1
|
Shi J, Feng Z, Song Q, Wen A, Liu T, Xu L, Ye Z, Xu S, Gao F, Xiao L, Zhu J, Das K, Zhao G, Li J, Feng Y, Lin W. Structural insights into transcription regulation of the global OmpR/PhoB family regulator PhoP from Mycobacterium tuberculosis. Nat Commun 2025; 16:1573. [PMID: 39948061 PMCID: PMC11825685 DOI: 10.1038/s41467-025-56697-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
As a global transcription activator or repressor, the representative OmpR/PhoB family response regulator PhoP plays a crucial role in regulating bacterial pathogenicity and stress adaptation. However, the molecular mechanisms underlying the transcriptional regulation that define its differential functions remain largely unclear. In the present study, we determine three cryo-EM structures of Mycobacterium tuberculosis (Mtb) PhoP-dependent transcription activation complexes (PhoP-TACs) and build one preliminary cryo-EM structure model of Mtb PhoP-dependent transcription repression complex (PhoP-TRC). In PhoP-TACs, tandem PhoP dimers cooperatively recognize various types of promoters through conserved PhoP-PHO box interactions, which displace the canonical interactions between the -35 element and σAR4 of RNA polymerase (RNAP), unraveling complex transcription activation mechanisms of PhoP. In PhoP-TRC, one PhoP dimer binds and significantly distorts the upstream PHO box of the promoter cross-talked with the global nitrogen regulator GlnR through the PhoP-PHO box, PhoP-GlnR and αCTD-DNA interactions. This unique binding of PhoP creates steric hindrances that prevent additional GlnR binding, positioning PhoP within a unique 'competitive occluding model', as supported by prior biochemical observations. Collectively, these findings reveal the dual molecular mechanisms of PhoP-dependent transcription regulation, and offer valuable insights for further exploration of the enormous PhoP-like OmpR/PhoB family response regulators.
Collapse
Affiliation(s)
- Jing Shi
- School of Medicine, Nanjing University of Chinese Medicine, Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing, China.
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Zhenzhen Feng
- School of Medicine, Nanjing University of Chinese Medicine, Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing, China
| | - Qian Song
- School of Medicine, Nanjing University of Chinese Medicine, Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing, China
| | - Aijia Wen
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianyu Liu
- School of Medicine, Nanjing University of Chinese Medicine, Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing, China
| | - Liqiao Xu
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zonghang Ye
- School of Medicine, Nanjing University of Chinese Medicine, Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing, China
| | - Simin Xu
- School of Medicine, Nanjing University of Chinese Medicine, Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing, China
| | - Fei Gao
- School of Medicine, Nanjing University of Chinese Medicine, Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing, China
| | - Liuxiang Xiao
- School of Medicine, Nanjing University of Chinese Medicine, Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing, China
| | - Jiapeng Zhu
- School of Medicine, Nanjing University of Chinese Medicine, Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing, China
| | - Kalyan Das
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Guoping Zhao
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jie Li
- School of Medicine, Nanjing University of Chinese Medicine, Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing, China.
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Yu Feng
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Wei Lin
- School of Medicine, Nanjing University of Chinese Medicine, Department of Infectious Diseases, Nanjing Drum Tower Hospital, Nanjing, China.
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
2
|
Jerez SA, Mora AY, Millanao AR, Saavedra CP, Bucarey SA, Mora GC, Villagra NA, Hidalgo AA. Transcriptional regulator MarT negatively regulates MarT-regulated motility gene I, a new gene involved in invasion and virulence of Salmonella enterica. Front Microbiol 2024; 15:1430982. [PMID: 39211323 PMCID: PMC11358694 DOI: 10.3389/fmicb.2024.1430982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/24/2024] [Indexed: 09/04/2024] Open
Abstract
The speciation of Salmonella occurred by acquisition of genomic islands from other bacterial species and continued to diverge into subspecies and serovars with diferent range of host. S. enterica serovar Typhimurium (STM) is a generalist pathogen infecting hosts that include birds, mice, and humans, whilst S. enterica serovar Typhi (STY) is a restricted-host pathogen, infecting only humans. Despite their ranges of hosts, STM and STY possess 97-98% identity. Gain of genes by horizontal transference and loss of genes by mutations, are believed essential for differentiation of Salmonella. Salmonella pathogenicity island 3 (SPI-3) is an example combining these two processes. SPI-3 encodes misL and marT, among other genes. In STM, misL is required for gut colonization. Furthermore, protein MarT, positively regulates expression of misL by binding to misL-promoter. On the other hand, in SPI-3 of STY, marT and misL are pseudogenes. Interestingly, the gene t3766 (gene involved in resistance to H2O2) is present only in STY and is negatively regulated when marT STM is heterologously expressed in STY. Based on the view that MarT might regulate genes implicated in virulence, this work searched for new genes regulated by MarT. In silico searches for possible MarT target genes were performed, and 4 genes were selected for further analysis as they contained at least 2 copies of the consensus MarT-binding sequence in their promoters. Mutating marT in STM or heterologously expressing marT STM in STY confirmed that MarT negatively regulates ORF STY1408 or STM14_2003, its homologue in STM. STY1408 encodes for a putative protein with homology to methyl accepting chemotaxis proteins, which participate in chemotaxis and motility. Therefore, STY1408 was named mrmI (MarT-regulated motility gene I). Motility assays confirmed that the product of mrmI modulates motility. In addition, in vitro infection of cells with STM and STY mutants in mrmI reduces association with cells at 1, 3 and 24 h post-infection. Oral infection of mice showed that a mrmI null mutant was defective in producing systemic disease. Therefore, we conclude that MarT regulated mrmI, is involved in virulence of Salmonella. While pseudogenization of marT might modulate the fitness of narrow host range STY.
Collapse
Affiliation(s)
- Sebastián A. Jerez
- Programa de Doctorado en Biociencias Moleculares, Universidad Andres Bello, Santiago, Chile
| | - Aracely Y. Mora
- Advanced Center for Chronic Diseases, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ana R. Millanao
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Claudia P. Saavedra
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Sergio A. Bucarey
- Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Guido C. Mora
- Instituto de Investigación Interdisciplinar en Ciencias Biomédicas SEK (I3CBSEK), Facultad de Ciencias de la Salud, Universidad SEK, Santiago, Chile
| | - Nicolás A. Villagra
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomas, Santiago, Chile
| | - Alejandro A. Hidalgo
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
3
|
Naren N, Zhang XX. Role of a local transcription factor in governing cellular carbon/nitrogen homeostasis in Pseudomonas fluorescens. Nucleic Acids Res 2021; 49:3204-3216. [PMID: 33675669 PMCID: PMC8034625 DOI: 10.1093/nar/gkab091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Autoactivation of two-component systems (TCSs) can increase the sensitivity to signals but inherently cause a delayed response. Here, we describe a unique negative feedback mechanism enabling the global NtrB/NtrC regulator to rapidly respond to nitrogen starvation over the course of histidine utilization (hut) in Pseudomonas fluorescens. NtrBC directly activates transcription of hut genes, but overexpression will produce excess ammonium leading to NtrBC inactivation. To prevent this from occurring, the histidine-responsive repressor HutC fine-tunes ntrBC autoactivation: HutC and NtrC bind to the same operator site in the ntrBC promoter. This newly discovered low-affinity binding site shows little sequence similarity with the consensus sequence that HutC recognizes for substrate-specific induction of hut operons. A combination of genetic and transcriptomic analysis indicated that both ntrBC and hut promoter activities cannot be stably maintained in the ΔhutC background when histidine fluctuates at high concentrations. Moreover, the global carbon regulator CbrA/CbrB is involved in directly activating hut transcription while de-repressing hut translation via the CbrAB-CrcYZ-Crc/Hfq regulatory cascade. Together, our data reveal that the local transcription factor HutC plays a crucial role in governing NtrBC to maintain carbon/nitrogen homeostasis through the complex interactions between two TCSs (NtrBC and CbrAB) at the hut promoter.
Collapse
Affiliation(s)
- Naran Naren
- School of Natural and Computational Sciences, Massey University at Albany, Auckland 0745, New Zealand
| | - Xue-Xian Zhang
- School of Natural and Computational Sciences, Massey University at Albany, Auckland 0745, New Zealand
| |
Collapse
|
4
|
Shropshire H, Jones RA, Aguilo-Ferretjans MM, Scanlan DJ, Chen Y. Proteomics insights into the Burkholderia cenocepacia phosphorus stress response. Environ Microbiol 2021; 23:5069-5086. [PMID: 33684254 DOI: 10.1111/1462-2920.15451] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/02/2021] [Indexed: 11/26/2022]
Abstract
The Burkholderia cepacia complex is a group of Burkholderia species that are opportunistic pathogens causing high mortality rates in patients with cystic fibrosis. An environmental stress often encountered by these soil-dwelling and pathogenic bacteria is phosphorus limitation, an essential element for cellular processes. Here, we describe cellular and extracellular proteins differentially regulated between phosphate-deplete (0 mM, no added phosphate) and phosphate-replete (1 mM) growth conditions using a comparative proteomics (LC-MS/MS) approach. We observed a total of 128 and 65 unique proteins were downregulated and upregulated respectively, in the B. cenocepacia proteome. Of those downregulated proteins, many have functions in amino acid transport/metabolism. We have identified 24 upregulated proteins that are directly/indirectly involved in inorganic phosphate or organic phosphorus acquisition. Also, proteins involved in virulence and antimicrobial resistance were differentially regulated, suggesting B. cenocepacia experiences a dramatic shift in metabolism under these stress conditions. Overall, this study provides a baseline for further research into the biology of Burkholderia in response to phosphorus stress.
Collapse
Affiliation(s)
- Holly Shropshire
- BBSRC Midlands Integrative Biosciences Training Partnership, University of Warwick, Coventry, CV4 7AL, UK.,School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Rebekah A Jones
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | | - David J Scanlan
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Yin Chen
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
5
|
Gao R, Stock AM. Overcoming the Cost of Positive Autoregulation by Accelerating the Response with a Coupled Negative Feedback. Cell Rep 2019; 24:3061-3071.e6. [PMID: 30208328 PMCID: PMC6194859 DOI: 10.1016/j.celrep.2018.08.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/06/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022] Open
Abstract
A fundamental trade-off between rapid response and optimal expression of genes below cytotoxic levels exists for many signaling circuits, particularly for positively autoregulated systems with an inherent response delay. Here, we describe a regulatory scheme in the E. coli PhoB-PhoR two-component system, which overcomes the cost of positive feedback and achieves both fast and optimal steadystate response for maximal fitness across different environments. Quantitation of the cellular activities enables accurate modeling of the response dynamics to describe how requirements for optimal protein concentrations place limits on response speed. An observed fast response that exceeds the limit led to the prediction and discovery of a coupled negative autoregulation, which allows fast gene expression without increasing steady-state levels. We demonstrate the fitness advantages for the coupled feedbacks in both dynamic and stable environments. Such regulatory schemes offer great flexibility for accurate control of gene expression levels and dynamics upon environmental changes. Positive autoregulation of transcription produces a delayed response. Gao and Stock describe the limit of response delay caused by requirements of optimal protein levels in the PhoBR twocomponent system. Coupled negative autoregulation is discovered to allow a strong promoter for fast response without incurring cost of increasing protein expression levels.
Collapse
Affiliation(s)
- Rong Gao
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Ann M Stock
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|
6
|
Regulatory rewiring through global gene regulations by PhoB and alarmone (p)ppGpp under various stress conditions. Microbiol Res 2019; 227:126309. [PMID: 31421713 DOI: 10.1016/j.micres.2019.126309] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/23/2019] [Accepted: 08/02/2019] [Indexed: 12/14/2022]
Abstract
The phosphorus availability in soil ranged from <0.01 to 1 ppm and found limiting for the utilization by plants. Hence, phosphate solubilizing bacteria (PSB) proficiently fulfill the phosphorus requirement of plants in an eco-friendly manner. The PSB encounter dynamic and challenging environmental conditions viz., high temperature, osmotic, acid, and climatic changes often hamper their activity and proficiency. The modern trend is shifting from isolation of the PSB to their genetic potentials and genome annotation not only for their better performance in the field trials but also to study their ability to cope up with stresses. In order to withstand environmental stress, bacteria need to restructure its metabolic network to ensure its survival. Pi starving condition response regulator (PhoB) and the mediator of stringent stress response alarmone (p)ppGpp known to regulate the global regulatory network of bacteria to provide balanced physiology under various stress condition. The current review discusses the global regulation and crosstalk of genes involved in phosphorus homeostasis, solubilization, and various stress response to fine tune the bacterial physiology. The knowledge of these network crosstalk help bacteria to respond efficiently to the challenging environmental parameters, and their physiological plasticity lead us to develop proficient long-lasting consortia for plant growth promotion.
Collapse
|
7
|
Regulation of antimonite oxidation and resistance by the phosphate regulator PhoB in Agrobacterium tumefaciens GW4. Microbiol Res 2019; 226:10-18. [PMID: 31284939 DOI: 10.1016/j.micres.2019.04.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/13/2019] [Accepted: 04/24/2019] [Indexed: 11/21/2022]
Abstract
Microbial oxidation of antimonite [Sb(III)] to antimonate [Sb(V)] is a detoxification process which contributes to Sb(III) resistance. Antimonite oxidase AnoA is essential for Sb(III) oxidation, however, the regulation mechanism is still unknown. Recently, we found that the expressions of phosphate transporters were induced by Sb(III) using proteomics analysis in Agrobacterium tumefaciens GW4, thus, we predicted that the phosphate regulator PhoB may regulate bacterial Sb(III) oxidation and resistance. In this study, comprehensive analyses were performed and the results showed that (1) Genomic analysis revealed two phoB (named as phoB1 and phoB2) and one phoR gene in strain GW4; (2) Reporter gene assay showed that both phoB1 and phoB2 were induced in low phosphate condition (50 μM), but only phoB2 was induced by Sb(III); (3) Genes knock-out/complementation, Sb(III) oxidation and Sb(III) resistance tests showed that deletion of phoB2 significantly inhibited the expression of anoA and decreased bacterial Sb(III) oxidation efficiency and Sb(III) resistant. In contrast, deletion of phoB1 did not obviously affect anoA's expression level and Sb(III) oxidation/resistance; (4) A putative Pho motif was predicted in several A. tumefaciens strains and electrophoretic mobility shift assay (EMSA) showed that PhoB2 could bind with the promoter sequence of anoA; (5) Site-directed mutagenesis and short fragment EMSA revealed the exact DNA binding sequence for the protein-DNA interaction. These results showed that PhoB2 positively regulates Sb(III) oxidation and PhoB2 is also associated with Sb(III) resistance. Such regulation mechanism may provide a great contribution for bacterial survival in the environment with Sb and for bioremediation application.
Collapse
|
8
|
An Iterative, Synthetic Approach To Engineer a High-Performance PhoB-Specific Reporter. Appl Environ Microbiol 2018; 84:AEM.00603-18. [PMID: 29752265 DOI: 10.1128/aem.00603-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/03/2018] [Indexed: 11/20/2022] Open
Abstract
Transcriptional reporters are common tools for analyzing either the transcription of a gene of interest or the activity of a specific transcriptional regulator. Unfortunately, the latter application has the shortcoming that native promoters did not evolve as optimal readouts for the activity of a particular regulator. We sought to synthesize an optimized transcriptional reporter for assessing PhoB activity, aiming for maximal "on" expression when PhoB is active, minimal background in the "off" state, and no control elements for other regulators. We designed specific sequences for promoter elements with appropriately spaced PhoB-binding sites, and at 19 additional intervening nucleotide positions for which we did not predict sequence-specific effects, the bases were randomized. Eighty-three such constructs were screened in Vibrio fischeri, enabling us to identify bases at particular randomized positions that significantly correlated with high-level "on" or low-level "off" expression. A second round of promoter design rationally constrained 13 additional positions, leading to a reporter with high-level PhoB-dependent expression, essentially no background, and no other known regulatory elements. As expressed reporters, we used both stable and destabilized variants of green fluorescent protein (GFP), the latter of which has a half-life of 81 min in V. fischeri In culture, PhoB induced the reporter when phosphate was depleted to a concentration below 10 μM. During symbiotic colonization of its host squid, Euprymna scolopes, the reporter indicated heterogeneous phosphate availability in different light-organ microenvironments. Finally, testing this construct in other members of the Proteobacteria demonstrated its broader utility. The results illustrate how a limited ability to predict synthetic promoter-reporter performance can be overcome through iterative screening and reengineering.IMPORTANCE Transcriptional reporters can be powerful tools for assessing when a particular regulator is active; however, native promoters may not be ideal for this purpose. Optimal reporters should be specific to the regulator being examined and should maximize the difference between the "on" and "off" states; however, these properties are distinct from the selective pressures driving the evolution of natural promoters. Synthetic promoters offer a promising alternative, but our understanding often does not enable fully predictive promoter design, and the large number of alternative sequence possibilities can be intractable. In a synthetic promoter region with over 34 billion sequence variants, we identified bases correlated with favorable performance by screening only 83 candidates, allowing us to rationally constrain our design. We thereby generated an optimized reporter that is induced by PhoB and used it to explore the low-phosphate response of V. fischeri This promoter design strategy will facilitate the engineering of other regulator-specific reporters.
Collapse
|
9
|
Barbosa LC, Goulart CL, Avellar MM, Bisch PM, von Kruger WMA. Accumulation of ornithine lipids in Vibrio cholerae under phosphate deprivation is dependent on VC0489 (OlsF) and PhoBR system. MICROBIOLOGY-SGM 2018; 164:395-399. [PMID: 29458678 DOI: 10.1099/mic.0.000607] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ornithine lipids (OLs) are phosphorus-free lipids found in many bacteria grown under phosphate deprivation, a condition that activates the PhoBR system and leads to phosphate uptake and metabolism. Two OL synthesis pathways have already been described. One depends on OlsB and OlsA acyltransferases to add, respectively, the first and second acyl chains to an ornithine molecule. The other pathway is carried out by OlsF, a bifunctional enzyme responsible for both acylation steps. Although Vibrio cholerae lacks olsBA genes, an olsF homologue (vc0489) was identified in its genome. In this work we demonstrated that V. cholerae produces OLs and expresses vc0489 in response to phosphate depletion, in a PhoBR-dependent manner. In Escherichia coli, under similar condition, vc0489 expression leads to OL accumulation. These results indicate a strong connection between OL synthesis and VC0489 from V. cholerae and, for the first time, a direct regulation of an olsF homologue by the PhoBR system.
Collapse
Affiliation(s)
- Livia C Barbosa
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina L Goulart
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcela M Avellar
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo M Bisch
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wanda M A von Kruger
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Transcriptional and post-transcriptional regulation of pst2 operon expression in Vibrio cholerae O1. INFECTION GENETICS AND EVOLUTION 2017; 51:10-16. [DOI: 10.1016/j.meegid.2017.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 11/23/2022]
|
11
|
Structure-function analysis of the DNA-binding domain of a transmembrane transcriptional activator. Sci Rep 2017; 7:1051. [PMID: 28432336 PMCID: PMC5430869 DOI: 10.1038/s41598-017-01031-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/23/2017] [Indexed: 11/08/2022] Open
Abstract
The transmembrane DNA-binding protein CadC of E. coli, a representative of the ToxR-like receptor family, combines input and effector domains for signal sensing and transcriptional activation, respectively, in a single protein, thus representing one of the simplest signalling systems. At acidic pH in a lysine-rich environment, CadC activates the transcription of the cadBA operon through recruitment of the RNA polymerase (RNAP) to the two cadBA promoter sites, Cad1 and Cad2, which are directly bound by CadC. However, the molecular details for its interaction with DNA have remained elusive. Here, we present the crystal structure of the CadC DNA-binding domain (DBD) and show that it adopts a winged helix-turn-helix fold. The interaction with the cadBA promoter site Cad1 is studied by using nuclear magnetic resonance (NMR) spectroscopy, biophysical methods and functional assays and reveals a preference for AT-rich regions. By mutational analysis we identify amino acids within the CadC DBD that are crucial for DNA-binding and functional activity. Experimentally derived structural models of the CadC-DNA complex indicate that the CadC DBD employs mainly non-sequence-specific over a few specific contacts. Our data provide molecular insights into the CadC-DNA interaction and suggest how CadC dimerization may provide high-affinity binding to the Cad1 promoter.
Collapse
|
12
|
Chen F, Cao Y, Wei S, Li Y, Li X, Wang Q, Wang G. Regulation of arsenite oxidation by the phosphate two-component system PhoBR in Halomonas sp. HAL1. Front Microbiol 2015; 6:923. [PMID: 26441863 PMCID: PMC4563254 DOI: 10.3389/fmicb.2015.00923] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/21/2015] [Indexed: 01/25/2023] Open
Abstract
Previously, the expression of arsenite [As(III)] oxidase genes aioBA was reported to be regulated by a three-component regulatory system, AioXSR, in a number of As(III)-oxidizing bacterial strains. However, the regulation mechanism is still unknown when aioXSR genes are absent in some As(III)-oxidizing bacterial genomes, such as in Halomonas sp. HAL1. In this study, transposon mutagenesis and gene knock-out mutation were performed, and two mutants, HAL1-phoR931 and HAL1-▵phoB, were obtained in strain HAL1. The phoR and phoB constitute a two-component system which is responsible for phosphate (Pi) acquisition and assimilation. Both of the mutants showed negative As(III)-oxidation phenotypes in low Pi condition (0.1 mM) but not under normal Pi condition (1 mM). The phoBR complementation strain HAL1-▵phoB-C reversed the mutants' null phenotypes back to wild type status. Meanwhile, lacZ reporter fusions using pCM-lacZ showed that the expression of phoBR and aioBA were both induced by As(III) but were not induced in HAL1-phoR931 and HAL1-▵phoB. Using 15 consensus Pho box sequences, a putative Pho box was found in the aioBA regulation region. PhoB was able to bind to the putative Pho box in vivo (bacterial one-hybrid detection) and in vitro (electrophoretic mobility gel shift assay), and an 18-bp binding sequence containing nine conserved bases were determined. This study provided the evidence that PhoBR regulates the expression of aioBA in Halomonas sp. HAL1 under low Pi condition. The new regulation model further implies the close metabolic connection between As and Pi.
Collapse
Affiliation(s)
- Fang Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan, China
| | - Yajing Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan, China
| | - Sha Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan, China
| | - Yanzhi Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan, China
| | - Xiangyang Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan, China
| | - Qian Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan, China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University Wuhan, China
| |
Collapse
|
13
|
McDonough E, Lazinski DW, Camilli A. Identification of in vivo regulators of the Vibrio cholerae xds gene using a high-throughput genetic selection. Mol Microbiol 2014; 92:302-15. [PMID: 24673931 DOI: 10.1111/mmi.12557] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2014] [Indexed: 01/20/2023]
Abstract
Vibrio cholerae, the causative agent of cholera, remains a threat to public health in areas with inadequate sanitation. As a waterborne pathogen, V. cholerae moves between two dissimilar environments, aquatic reservoirs and the intestinal tract of humans. Accordingly, this pathogen undergoes adaptive shifts in gene expression throughout the different stages of its lifecycle. One particular gene, xds, encodes a secreted exonuclease that was previously identified as being induced during infection. Here we sought to identify regulators responsible for the in vivo-specific induction of xds. A transcriptional fusion of xds to two consecutive antibiotic resistance genes was used to select transposon mutants that had inserted within or adjacent to regulatory genes and thereby caused increased expression of the xds fusion under non-inducing conditions. Large pools of selected insertion sites were sequenced in a high throughput manner using Tn-seq to identify potential mechanisms of xds regulation. Our selection identified the two-component system PhoB/R as the dominant activator of xds expression. In vitro validation confirmed that PhoB, a protein which is only active during phosphate limitation, was responsible for xds activation. Using xds expression as a biosensor of the extracellular phosphate level, we observed that the mouse small intestine is a phosphate-limited environment.
Collapse
Affiliation(s)
- Emilykate McDonough
- Howard Hughes Medical Institute and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | | | | |
Collapse
|
14
|
Faure LM, Llamas MA, Bastiaansen KC, de Bentzmann S, Bigot S. Phosphate starvation relayed by PhoB activates the expression of the Pseudomonas aeruginosa σvreI ECF factor and its target genes. MICROBIOLOGY-SGM 2013; 159:1315-1327. [PMID: 23657684 DOI: 10.1099/mic.0.067645-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The cell-surface signalling (CSS) system represents an important regulatory mechanism by which Gram-negative bacteria respond to the environment. Gene regulation by CSS systems is particularly present and important in the opportunistic human pathogen Pseudomonas aeruginosa. In this bacterium, these mechanisms regulate mainly the uptake of iron, but also virulence functions. The latter is the case for the P. aeruginosa PUMA3 CSS system formed by the putative VreA receptor, the σ(VreI) extracytoplasmic function sigma factor and the VreR anti-sigma factor. A role for this system in P. aeruginosa virulence has been demonstrated previously. However, the conditions under which this system is expressed and activated have not been elucidated so far. In this work, we have identified and characterized the global regulatory cascade activating the expression of the PUMA3 system. We show that the PhoB transcriptional regulator, part of the PhoB-PhoR two-component signalling system, can sense a limitation of inorganic phosphate to turn on the expression of the vreA, vreI and vreR genes, which constitute an operon. Upon expression of these genes in this condition, σ(VreI) factor mediates transcription of most, but not all, of the previously identified σ(VreI)-regulated genes. Indeed, we found new σ(VreI)-targeted genes and we show that σ(VreI)-regulon genes are all located immediately downstream to the vreAIR gene cluster.
Collapse
Affiliation(s)
- Laura M Faure
- UMR7255, CNRS - Aix Marseille University, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - María A Llamas
- Department of Environmental Protection, Estación Experimental del Zaidín-CSIC, 18008 Granada, Spain
| | - Karlijn C Bastiaansen
- Section of Molecular Microbiology, Department of Molecular Cell Biology, VU University, 1081 HV Amsterdam, The Netherlands.,Department of Environmental Protection, Estación Experimental del Zaidín-CSIC, 18008 Granada, Spain
| | - Sophie de Bentzmann
- UMR7255, CNRS - Aix Marseille University, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - Sarah Bigot
- UMR7255, CNRS - Aix Marseille University, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| |
Collapse
|
15
|
ToxR recognizes a direct repeat element in the toxT, ompU, ompT, and ctxA promoters of Vibrio cholerae to regulate transcription. Infect Immun 2013; 81:884-95. [PMID: 23297386 DOI: 10.1128/iai.00889-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ToxR facilitates TcpP-mediated activation of the toxT promoter in Vibrio cholerae, initiating a regulatory cascade that culminates in cholera toxin secretion and toxin coregulated pilus expression. ToxR binds a region from -104 to -68 of the toxT promoter, from which ToxR recruits TcpP to the TcpP-binding site from -53 to -38. To precisely define the ToxR-binding site within the toxT promoter, promoter derivatives with single-base-pair transversions spanning the ToxR-footprinted region were tested for transcription activation and DNA binding. Nine transversions between -96 to -83 reduced toxT promoter activity 3-fold or greater, and all nine reduced the relative affinity of the toxT promoter for ToxR at least 2-fold, indicating that activation defects were due largely to reduced binding of ToxR to the toxT promoter. Nucleotides important for ToxR-dependent toxT activation revealed a consensus sequence of TNAAA-N(5)-TNAAA extending from -96 to -83, also present in other ToxR-regulated promoters. When these consensus nucleotides were mutated in the ompU, ompT, or ctxA promoters, ToxR-mediated regulation was disrupted. Thus, we have defined the core ToxR-binding site present in numerous ToxR-dependent promoters and we have precisely mapped the binding site for ToxR to a position three helical turns upstream of TcpP in the toxT promoter.
Collapse
|
16
|
A conserved two-component signal transduction system controls the response to phosphate starvation in Bifidobacterium breve UCC2003. Appl Environ Microbiol 2012; 78:5258-69. [PMID: 22635988 DOI: 10.1128/aem.00804-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This work reports on the identification and molecular characterization of the two-component regulatory system (2CRS) PhoRP, which controls the response to inorganic phosphate (P(i)) starvation in Bifidobacterium breve UCC2003. The response regulator PhoP was shown to bind to the promoter region of pstSCAB, specifying a predicted P(i) transporter system, as well as that of phoU, which encodes a putative P(i)-responsive regulatory protein. This interaction is assumed to cause transcriptional modulation under conditions of P(i) limitation. Our data suggest that the phoRP genes are subject to positive autoregulation and, together with pstSCAB and presumably phoU, represent the complete regulon controlled by the phoRP-encoded 2CRS in B. breve UCC2003. Determination of the minimal PhoP binding region combined with bioinformatic analysis revealed the probable recognition sequence of PhoP, designated here as the PHO box, which together with phoRP is conserved among many high-GC-content Gram-positive bacteria. The importance of the phoRP 2CRS in the response of B. breve to P(i) starvation conditions was confirmed by analysis of a B. breve phoP insertion mutant which exhibited decreased growth under phosphate-limiting conditions compared to its parent strain UCC2003.
Collapse
|