1
|
Lin CH, Tsai CH, Chou CC, Wu WF. A Transient π-π or Cation-π Interaction between Degron and Degrader Dual Residues: A Key Step for the Substrate Recognition and Discrimination in the Processive Degradation of SulA by ClpYQ (HslUV) Protease in Escherichia coli. Int J Mol Sci 2023; 24:17353. [PMID: 38139184 PMCID: PMC10743992 DOI: 10.3390/ijms242417353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The Escherichia coli ATP-dependent ClpYQ protease constitutes ClpY ATPase/unfoldase and ClpQ peptidase. The Tyr91st residue within the central pore-I site of ClpY-hexamer is important for unfolding and translocating substrates into the catalytic site of ClpQ. We have identified the degron site (GFIMRP147th) of SulA, a cell-division inhibitor recognized by ClpYQ and that the Phe143rd residue in degron site is necessary for SulA native folded structure. However, the functional association of this degron site with the ClpYQ degrader is unknown. Here, we investigated the molecular insights into substrate recognition and discrimination by the ClpYQ protease. We found that the point mutants ClpYY91FQ, ClpYY91HQ, and ClpYY91WQ, carrying a ring structure at the 91st residue of ClpY, efficiently degraded their natural substrates, evidenced by the suppressed bacterial methyl-methane-sulfonate (MMS) sensitivity, the reduced β-galactosidase activity of cpsB::lacZ, and the lowest amounts of MBP-SulA in both in vivo and in vitro degradation analyses. Alternatively, mimicking the wild-type SulA, SulAF143H, SulAF143K and SulAF143W, harboring a ring structure or a cation side-group in 143rd residue of SulA, were efficiently degraded by ClpYQ in the bacterial cells, also revealing shorter half-lives at 41 °C and higher binding affinities towards ClpY in pull-down assays. Finally, ClpYY91FQ and ClpYY91HQ, were capable of effectively degrading SulAF143H and SulAF143K, highlighting a correspondingly functional interaction between the SulA 143rd and ClpY 91st residues. According to the interchangeable substituted amino acids, our results uniquely indicate that a transient π-π or cation-π interaction between the SulA 143rd and ClpY 91st residues could be aptly gripped between the degron site of substrates and the pore site of proteases (degraders) for substrate recognition and discrimination of the processive degradation.
Collapse
Affiliation(s)
- Chu-Hsuan Lin
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Hsuan Tsai
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| | - Chun-Chi Chou
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| | - Whei-Fen Wu
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
2
|
Hsieh FC, Chang LK, Tsai CH, Kuan JE, Wu KF, Wu C, Wu WF. Roles of double-loop (130~159 aa and 175~209 aa) in ClpY(HslU)-I domain for SulA substrate degradation by ClpYQ(HslUV) protease in Escherichia coli. J GEN APPL MICROBIOL 2021; 66:297-306. [PMID: 32435002 DOI: 10.2323/jgam.2019.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
An Escherichia coli ATP-dependent two-component protease, ClpYQ(HslUV), targets the SulA molecule, an SOS induced protein. ClpY recognizes, unfolds and translocates the substrates into the proteolytic site of ClpQ for degradation. ClpY is divided into three domains N, I and C. The N domain is an ATPase; the C domain allows for oligomerization, while the I domain coordinates substrate binding. In the ClpYQ complex, two layer pore sites, pore I and II, are in the center of its hexameric rings. However, the actual roles of two outer-loop (130~159 aa, L1 and 175~209 aa, L2) of the ClpY-I domain for the degradation of SulA are unclear. In this study, with ATP, the MBP-SulA molecule was bound to ClpY oligomer(s). ClpYΔL1 (ClpY deleted of loop 1) oligomers revealed an excessive SulA-binding activity. With ClpQ, it showed increased proteolytic activity for SulA degradation. Yet, ClpYΔL2 formed fewer oligomers that retained less proteolytic activity, but still had increased SulA-binding activity. In contrast, ClpYΔpore I had a lower SulA-binding activity. ClpYΔ pore I ΔL2 showed the lowest SulA-binding activity. In addition, ClpY (Q198L, Q200L), with a double point mutation in loop 2, formed stable oligomers. It also had a subtle increase in SulA-binding activity, but displayed less proteolytic activity. As a result, loop 2 has an effect on ClpY oligomerization, substrate binding and delivery. Loop 1 has a role as a gate, to prevent excessive substrate binding. Thus, accordingly, ClpY permits the formation of SulA-ClpY(6x), with ATP(s), and this complex then docks through ClpQ(6x) for ultimate proteolytic degradation.
Collapse
Affiliation(s)
- Fan-Ching Hsieh
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University
| | - Lu-Kao Chang
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University
| | - Chih-Hsuan Tsai
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University
| | - Jung-En Kuan
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University
| | - Ke-Feng Wu
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University
| | - Cindy Wu
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University
| | - Whei-Fen Wu
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University
| |
Collapse
|
3
|
Chien CW, Chan YF, Shih PS, Kuan JE, Wu KF, Wu C, Wu WF. Regulation of metE + mRNA expression by FnrS small RNA in Salmonella enterica serovar Typhimurium. Microbiol Res 2019; 229:126319. [PMID: 31479952 DOI: 10.1016/j.micres.2019.126319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 11/18/2022]
Abstract
Methionine is critical for variety of metabolic processes in biological organisms, acting as a precursor or intermediate for many final products. The last step for the synthesis of methionine is the methylation of homocysteine, which is catalyzed by MetE. Here, we use Salmonella enterica serovar Typhimurium LT2 to study the regulation of the metE+ gene by an anaerobically induced small non-coding RNA-FnrS, the expression of which is strictly dependent on the anaerobic regulator-FNR. The MetE-HA protein was expressed at an increased level in the fnrS- and hfq- deficient strains under anaerobic conditions. The Hfq protein is predicted to stabilize the binding between small RNA(s) and their target mRNA(s). A transcriptional (op) and translational (pr) metE::lacZ fusion gene were separately constructed, with the metE+-promoter fused to a lacZ reporter gene. In an anaerobic environment, the metE::lacZ (pr) fusion gene and reverse transcription-PCR identified that FnrS and/or FNR negatively regulate metE+ mRNA levels in the rich media. Analysis of FnrS revealed a sequence complementary to the 5' mRNA translational initiation region (TIR) of the metE+ gene. Mutation(s) predicted to disrupt base pairing between FnrS and metE+ TIR were constructed in fnrS, and most of those resulted in the loss of repressive activity. When compensatory mutation(s) were made in metE+ 5' TIR to restore base pairing with FnrS, the repressive regulation was completely restored. Therefore, in this study, we identified that in anaerobic phase, there is a repression of metE+ gene expression by FnrS and that base-paring, between both expressive transcripts, plays an important role for this negative regulation.
Collapse
MESH Headings
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Base Pairing
- Base Sequence
- Gene Expression Regulation, Bacterial
- Gene Expression Regulation, Enzymologic
- Methyltransferases/chemistry
- Methyltransferases/genetics
- Methyltransferases/metabolism
- Nucleic Acid Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Untranslated/chemistry
- RNA, Small Untranslated/genetics
- RNA, Small Untranslated/metabolism
- Salmonella typhimurium/enzymology
- Salmonella typhimurium/genetics
- Salmonella typhimurium/metabolism
Collapse
Affiliation(s)
- Chia-Wei Chien
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei, Taiwan, ROC
| | - Yu-Feng Chan
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei, Taiwan, ROC
| | - Po-Shu Shih
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei, Taiwan, ROC
| | - Jung-En Kuan
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei, Taiwan, ROC
| | - Ke-Feng Wu
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei, Taiwan, ROC
| | - Cindy Wu
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei, Taiwan, ROC
| | - Whei-Fen Wu
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei, Taiwan, ROC.
| |
Collapse
|
4
|
Specific regions of the SulA protein recognized and degraded by the ATP-dependent ClpYQ (HslUV) protease in Escherichia coli. Microbiol Res 2018; 220:21-31. [PMID: 30744816 DOI: 10.1016/j.micres.2018.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/27/2018] [Accepted: 12/09/2018] [Indexed: 10/27/2022]
Abstract
In Escherichia coli, ClpYQ (HslUV) is a two-component ATP-dependent protease, in which ClpQ is the peptidase subunit and ClpY is the ATPase and unfoldase. ClpY functions to recognize protein substrates, and denature and translocate the unfolded polypeptides into the proteolytic site of ClpQ for degradation. However, it is not clear how the natural substrates are recognized by the ClpYQ protease and the mechanism by which the substrates are selected, unfolded and translocated by ClpY into the interior site of ClpQ hexamers. Both Lon and ClpYQ proteases can degrade SulA, a cell division inhibitor, in bacterial cells. In this study, using yeast two-hybrid and in vivo degradation analyses, we first demonstrated that the C-terminal internal hydrophobic region (139th∼149th aa) of SulA is necessary for binding and degradation by ClpYQ. A conserved region, GFIMRP, between 142th and 147th residues of SulA, were identified among various Gram-negative bacteria. By using MBP-SulA(F143Y) (phenylalanine substituted with tyrosine) as a substrate, our results showed that this conserved residue of SulA is necessary for recognition and degradation by ClpYQ. Supporting these data, MBP-SulA(F143Y), MBP-SulA(F143N) (phenylalanine substituted with asparagine) led to a longer half-life with ClpYQ protease in vivo. In contrast, MBP-SulA(F143D) and MBP-SulA(F143S) both have shorter half-lives. Therefore, in the E. coli ClpYQ protease complex, ClpY recognizes the C-terminal region of SulA, and F143 of SulA plays an important role for the recognition and degradation by ClpYQ protease.
Collapse
|
5
|
Tsai CH, Ho YH, Sung TC, Wu WF, Chen CS. Escherichia coli Proteome Microarrays Identified the Substrates of ClpYQ Protease. Mol Cell Proteomics 2016; 16:113-120. [PMID: 27864322 DOI: 10.1074/mcp.m116.065482] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Indexed: 01/12/2023] Open
Abstract
Proteolysis is a vital mechanism to regulate the cellular proteome in all kingdoms of life, and ATP-dependent proteases play a crucial role within this process. In Escherichia coli, ClpYQ is one of the primary ATP-dependent proteases. In addition to function with removals of abnormal peptides in the cells, ClpYQ degrades regulatory proteins if necessary and thus let cells adjust to various environmental conditions. In E. coli, SulA, RcsA, RpoH and TraJ as well as RNase R, have been identified as natural protein substrates of ClpYQ. ClpYQ contains ClpY and ClpQ. The ATPase ClpY is responsible for protein recognition, unfolding, and translocation into the catalytic core of ClpQ. In this study, we use an indirect identification strategy to screen possible ClpY targets with E. coli K12 proteome chips. The chip assay results showed that YbaB strongly bound to ClpY. We used yeast two-hybrid assay to confirm the interactions between ClpY and YbaB protein and determined the Kd between ClpY and YbaB by quartz crystal microbalance. Furthermore, we validated that YbaB was successfully degraded by ClpYQ protease activity using ClpYQ in vitro and in vivo degradation assay. These findings demonstrated the YbaB is a novel substrate of ClpYQ protease. This work also successfully demonstrated that with the use of recognition element of a protease can successfully screen its substrates by indirect proteome chip screening assay.
Collapse
Affiliation(s)
- Chih-Hsuan Tsai
- From the ‡Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Yu-Hsuan Ho
- §Graduate Institute of Systems Biology and Bioinformatics, National Central University, No. 300, Jhongda Rd., Jhongli 32001, Taiwan.,¶Department of Biomedical Sciences and Engineering, National Central University, No. 300, Jhongda Rd., Jhongli 32001, Taiwan
| | - Tzu-Cheng Sung
- §Graduate Institute of Systems Biology and Bioinformatics, National Central University, No. 300, Jhongda Rd., Jhongli 32001, Taiwan.,¶Department of Biomedical Sciences and Engineering, National Central University, No. 300, Jhongda Rd., Jhongli 32001, Taiwan
| | - Whei-Fen Wu
- From the ‡Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan;
| | - Chien-Sheng Chen
- §Graduate Institute of Systems Biology and Bioinformatics, National Central University, No. 300, Jhongda Rd., Jhongli 32001, Taiwan; .,¶Department of Biomedical Sciences and Engineering, National Central University, No. 300, Jhongda Rd., Jhongli 32001, Taiwan
| |
Collapse
|
6
|
Chang CY, Hu HT, Tsai CH, Wu WF. The degradation of RcsA by ClpYQ(HslUV) protease in Escherichia coli. Microbiol Res 2016; 184:42-50. [PMID: 26856452 DOI: 10.1016/j.micres.2016.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 12/21/2015] [Accepted: 01/09/2016] [Indexed: 01/30/2023]
Abstract
In Escherichia coli, RcsA, a positive activator for transcription of cps (capsular polysaccharide synthesis) genes, is degraded by the Lon protease. In lon mutant, the accumulation of RcsA leads to overexpression of capsular polysaccharide. In a previous study, overproduction of ClpYQ(HslUV) protease represses the expression of cpsB∷lacZ, but there has been no direct observation demonstrating that ClpYQ degrades RcsA. By means of a MBP-RcsA fusion protein, we showed that RcsA activated cpsB∷lacZ expression and could be rapidly degraded by Lon protease in SG22622 (lon(+)). Subsequently, the comparative half-life experiments performed in the bacterial strains SG22623 (lon) and AC3112 (lon clpY clpQ) indicated that the RcsA turnover rate in AC3112 was relatively slow and RcsA was stable at 30°C or 41°C. In addition, ClpY could interact with RscA in an in vitro pull-down assay, and the more rapid degradation of RcsA was observed in the presence of ClpYQ protease at 41°C. Thus, we conclude that RcsA is indeed proteolized by ClpYQ protease.
Collapse
Affiliation(s)
- Chun-Yang Chang
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei, Taiwan, ROC
| | - Hui-Ting Hu
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei, Taiwan, ROC
| | - Chih-Hsuan Tsai
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei, Taiwan, ROC
| | - Whei-Fen Wu
- Department of Agricultural Chemistry, College of Bio-Resource and Agriculture, National Taiwan University, Taipei, Taiwan, ROC.
| |
Collapse
|
7
|
Mbang-Benet DE, Sterkers Y, Morelle C, Kebe NM, Crobu L, Portalès P, Coux O, Hernandez JF, Meghamla S, Pagès M, Bastien P. The bacterial-like HslVU protease complex subunits are involved in the control of different cell cycle events in trypanosomatids. Acta Trop 2014; 131:22-31. [PMID: 24299926 DOI: 10.1016/j.actatropica.2013.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 11/16/2013] [Accepted: 11/21/2013] [Indexed: 02/08/2023]
Abstract
The trypanosomatid parasites Leishmania and Trypanosoma are responsible for the most important WHO-designated neglected tropical diseases, for which the need for cost-effective new drugs is urgent. In addition to the classical eukaryotic 20S and 26S proteasomes, these unconventional eukaryotes possess a bacterial-like protease complex, HslVU, made of proteolytic (HslV) and regulatory (HslU) subunits. In trypanosomatids, two paralogous genes are co-expressed: HslU1 and HslU2. Conflicting reports have been published with respect to subcellular localization, functional redundancy and putative roles of the different subunits of this complex in trypanosomatids. Here, we definitively established the mitochondrial localization of HslVU in L. major procyclic promastigotes and of HslV in T. brucei bloodstream trypomastigotes, the latter being the form responsible for the disease in the mammalian host. Moreover, our data demonstrate for the first time the essential nature of HslVU in the bloodstream trypomastigotes of T. brucei, in spite of mitochondrial repression at this stage. Interestingly, our work also allows distinguishing a specific role for the different members of the complex, as HslV and HslU1 appear to be involved in the control of different cell cycle events. Finally, these data validate HslVU as a promising drug target against these parasitic diseases of wide medical and economical importance.
Collapse
|
8
|
Kravats AN, Tonddast-Navaei S, Bucher RJ, Stan G. Asymmetric processing of a substrate protein in sequential allosteric cycles of AAA+ nanomachines. J Chem Phys 2013; 139:121921. [DOI: 10.1063/1.4817410] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|