpin' conformation. A recently published crystal structure of the F1 domain of the C. thermarum TA2.A1 F1Fo ATP synthase revealed a mutant ɛ subunit lacking the ability to bind ATP in a hairpin conformation. This is a surprising observation considering it is an organism that performs no ATP hydrolysis in vivo, and appears to challenge the current dogma on the regulatory role of the ɛ subunit. This has prompted a re-examination of present knowledge of the ɛ subunits role in different organisms. Here, we compare published biochemical, biophysical and structural data involving ɛ subunit-mediated ATP hydrolysis regulation in a variety of organisms, concluding that the ɛ subunit from the bacterial F-type ATP synthases is indeed capable of regulating ATP hydrolysis activity in a wide variety of bacteria, making it a potentially valuable drug target, but its exact role is still under debate.
Collapse
Affiliation(s)
- Alexander Krah
- School of Computational Sciences, Korea Institute for Advanced Study, 85 Hoegiro Dongdaemun-gu, Seoul 02455, Republic of Korea
| | - Mariel Zarco-Zavala
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Duncan G G McMillan
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, Delft 2629 HZ, The Netherlands
| |
Collapse
|
5
|
A novel laccase from thermoalkaliphilic bacterium Caldalkalibacillus thermarum strain TA2.A1 able to catalyze dimerization of a lignin model compound. Appl Microbiol Biotechnol 2018; 102:4075-4086. [DOI: 10.1007/s00253-018-8898-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/20/2018] [Accepted: 02/23/2018] [Indexed: 10/17/2022]
|
6
|
Nakatani Y, Jiao W, Aragão D, Shimaki Y, Petri J, Parker EJ, Cook GM. Crystal structure of type II NADH:quinone oxidoreductase from Caldalkalibacillus thermarum with an improved resolution of 2.15 Å. Acta Crystallogr F Struct Biol Commun 2017; 73:541-549. [PMID: 28994401 PMCID: PMC5633920 DOI: 10.1107/s2053230x17013073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/12/2017] [Indexed: 11/11/2022] Open
Abstract
Type II NADH:quinone oxidoreductase (NDH-2) is a respiratory enzyme found in the electron-transport chain of many species, with the exception of mammals. It is a 40-70 kDa single-subunit monotopic membrane protein that catalyses the oxidation of NADH and the reduction of quinone molecules via the cofactor FAD. NDH-2 is a promising new target for drug development given its essential role in many bacterial species and intracellular parasites. Only two bacterial NDH-2 structures have been reported and these structures are at moderate resolution (2.3-2.5 Å). In this communication, a new crystallization platform is reported that produced high-quality NDH-2 crystals that diffracted to high resolution (2.15 Å). The high-resolution NDH-2 structure was used for in silico quinone substrate-docking studies to investigate the binding poses of menadione and ubiquinone molecules. These studies revealed that a very limited number of molecular interactions occur at the quinone-binding site of NDH-2. Given that the conformation of the active site is well defined, this high-resolution structure is potentially suitable for in silico inhibitor-compound screening and ligand-docking applications.
Collapse
Affiliation(s)
- Yoshio Nakatani
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - Wanting Jiao
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - David Aragão
- Australian Synchrotron, 800 Blackburn Road, Clayton 3168, Australia
| | - Yosuke Shimaki
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, Dunedin 9054, New Zealand
| | - Jessica Petri
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| | - Emily J. Parker
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Gregory M. Cook
- Department of Microbiology and Immunology, University of Otago, 720 Cumberland Street, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1042, New Zealand
| |
Collapse
|
7
|
Near-Complete Genome Sequence of Thalassospira sp. Strain KO164 Isolated from a Lignin-Enriched Marine Sediment Microcosm. GENOME ANNOUNCEMENTS 2016; 4:4/6/e01297-16. [PMID: 27881538 PMCID: PMC5122680 DOI: 10.1128/genomea.01297-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Thalassospira sp. strain KO164 was isolated from eastern Mediterranean seawater and sediment laboratory microcosms enriched on insoluble organosolv lignin under oxic conditions. The near-complete genome sequence presented here will facilitate analyses into this deep-ocean bacterium’s ability to degrade recalcitrant organics such as lignin.
Collapse
|
8
|
McMillan DGG, Watanabe R, Ueno H, Cook GM, Noji H. Biophysical Characterization of a Thermoalkaliphilic Molecular Motor with a High Stepping Torque Gives Insight into Evolutionary ATP Synthase Adaptation. J Biol Chem 2016; 291:23965-23977. [PMID: 27624936 DOI: 10.1074/jbc.m116.743633] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/12/2016] [Indexed: 11/06/2022] Open
Abstract
F1F0 ATP synthases are bidirectional molecular motors that translocate protons across the cell membrane by either synthesizing or hydrolyzing ATP. Alkaliphile ATP synthases are highly adapted, performing oxidative phosphorylation at high pH against an inverted pH gradient (acidin/alkalineout). Unlike mesophilic ATP synthases, alkaliphilic enzymes have tightly regulated ATP hydrolysis activity, which can be relieved in the presence of lauryldimethylamine oxide. Here, we characterized the rotary dynamics of the Caldalkalibacillus thermarum TA2.A1 F1 ATPase (TA2F1) with two forms of single molecule analysis, a magnetic bead duplex and a gold nanoparticle. TA2F1 rotated in a counterclockwise direction in both systems, adhering to Michaelis-Menten kinetics with a maximum rotation rate (Vmax) of 112.4 revolutions/s. TA2F1 displayed 120° unitary steps coupled with ATP hydrolysis. Torque measurements revealed the highest torque (52.4 piconewtons) derived from an F1 molecule using fluctuation theorem. The implications of high torque in terms of extreme environment adaptation are discussed.
Collapse
Affiliation(s)
- Duncan G G McMillan
- From the Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan and
| | - Rikiya Watanabe
- From the Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan and
| | - Hiroshi Ueno
- From the Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan and
| | - Gregory M Cook
- the Department of Microbiology and Immunology, Otago School of Medical Sciences, University of Otago, P. O. Box 56, Dunedin 9054, New Zealand
| | - Hiroyuki Noji
- From the Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan and
| |
Collapse
|
9
|
Heikal A, Nakatani Y, Dunn E, Weimar MR, Day CL, Baker EN, Lott JS, Sazanov LA, Cook GM. Structure of the bacterial type II NADH dehydrogenase: a monotopic membrane protein with an essential role in energy generation. Mol Microbiol 2014; 91:950-64. [PMID: 24444429 DOI: 10.1111/mmi.12507] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2013] [Indexed: 11/30/2022]
Abstract
Non-proton pumping type II NADH dehydrogenase (NDH-2) plays a central role in the respiratory metabolism of bacteria, and in the mitochondria of fungi, plants and protists. The lack of NDH-2 in mammalian mitochondria and its essentiality in important bacterial pathogens suggests these enzymes may represent a potential new drug target to combat microbial pathogens. Here, we report the first crystal structure of a bacterial NDH-2 enzyme at 2.5 Å resolution from Caldalkalibacillus thermarum. The NDH-2 structure reveals a homodimeric organization that has a unique dimer interface. NDH-2 is localized to the cytoplasmic membrane by two separated C-terminal membrane-anchoring regions that are essential for membrane localization and FAD binding, but not NDH-2 dimerization. Comparison of bacterial NDH-2 with the yeast NADH dehydrogenase (Ndi1) structure revealed non-overlapping binding sites for quinone and NADH in the bacterial enzyme. The bacterial NDH-2 structure establishes a framework for the structure-based design of small-molecule inhibitors.
Collapse
Affiliation(s)
- Adam Heikal
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9054, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Two Alternative Conformations of a Voltage-Gated Sodium Channel. J Mol Biol 2013; 425:4074-88. [DOI: 10.1016/j.jmb.2013.06.036] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/11/2013] [Accepted: 06/12/2013] [Indexed: 11/21/2022]
|
11
|
Nelson OW, Garrity GM. Genome sequences of Bacteria and Archaea published outside of Standards in Genomic Sciences, June – September 2011. Stand Genomic Sci 2011. [DOI: 10.4056/sigs.2324675] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Oranmiyan W. Nelson
- 1Editorial Office, Standards in Genomic Sciences and Department of Microbiology, Michigan State University, East Lansing, MI, USA
| | - George M. Garrity
- 1Editorial Office, Standards in Genomic Sciences and Department of Microbiology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|