1
|
Delarouzée A, Lopes Ferreira N, Wasels F. Alleviation of Carbon Catabolite Repression through araR and xylR Inactivation in Clostridium acetobutylicum DSM 792. Appl Environ Microbiol 2023; 89:e0213522. [PMID: 36779716 PMCID: PMC10057040 DOI: 10.1128/aem.02135-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/15/2023] [Indexed: 02/14/2023] Open
Abstract
Efficient bioconversion processes of lignocellulose-derived carbohydrates into chemicals have received increasing interest in the last decades since they represent a promising alternative to petro-based processes. Despite efforts to adapt microorganisms to the use of such substrates, one of their major limitations remains their inability to consume multiple sugars simultaneously. In particular, the solventogenic model organism Clostridium acetobutylicum struggles to efficiently use second generation (2G) substrates because of carbon catabolite repression mechanisms that prevent the assimilation of xylose and arabinose in the presence of glucose. In this study, we addressed this issue by inactivating genes encoding transcriptional repressors involved in such mechanisms in the C. acetobutylicum strain DSM 792. Our results showed that the deletion of the two putative copies of xylR (CA_C2613 and CA_C3673) had little or no effect on the ability of the strain to consume xylose. Unlikely, the deletion of araR (CA_C1340) led to a 2.5-fold growth rate increase on xylose. The deletion of both araR and xylR genes resulted in the coassimilation of arabinose together with glucose, while xylose consumption remained inefficient. Transcriptional analyses of the wild-type strain and mutants grown on glucose, arabinose, xylose, and combinations of them provided a crucial, global overview of regulations triggered by the products of both araR and xylR in C. acetobutylicum. As suggested by these data, overexpression of xylA and xylB led to further improvement of pentose assimilation. Those results represent a step forward in the development of genetically modified strains of C. acetobutylicum able to coassimilate lignocellulosic-derived sugars. IMPORTANCE C. acetobutylicum is a strong candidate to produce chemicals of interest such as C3 and C4 alcohols. Used for more than a century for its capacity to produce a mixture of acetone, butanol, and ethanol from first generation (1G) substrates, its natural ability to assimilate a wide variety of monoosides also predisposes it as an auspicious organism for the valorization of lignocellulose-derived sugar mixtures. To achieve this purpose, a better understanding of carbon catabolite repression mechanisms is essential. The work done here provides critical knowledge on how these mechanisms occur during growth on glucose, arabinose, and xylose mixtures, as well as strategies to tackle them.
Collapse
|
2
|
Jin J, Essemine J, Xu Z, Duan J, Shan C, Mei Z, Zhu J, Cai W. Arabidopsis ETHYLENE INSENSITIVE 3 directly regulates the expression of PG1β-like family genes in response to aluminum stress. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4923-4940. [PMID: 35661874 DOI: 10.1093/jxb/erac161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
The genes in the subfamily PG1β (beta subunit of poly-galacturonase isoenzyme 1) have a clear effect on the biosynthesis pathway of pectin, a main component of the cell wall. However, the detailed functions of the PG1β-like gene members in Arabidopsis (AtPG1-3) have not yet been determined. In this study, we investigated their functional roles in response to aluminum (Al) stress. Our results indicate that the PG1β-like gene members are indeed involved in the Al-stress response and they can modulate its accumulation in roots to achieve optimum root elongation and hence better seedling growth. We found that transcription factor EIN3 (ETHYLENE INSENSITIVE 3) alters pectin metabolism and the EIN3 gene responds to Al stress to affect the pectin content in the root cell walls, leading to exacerbation of the inhibition of root growth, as reflected by the phenotypes of overexpressing lines. We determined that EIN3 can directly bind to the promoter regions of PG1-3, which act downstream of EIN3. Thus, our results show that EIN3 responds to Al stress in Arabidopsis directly through regulating the expression of PG1-3. Hence, EIN3 mediates their functions by acting as a biomarker in their molecular biosynthesis pathways, and consequently orchestrates their biological network in response to Al stress.
Collapse
Affiliation(s)
- Jing Jin
- Tongji University, Shanghai 200092, China
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jemaa Essemine
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhan Xu
- Guangzhou City Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding, Pazhou Dadao Rd. 17-19, Haizhu District, Guangzhou 510000, China
| | - Jianli Duan
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chi Shan
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhiling Mei
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jian Zhu
- Tongji University, Shanghai 200092, China
| | - Weiming Cai
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
3
|
Guo Y, Liu Y, Guan M, Tang H, Wang Z, Lin L, Pang H. Production of butanol from lignocellulosic biomass: recent advances, challenges, and prospects. RSC Adv 2022; 12:18848-18863. [PMID: 35873330 PMCID: PMC9240921 DOI: 10.1039/d1ra09396g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/27/2022] [Indexed: 11/21/2022] Open
Abstract
Due to energy and environmental concerns, biobutanol is gaining increasing attention as an alternative renewable fuel owing to its desirable fuel properties. Biobutanol production from lignocellulosic biomass through acetone-butanol-ethanol (ABE) fermentation has gained much interest globally due to its sustainable supply and non-competitiveness with food, but large-scale fermentative production suffers from low product titres and poor selectivity. This review presents recent developments in lignocellulosic butanol production, including pretreatment and hydrolysis of hemicellulose and cellulose during ABE fermentation. Challenges are discussed, including low concentrations of fermentation sugars, inhibitors, detoxification, and carbon catabolite repression. Some key process improvements are also summarised to guide further research and development towards more profitable and commercially viable butanol fermentation.
Collapse
Affiliation(s)
- Yuan Guo
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences 98 Daling Road Nanning 530007 China +86-771-2503940 +86-771-2503973
| | - Yi Liu
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences 98 Daling Road Nanning 530007 China +86-771-2503940 +86-771-2503973
| | - Mingdong Guan
- College of Life Science and Technology, Guangxi University Nanning 530004 China
| | - Hongchi Tang
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences 98 Daling Road Nanning 530007 China +86-771-2503940 +86-771-2503973
| | - Zilong Wang
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences 98 Daling Road Nanning 530007 China +86-771-2503940 +86-771-2503973
| | - Lihua Lin
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences 98 Daling Road Nanning 530007 China +86-771-2503940 +86-771-2503973
| | - Hao Pang
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Academy of Sciences 98 Daling Road Nanning 530007 China +86-771-2503940 +86-771-2503973
| |
Collapse
|
4
|
Rodionov DA, Rodionova IA, Rodionov VA, Arzamasov AA, Zhang K, Rubinstein GM, Tanwee TNN, Bing RG, Crosby JR, Nookaew I, Basen M, Brown SD, Wilson CM, Klingeman DM, Poole FL, Zhang Y, Kelly RM, Adams MWW. Transcriptional Regulation of Plant Biomass Degradation and Carbohydrate Utilization Genes in the Extreme Thermophile Caldicellulosiruptor bescii. mSystems 2021; 6:e0134520. [PMID: 34060910 PMCID: PMC8579813 DOI: 10.1128/msystems.01345-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/04/2021] [Indexed: 11/20/2022] Open
Abstract
Extremely thermophilic bacteria from the genus Caldicellulosiruptor can degrade polysaccharide components of plant cell walls and subsequently utilize the constituting mono- and oligosaccharides. Through metabolic engineering, ethanol and other industrially important end products can be produced. Previous experimental studies identified a variety of carbohydrate-active enzymes in model species Caldicellulosiruptor saccharolyticus and Caldicellulosiruptor bescii, while prior transcriptomic experiments identified their putative carbohydrate uptake transporters. We investigated the mechanisms of transcriptional regulation of carbohydrate utilization genes using a comparative genomics approach applied to 14 Caldicellulosiruptor species. The reconstruction of carbohydrate utilization regulatory network includes the predicted binding sites for 34 mostly local regulators and point to the regulatory mechanisms controlling expression of genes involved in degradation of plant biomass. The Rex and CggR regulons control the central glycolytic and primary redox reactions. The identified transcription factor binding sites and regulons were validated with transcriptomic and transcription start site experimental data for C. bescii grown on cellulose, cellobiose, glucose, xylan, and xylose. The XylR and XynR regulons control xylan-induced transcriptional response of genes involved in degradation of xylan and xylose utilization. The reconstructed regulons informed the carbohydrate utilization reconstruction analysis and improved functional annotations of 51 transporters and 11 catabolic enzymes. Using gene deletion, we confirmed that the shared ATPase component MsmK is essential for growth on oligo- and polysaccharides but not for the utilization of monosaccharides. By elucidating the carbohydrate utilization framework in C. bescii, strategies for metabolic engineering can be pursued to optimize yields of bio-based fuels and chemicals from lignocellulose. IMPORTANCE To develop functional metabolic engineering platforms for nonmodel microorganisms, a comprehensive understanding of the physiological and metabolic characteristics is critical. Caldicellulosiruptor bescii and other species in this genus have untapped potential for conversion of unpretreated plant biomass into industrial fuels and chemicals. The highly interactive and complex machinery used by C. bescii to acquire and process complex carbohydrates contained in lignocellulose was elucidated here to complement related efforts to develop a metabolic engineering platform with this bacterium. Guided by the findings here, a clearer picture of how C. bescii natively drives carbohydrate utilization is provided and strategies to engineer this bacterium for optimal conversion of lignocellulose to commercial products emerge.
Collapse
Affiliation(s)
- Dmitry A. Rodionov
- Sanford-Burnhams-Prebys Medical Discovery Institute, La Jolla, California, USA
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Irina A. Rodionova
- Department of Bioengineering, University of California—San Diego, La Jolla, California, USA
| | - Vladimir A. Rodionov
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Aleksandr A. Arzamasov
- Sanford-Burnhams-Prebys Medical Discovery Institute, La Jolla, California, USA
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Ke Zhang
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Gabriel M. Rubinstein
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Tania N. N. Tanwee
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Ryan G. Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - James R. Crosby
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Intawat Nookaew
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Mirko Basen
- Mathematisch-Naturwissenschaftliche Fakultät, Institut für Biowissenschaften, Mikrobiologie, Universität Rostock, Rostock, Germany
| | - Steven D. Brown
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Charlotte M. Wilson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- University of Otago, Dunedin, New Zealand
| | - Dawn M. Klingeman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Farris L. Poole
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Ying Zhang
- Department of Cell and Molecular Biology, College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, USA
| | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Michael W. W. Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
5
|
A review on l-ribose isomerases for the biocatalytic production of l-ribose and l-ribulose. Food Res Int 2021; 145:110409. [PMID: 34112412 DOI: 10.1016/j.foodres.2021.110409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/08/2021] [Accepted: 05/06/2021] [Indexed: 11/21/2022]
Abstract
Presently, because of the extraordinary roles and potential applications, rare sugars turn into a focus point for countless researchers in the field of carbohydrates. l-ribose and l-ribulose are rare sugars and isomers of each other. This aldo and ketopentose are expensive but can be utilized as an antecedent for the manufacturing of various rare sugars and l-nucleoside analogue. The bioconversion approach turns into an excellent alternative method to l-ribulose and l-ribose production, as compared to the complex and lengthy chemical methods. The basic purpose of this research was to describe the importance of rare sugars in various fields and their easy production by using enzymatic methods. l-Ribose isomerase (L-RI) is an enzyme discovered by Tsuyoshi Shimonishi and Ken Izumori in 1996 from Acinetobacter sp. strain DL-28. L-RI structure was cupin-type-β-barrel shaped with a catalytic site between two β-sheets surrounded by metal ions. The crystal structures of the L-RI showed that it contains a homotetramer structure. Current review have concentrated on the sources, characteristics, applications, conclusions and future prospects including the potentials of l-ribose isomerase for the commercial production of l-ribose and l-ribulose. The MmL-RIse and CrL-RIse have the potential to produce the l-ribulose up to 32% and 31%, respectively. The CrL-RIse is highly stable as compared to other L-RIs. The results explained that the L-RIs have great potential in the production of rare sugars especially, l-ribose and l-ribulose, while the immobilization technique can enhance its functionality and properties. The present study precises the applications of L-RIs acquired from various sources for l-ribose and l-ribulose production.
Collapse
|
6
|
Enhancing acetic acid and 5‐hydroxymethyl furfural tolerance of C. saccharoperbutylacetonicum through adaptive laboratory evolution. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Han S, Kim Y, Karanjikar M, San KY, Bennett GN. Genetic sensor-regulators functional in Clostridia. J Ind Microbiol Biotechnol 2020; 47:609-620. [DOI: 10.1007/s10295-020-02303-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/18/2020] [Indexed: 11/30/2022]
Abstract
Abstract
This study addressed the functionality of genetic circuits carrying natural regulatory elements of Clostridium acetobutylicum ATCC 824 in the presence of the respective inducer molecules. Specifically, promoters and their regulators involved in diverse carbon source utilization were characterized using mCherryOpt or beta-galactosidase as a reporter. Consequently, most of the genetic circuits tested in this study were functional in Clostridium acetobutylicum ATCC 824 in the presence of an inducer, leading to the expression of reporter proteins. These genetic sensor-regulators were found to be transferable to another Clostridium species, such as Clostridium beijerinckii NCIMB 8052. The gradual expression of reporter protein was observed as a function of the carbohydrates of interest. A xylose-inducible promoter allows a titratable and robust expression of a reporter protein with stringency and efficacy. This xylose-inducible circuit was seen to enable induction of the expression of reporter proteins in the presence of actual sugar mixtures incorporated in woody hydrolysate wherein glucose and xylose are present as predominant carbon sources.
Collapse
Affiliation(s)
- SongI Han
- grid.21940.3e 0000 0004 1936 8278 Department of Bioengineering Rice University 77005 Houston TX USA
| | - Younghwan Kim
- grid.427405.0 Technology Holding LLC 84119 West Valley City UT USA
| | | | - Ka-Yiu San
- grid.21940.3e 0000 0004 1936 8278 Department of Bioengineering Rice University 77005 Houston TX USA
- grid.21940.3e 0000 0004 1936 8278 Department of Chemical and Biomolecular Engineering Rice University 77005 Houston TX USA
| | - George N Bennett
- grid.21940.3e 0000 0004 1936 8278 Department of Chemical and Biomolecular Engineering Rice University 77005 Houston TX USA
- grid.21940.3e 0000 0004 1936 8278 Department of BioSciences Rice University 77005 Houston TX USA
| |
Collapse
|
8
|
Liu J, Jiang Y, Chen J, Yang J, Jiang W, Zhuang W, Ying H, Yang S. Metabolic Engineering and Adaptive Evolution of Clostridium beijerinckii To Increase Solvent Production from Corn Stover Hydrolysate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7916-7925. [PMID: 32614183 DOI: 10.1021/acs.jafc.0c03048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The production of acetone-butanol-ethanol by solventogenic Clostridium using lignocellulosic biomass can be a potential alternative to petroleum-based butanol. However, previous studies on nondetoxified lignocellulose hydrolysate could not provide better results when compared to those in synthetic medium. In this study, we engineered the pentose pathway of Clostridium beijerinckii NCIMB 8052, which was then subjected to adaptive laboratory evolution in the gradient mixture of synthetic medium and pretreated corn stover enzymatic hydrolysate (CSH) prepared according to the National Renewable Energy Laboratory (NREL) standard. The final resultant strain CIBTS1274A produced 20.7 g/L of total solvents in NREL CSH diluted to 6% initial total sugars, supplemented with ammonium acetate. This performance was comparable with that of corn-based butanol. In addition, this strain was successfully used in the scale-up operation using nondetoxified corn stover and corncob hydrolysate at Lignicell Refining Biotechnologies Ltd., which once was the only commercial biobutanol industry in the world.
Collapse
Affiliation(s)
- Jinle Liu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yu Jiang
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Huzhou 313000, China
| | - Jun Chen
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Junjie Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Weihong Jiang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wei Zhuang
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hanjie Ying
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Sheng Yang
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Huzhou 313000, China
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
9
|
Li S, Huang L, Ke C, Pang Z, Liu L. Pathway dissection, regulation, engineering and application: lessons learned from biobutanol production by solventogenic clostridia. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:39. [PMID: 32165923 PMCID: PMC7060580 DOI: 10.1186/s13068-020-01674-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/04/2020] [Indexed: 06/01/2023]
Abstract
The global energy crisis and limited supply of petroleum fuels have rekindled the interest in utilizing a sustainable biomass to produce biofuel. Butanol, an advanced biofuel, is a superior renewable resource as it has a high energy content and is less hygroscopic than other candidates. At present, the biobutanol route, employing acetone-butanol-ethanol (ABE) fermentation in Clostridium species, is not economically competitive due to the high cost of feedstocks, low butanol titer, and product inhibition. Based on an analysis of the physiological characteristics of solventogenic clostridia, current advances that enhance ABE fermentation from strain improvement to product separation were systematically reviewed, focusing on: (1) elucidating the metabolic pathway and regulation mechanism of butanol synthesis; (2) enhancing cellular performance and robustness through metabolic engineering, and (3) optimizing the process of ABE fermentation. Finally, perspectives on engineering and exploiting clostridia as cell factories to efficiently produce various chemicals and materials are also discussed.
Collapse
Affiliation(s)
- Shubo Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
| | - Li Huang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
| | - Chengzhu Ke
- College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004 China
| | - Zongwen Pang
- College of Life Science and Technology, Guangxi University, Nanning, 530005 China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| |
Collapse
|
10
|
Jin J, Duan J, Shan C, Mei Z, Chen H, Feng H, Zhu J, Cai W. Ethylene insensitive3-like2 (OsEIL2) confers stress sensitivity by regulating OsBURP16, the β subunit of polygalacturonase (PG1β-like) subfamily gene in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110353. [PMID: 32005373 DOI: 10.1016/j.plantsci.2019.110353] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 11/09/2019] [Accepted: 11/21/2019] [Indexed: 05/21/2023]
Abstract
The transcription factors EIN3 (ETHYLENE-INSENSITIVE 3) and EILs (EIN3-Likes) play important roles in plant development and defense responses; however, their mechanism in these processes remain unclear. Here, we report that OsEIL2, an EIN3-like transcription factor from rice (Oryza sativa), plays important roles in abiotic stress and leaf senescence. OsEIL2 is a nuclear-localized protein with transactivation activity in the C-terminus (amino acids 344-583) and can be induced by NaCl, polyethylene glycol (PEG), dark, and abscisic acid (ABA) treatment. Transgenic plants of overexpressing OsEIL2 (OsEIL2-OX) show reduced tolerance to salt and drought stress compared with the controls. While the transgenic plants of overexpressing OsEIL2-RNA interference (OsEIL2-RNAi) exhibit enhanced tolerance to salt and drought stress compared with the controls. Moreover, seedlings of OsEIL2-overexpressing transgenic plants exhibit delayed leaf development and an accelerated dark-induced senescence phenotype, whereas OsEIL2-RNAi plants display the opposite phenotype. We further found that OsEIL2 functions upstream of OsBURP14 and OsBURP16. OsBURP14 and OsBURP16 are the members of the β subunit of polygalacturonase subfamilies. OsBURP16 overexpression reduced pectin content and cell adhesion and increased abiotic stress sensitivity in rice. OsEIL2 binds directly to the promoter of OsBURP14 and OsBURP16 and activates their transcript levels. We also found that OsEIL2 overexpression decreased the pectin content by increasing polygalacturonase (PG) activity. Taken together, these results revealed a new mechanism of OsEIL2 in abiotic stress responses. These findings provide new insights into plant resistance to abiotic stress.
Collapse
Affiliation(s)
- Jing Jin
- Tongji University, No. 1239 Siping Road, Shanghai, 200092, China; Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, No. 300 Fenglin Road, Shanghai, 200032, China; University of Chinese Academy of Science, China
| | - Jianli Duan
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, No. 300 Fenglin Road, Shanghai, 200032, China; University of Chinese Academy of Science, China
| | - Chi Shan
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, No. 300 Fenglin Road, Shanghai, 200032, China; University of Chinese Academy of Science, China
| | - Zhiling Mei
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, No. 300 Fenglin Road, Shanghai, 200032, China; University of Chinese Academy of Science, China
| | - Haiying Chen
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, No. 300 Fenglin Road, Shanghai, 200032, China
| | - Huafeng Feng
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, No. 300 Fenglin Road, Shanghai, 200032, China
| | - Jian Zhu
- Tongji University, No. 1239 Siping Road, Shanghai, 200092, China.
| | - Weiming Cai
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, No. 300 Fenglin Road, Shanghai, 200032, China; University of Chinese Academy of Science, China.
| |
Collapse
|
11
|
Vasylkivska M, Jureckova K, Branska B, Sedlar K, Kolek J, Provaznik I, Patakova P. Transcriptional analysis of amino acid, metal ion, vitamin and carbohydrate uptake in butanol-producing Clostridium beijerinckii NRRL B-598. PLoS One 2019; 14:e0224560. [PMID: 31697692 PMCID: PMC6837493 DOI: 10.1371/journal.pone.0224560] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/16/2019] [Indexed: 11/19/2022] Open
Abstract
In-depth knowledge of cell metabolism and nutrient uptake mechanisms can lead to the development of a tool for improving acetone-butanol-ethanol (ABE) fermentation performance and help to overcome bottlenecks in the process, such as the high cost of substrates and low production rates. Over 300 genes potentially encoding transport of amino acids, metal ions, vitamins and carbohydrates were identified in the genome of the butanol-producing strain Clostridium beijerinckii NRRL B-598, based on similarity searches in protein function databases. Transcriptomic data of the genes were obtained during ABE fermentation by RNA-Seq experiments and covered acidogenesis, solventogenesis and sporulation. The physiological roles of the selected 81 actively expressed transport genes were established on the basis of their expression profiles at particular stages of ABE fermentation. This article describes how genes encoding the uptake of glucose, iron, riboflavin, glutamine, methionine and other nutrients take part in growth, production and stress responses of C. beijerinckii NRRL B-598. These data increase our knowledge of transport mechanisms in solventogenic Clostridium and may be used in the selection of individual genes for further research.
Collapse
Affiliation(s)
- Maryna Vasylkivska
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic
- * E-mail:
| | - Katerina Jureckova
- Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Barbora Branska
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Karel Sedlar
- Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Jan Kolek
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Ivo Provaznik
- Department of Biomedical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Petra Patakova
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic
| |
Collapse
|
12
|
Wen Z, Lu M, Ledesma-Amaro R, Li Q, Jin M, Yang S. TargeTron Technology Applicable in Solventogenic Clostridia: Revisiting 12 Years' Advances. Biotechnol J 2019; 15:e1900284. [PMID: 31475782 DOI: 10.1002/biot.201900284] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/20/2019] [Indexed: 12/11/2022]
Abstract
Clostridium has great potential in industrial application and medical research. But low DNA repair capacity and plasmids transformation efficiency severely delay development and application of genetic tools based on homologous recombination (HR). TargeTron is a gene editing technique dependent on the mobility of group II introns, rather than homologous recombination, which makes it very suitable for gene disruption of Clostridium. The application of TargeTron technology in solventogenic Clostridium is academically reported in 2007 and this tool has been introduced in various clostridia as it is easy to operate, time saving, and reliable. TargeTron has made great progress in solventogenic Clostridium in the aspects of acetone-butanol-ethanol (ABE) fermentation pathway modification, important functional genes identification, and xylose metabolic pathway analysis and reconstruction. In the review, 12 years' advances of TargeTron technology applicable in solventogenic Clostridium, including its principle, technical characteristics, application, and efforts to expand its capabilities, or to avoid potential drawbacks, are revisisted. Some other technologies as putative competitors or collaborators are also discussed. It is believed that TargeTron combined with CRISPR/Cas-assisted gene/base editing and gene-expression regulation system will make a better future for clostridial genetic modification.
Collapse
Affiliation(s)
- Zhiqiang Wen
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Minrui Lu
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | | | - Qi Li
- College of Life Sciences, Sichuan Normal University, Longquan, Chengdu, 610101, China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.,Huzhou Center of Industrial Biotechnology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Zhejiang, 313000, China
| |
Collapse
|
13
|
Kinetic study of butanol production from mixtures of glucose and xylose and investigation of different pre-growth strategies. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Birgen C, Dürre P, Preisig HA, Wentzel A. Butanol production from lignocellulosic biomass: revisiting fermentation performance indicators with exploratory data analysis. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:167. [PMID: 31297155 PMCID: PMC6598312 DOI: 10.1186/s13068-019-1508-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/19/2019] [Indexed: 05/09/2023]
Abstract
After just more than 100 years of history of industrial acetone-butanol-ethanol (ABE) fermentation, patented by Weizmann in the UK in 1915, butanol is again today considered a promising biofuel alternative based on several advantages compared to the more established biofuels ethanol and methanol. Large-scale fermentative production of butanol, however, still suffers from high substrate cost and low product titers and selectivity. There have been great advances the last decades to tackle these problems. However, understanding the fermentation process variables and their interconnectedness with a holistic view of the current scientific state-of-the-art is lacking to a great extent. To illustrate the benefits of such a comprehensive approach, we have developed a dataset by collecting data from 175 fermentations of lignocellulosic biomass and mixed sugars to produce butanol that reported during the past three decades of scientific literature and performed an exploratory data analysis to map current trends and bottlenecks. This review presents the results of this exploratory data analysis as well as main features of fermentative butanol production from lignocellulosic biomass with a focus on performance indicators as a useful tool to guide further research and development in the field towards more profitable butanol manufacturing for biofuel applications in the future.
Collapse
Affiliation(s)
- Cansu Birgen
- Department of Chemical Engineering, NTNU, 7491 Trondheim, Norway
| | - Peter Dürre
- Institute of Microbiology and Biotechnology, Ulm University, 89069 Ulm, Germany
| | - Heinz A. Preisig
- Department of Chemical Engineering, NTNU, 7491 Trondheim, Norway
| | | |
Collapse
|
15
|
Long N, Orasch T, Zhang S, Gao L, Xu X, Hortschansky P, Ye J, Zhang F, Xu K, Gsaller F, Straßburger M, Binder U, Heinekamp T, Brakhage AA, Haas H, Lu L. The Zn2Cys6-type transcription factor LeuB cross-links regulation of leucine biosynthesis and iron acquisition in Aspergillus fumigatus. PLoS Genet 2018; 14:e1007762. [PMID: 30365497 PMCID: PMC6221358 DOI: 10.1371/journal.pgen.1007762] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/07/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022] Open
Abstract
Both branched-chain amino acids (BCAA) and iron are essential nutrients for eukaryotic cells. Previously, the Zn2Cys6-type transcription factor Leu3/LeuB was shown to play a crucial role in regulation of BCAA biosynthesis and nitrogen metabolism in Saccharomyces cerevisiae and Aspergillus nidulans. In this study, we found that the A. fumigatus homolog LeuB is involved in regulation of not only BCAA biosynthesis and nitrogen metabolism but also iron acquisition including siderophore metabolism. Lack of LeuB caused a growth defect, which was cured by supplementation with leucine or iron. Moreover, simultaneous inactivation of LeuB and HapX, a bZIP transcription factor required for adaptation to iron starvation, significantly aggravated the growth defect caused by inactivation of one of these regulators during iron starvation. In agreement with a direct role in regulation of both BCAA and iron metabolism, LeuB was found to bind to phylogenetically conserved motifs in promoters of genes involved in BCAA biosynthesis, nitrogen metabolism, and iron acquisition in vitro and in vivo, and was required for full activation of their expression. Lack of LeuB also caused activation of protease activity and autophagy via leucine depletion. Moreover, LeuB inactivation resulted in virulence attenuation of A. fumigatus in Galleria mellonella. Taken together, this study identified a previously uncharacterized direct cross-regulation of BCCA biosynthesis, nitrogen metabolism and iron homeostasis as well as proteolysis. Adaptation to the host niche is an essential attribute of pathogens. Here we found that the Zn2Cys6-type transcription factor LeuB cross-regulates branched-chain amino acid biosynthesis, nitrogen metabolism, iron acquisition via siderophores, and proteasome activity in the mold Aspergillus fumigatus. Lack of this regulatory circuit impaired virulence in an insect infection model. Mammals do neither express Zn2Cys6-type transcription factors nor have the capacity to produce branched-chain amino acids or siderophores. Consequently, this regulatory circuit is a paradigm for fungal pathogen-specific adaptation to the host niche.
Collapse
Affiliation(s)
- Nanbiao Long
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
- Department of Laboratory Medicine, Shaoyang University, Shaoyang, China
| | - Thomas Orasch
- Division of Molecular Biology/Biocenter, Medical University of Innsbruck, Innrain, Innsbruck, Austria
| | - Shizhu Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Lu Gao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaoling Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Peter Hortschansky
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), and Friedrich Schiller University Jena, Jena, Germany
| | - Jing Ye
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Fenli Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Kai Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Fabio Gsaller
- Division of Molecular Biology/Biocenter, Medical University of Innsbruck, Innrain, Innsbruck, Austria
| | - Maria Straßburger
- Transfer Group Anti-infectives, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Ulrike Binder
- Division of Hygiene & Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Thorsten Heinekamp
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), and Friedrich Schiller University Jena, Jena, Germany
| | - Axel A. Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), and Friedrich Schiller University Jena, Jena, Germany
| | - Hubertus Haas
- Division of Molecular Biology/Biocenter, Medical University of Innsbruck, Innrain, Innsbruck, Austria
- * E-mail: (HH); (LL)
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, China
- * E-mail: (HH); (LL)
| |
Collapse
|
16
|
Servinsky MD, Renberg RL, Perisin MA, Gerlach ES, Liu S, Sund CJ. Arabinose-Induced Catabolite Repression as a Mechanism for Pentose Hierarchy Control in Clostridium acetobutylicum ATCC 824. mSystems 2018; 3:e00064-18. [PMID: 30374459 PMCID: PMC6199471 DOI: 10.1128/msystems.00064-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/13/2018] [Indexed: 12/27/2022] Open
Abstract
Bacterial fermentation of carbohydrates from sustainable lignocellulosic biomass into commodity chemicals by the anaerobic bacterium Clostridium acetobutylicum is a promising alternative source to fossil fuel-derived chemicals. Recently, it was demonstrated that xylose is not appreciably fermented in the presence of arabinose, revealing a hierarchy of pentose utilization in this organism (L. Aristilde, I. A. Lewis, J. O. Park, and J. D. Rabinowitz, Appl Environ Microbiol 81:1452-1462, 2015, https://doi.org/10.1128/AEM.03199-14). The goal of the current study is to characterize the transcriptional regulation that occurs and perhaps drives this pentose hierarchy. Carbohydrate consumption rates showed that arabinose, like glucose, actively represses xylose utilization in cultures fermenting xylose. Further, arabinose addition to xylose cultures led to increased acetate-to-butyrate ratios, which indicated a transition of pentose catabolism from the pentose phosphate pathway to the phosphoketolase pathway. Transcriptome sequencing (RNA-Seq) confirmed that arabinose addition to cells actively growing on xylose resulted in increased phosphoketolase (CA_C1343) mRNA levels, providing additional evidence that arabinose induces this metabolic switch. A significant overlap in differentially regulated genes after addition of arabinose or glucose suggested a common regulation mechanism. A putative open reading frame (ORF) encoding a potential catabolite repression phosphocarrier histidine protein (Crh) was identified that likely participates in the observed transcriptional regulation. These results substantiate the claim that arabinose is utilized preferentially over xylose in C. acetobutylicum and suggest that arabinose can activate carbon catabolite repression via Crh. Furthermore, they provide valuable insights into potential mechanisms for altering pentose utilization to modulate fermentation products for chemical production. IMPORTANCE Clostridium acetobutylicum can ferment a wide variety of carbohydrates to the commodity chemicals acetone, butanol, and ethanol. Recent advances in genetic engineering have expanded the chemical production repertoire of C. acetobutylicum using synthetic biology. Due to its natural properties and genetic engineering potential, this organism is a promising candidate for converting biomass-derived feedstocks containing carbohydrate mixtures to commodity chemicals via natural or engineered pathways. Understanding how this organism regulates its metabolism during growth on carbohydrate mixtures is imperative to enable control of synthetic gene circuits in order to optimize chemical production. The work presented here unveils a novel mechanism via transcriptional regulation by a predicted Crh that controls the hierarchy of carbohydrate utilization and is essential for guiding robust genetic engineering strategies for chemical production.
Collapse
Affiliation(s)
| | | | | | | | - Sanchao Liu
- U.S. Army Research Laboratory, RDRL-SEE-B, Adelphi, Maryland, USA
| | | |
Collapse
|
17
|
Yang Y, Nie X, Jiang Y, Yang C, Gu Y, Jiang W. Metabolic regulation in solventogenic clostridia: regulators, mechanisms and engineering. Biotechnol Adv 2018; 36:905-914. [DOI: 10.1016/j.biotechadv.2018.02.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/05/2018] [Accepted: 02/20/2018] [Indexed: 12/31/2022]
|
18
|
Arzamasov AA, van Sinderen D, Rodionov DA. Comparative Genomics Reveals the Regulatory Complexity of Bifidobacterial Arabinose and Arabino-Oligosaccharide Utilization. Front Microbiol 2018; 9:776. [PMID: 29740413 PMCID: PMC5928203 DOI: 10.3389/fmicb.2018.00776] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/05/2018] [Indexed: 11/13/2022] Open
Abstract
Members of the genus Bifidobacterium are common inhabitants of the human gastrointestinal tract. Previously it was shown that arabino-oligosaccharides (AOS) might act as prebiotics and stimulate the bifidobacterial growth in the gut. However, despite the rapid accumulation of genomic data, the precise mechanisms by which these sugars are utilized and associated transcription control still remain unclear. In the current study, we used a comparative genomic approach to reconstruct arabinose and AOS utilization pathways in over 40 bacterial species belonging to the Bifidobacteriaceae family. The results indicate that the gene repertoire involved in the catabolism of these sugars is highly diverse, and even phylogenetically close species may differ in their utilization capabilities. Using bioinformatics analysis we identified potential DNA-binding motifs and reconstructed putative regulons for the arabinose and AOS utilization genes in the Bifidobacteriaceae genomes. Six LacI-family transcriptional factors (named AbfR, AauR, AauU1, AauU2, BauR1 and BauR2) and a TetR-family regulator (XsaR) presumably act as local repressors for AOS utilization genes encoding various α- or β-L-arabinofuranosidases and predicted AOS transporters. The ROK-family regulator AraU and the LacI-family regulator AraQ control adjacent operons encoding putative arabinose transporters and catabolic enzymes, respectively. However, the AraQ regulator is universally present in all Bifidobacterium species including those lacking the arabinose catabolic genes araBDA, suggesting its control of other genes. Comparative genomic analyses of prospective AraQ-binding sites allowed the reconstruction of AraQ regulons and a proposed binary repression/activation mechanism. The conserved core of reconstructed AraQ regulons in bifidobacteria includes araBDA, as well as genes from the central glycolytic and fermentation pathways (pyk, eno, gap, tkt, tal, galM, ldh). The current study expands the range of genes involved in bifidobacterial arabinose/AOS utilization and demonstrates considerable variations in associated metabolic pathways and regulons. Detailed comparative and phylogenetic analyses allowed us to hypothesize how the identified reconstructed regulons evolved in bifidobacteria. Our findings may help to improve carbohydrate catabolic phenotype prediction and metabolic modeling, while it may also facilitate rational development of novel prebiotics.
Collapse
Affiliation(s)
- Aleksandr A Arzamasov
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, University College Cork, Cork, Ireland
| | - Dmitry A Rodionov
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia.,Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
19
|
Wang Y, Ho SH, Yen HW, Nagarajan D, Ren NQ, Li S, Hu Z, Lee DJ, Kondo A, Chang JS. Current advances on fermentative biobutanol production using third generation feedstock. Biotechnol Adv 2017; 35:1049-1059. [DOI: 10.1016/j.biotechadv.2017.06.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/08/2017] [Accepted: 06/01/2017] [Indexed: 12/23/2022]
|
20
|
Leyn SA, Maezato Y, Romine MF, Rodionov DA. Genomic Reconstruction of Carbohydrate Utilization Capacities in Microbial-Mat Derived Consortia. Front Microbiol 2017; 8:1304. [PMID: 28751880 PMCID: PMC5507952 DOI: 10.3389/fmicb.2017.01304] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/28/2017] [Indexed: 11/29/2022] Open
Abstract
Two nearly identical unicyanobacterial consortia (UCC) were previously isolated from benthic microbial mats that occur in a heliothermal saline lake in northern Washington State. Carbohydrates are a primary source of carbon and energy for most heterotrophic bacteria. Since CO2 is the only carbon source provided, the cyanobacterium must provide a source of carbon to the heterotrophs. Available genomic sequences for all members of the UCC provide opportunity to investigate the metabolic routes of carbon transfer between autotroph and heterotrophs. Here, we applied a subsystem-based comparative genomics approach to reconstruct carbohydrate utilization pathways and identify glycohydrolytic enzymes, carbohydrate transporters and pathway-specific transcriptional regulators in 17 heterotrophic members of the UCC. The reconstructed metabolic pathways include 800 genes, near a one-fourth of which encode enzymes, transporters and regulators with newly assigned metabolic functions resulting in discovery of novel functional variants of carbohydrate utilization pathways. The in silico analysis revealed the utilization capabilities for 40 carbohydrates and their derivatives. Two Halomonas species demonstrated the largest number of sugar catabolic pathways. Trehalose, sucrose, maltose, glucose, and beta-glucosides are the most commonly utilized saccharides in this community. Reconstructed regulons for global regulators HexR and CceR include central carbohydrate metabolism genes in the members of Gammaproteobacteria and Alphaproteobacteria, respectively. Genomics analyses were supplemented by experimental characterization of metabolic phenotypes in four isolates derived from the consortia. Measurements of isolate growth on the defined medium supplied with individual carbohydrates confirmed most of the predicted catabolic phenotypes. Not all consortia members use carbohydrates and only a few use complex polysaccharides suggesting a hierarchical carbon flow from cyanobacteria to each heterotroph. In summary, the genomics-based identification of carbohydrate utilization capabilities provides a basis for future experimental studies of carbon flow in UCC.
Collapse
Affiliation(s)
- Semen A Leyn
- Sanford-Burnham-Prebys Medical Discovery Institute, La JollaCA, United States.,A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of SciencesMoscow, Russia
| | - Yukari Maezato
- Biological Sciences Division, Pacific Northwest National Laboratory, RichlandWA, United States
| | - Margaret F Romine
- Biological Sciences Division, Pacific Northwest National Laboratory, RichlandWA, United States
| | - Dmitry A Rodionov
- Sanford-Burnham-Prebys Medical Discovery Institute, La JollaCA, United States.,A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of SciencesMoscow, Russia
| |
Collapse
|
21
|
Aristilde L. Metabolite labelling reveals hierarchies in Clostridium acetobutylicum that selectively channel carbons from sugar mixtures towards biofuel precursors. Microb Biotechnol 2016; 10:162-174. [PMID: 27878973 PMCID: PMC5270725 DOI: 10.1111/1751-7915.12459] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 10/23/2016] [Indexed: 12/30/2022] Open
Abstract
Clostridial fermentation of cellulose and hemicellulose relies on the cellular physiology controlling the metabolism of the cellulosic hexose sugar (glucose) with respect to the hemicellulosic pentose sugars (xylose and arabinose) and the hemicellulosic hexose sugars (galactose and mannose). Here, liquid chromatography–mass spectrometry and stable isotope tracers in Clostridium acetobutylicum were applied to investigate the metabolic hierarchy of glucose relative to the different hemicellulosic sugars towards two important biofuel precursors, acetyl‐coenzyme A and butyryl‐coenzyme A. The findings revealed constitutive metabolic hierarchies in C. acetobutylicum that facilitate (i) selective investment of hemicellulosic pentoses towards ribonucleotide biosynthesis without substantial investment into biofuel production and (ii) selective contribution of hemicellulosic hexoses through the glycolytic pathway towards biofuel precursors. Long‐term isotopic enrichment demonstrated incorporation of both pentose sugars into pentose‐phosphates and ribonucleotides in the presence of glucose. Kinetic labelling data, however, showed that xylose was not routed towards the biofuel precursors but there was minor contribution from arabinose. Glucose hierarchy over the hemicellulosic hexoses was substrate‐dependent. Kinetic labelling of hexose‐phosphates and triose‐phosphates indicated that mannose was assimilated but not galactose. Labelling of both biofuel precursors confirmed this metabolic preference. These results highlight important metabolic considerations in the accounting of clostridial mixed‐sugar utilization.
Collapse
Affiliation(s)
- Ludmilla Aristilde
- Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
22
|
Lee SH, Yun EJ, Kim J, Lee SJ, Um Y, Kim KH. Biomass, strain engineering, and fermentation processes for butanol production by solventogenic clostridia. Appl Microbiol Biotechnol 2016; 100:8255-71. [PMID: 27531513 DOI: 10.1007/s00253-016-7760-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 12/14/2022]
Abstract
Butanol is considered an attractive biofuel and a commercially important bulk chemical. However, economical production of butanol by solventogenic clostridia, e.g., via fermentative production of acetone-butanol-ethanol (ABE), is hampered by low fermentation performance, mainly as a result of toxicity of butanol to microorganisms and high substrate costs. Recently, sugars from marine macroalgae and syngas were recognized as potent carbon sources in biomass feedstocks that are abundant and do not compete for arable land with edible crops. With the aid of systems metabolic engineering, many researchers have developed clostridial strains with improved performance on fermentation of these substrates. Alternatively, fermentation strategies integrated with butanol recovery processes such as adsorption, gas stripping, liquid-liquid extraction, and pervaporation have been designed to increase the overall titer of butanol and volumetric productivity. Nevertheless, for economically feasible production of butanol, innovative strategies based on recent research should be implemented. This review describes and discusses recent advances in the development of biomass feedstocks, microbial strains, and fermentation processes for butanol production.
Collapse
Affiliation(s)
- Sang-Hyun Lee
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, South Korea
| | - Eun Ju Yun
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, South Korea
| | - Jungyeon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, South Korea
| | - Sang Jun Lee
- Biosystems and Bioengineering Program, University of Science and Technology and Microbiomics and Immunity Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, South Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
23
|
Nie X, Yang B, Zhang L, Gu Y, Yang S, Jiang W, Yang C. PTS regulation domain-containing transcriptional activator CelR and sigma factor σ54control cellobiose utilization inClostridium acetobutylicum. Mol Microbiol 2016; 100:289-302. [DOI: 10.1111/mmi.13316] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Xiaoqun Nie
- Key Laboratory of Synthetic Biology; Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200032 China
| | - Bin Yang
- Key Laboratory of Synthetic Biology; Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200032 China
| | - Lei Zhang
- Key Laboratory of Synthetic Biology; Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200032 China
| | - Yang Gu
- Key Laboratory of Synthetic Biology; Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200032 China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology; Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200032 China
| | - Weihong Jiang
- Key Laboratory of Synthetic Biology; Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200032 China
| | - Chen Yang
- Key Laboratory of Synthetic Biology; Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences; Shanghai 200032 China
| |
Collapse
|
24
|
Abstract
The acetone–butanol–ethanol fermentation of solventogenic clostridia was operated as a successful, worldwide industrial process during the first half of the twentieth century, but went into decline for economic reasons. The recent resurgence in interest in the fermentation has been due principally to the recognised potential of butanol as a biofuel, and development of reliable molecular tools has encouraged realistic prospects of bacterial strains being engineered to optimise fermentation performance. In order to minimise costs, emphasis is being placed on waste feedstock streams containing a range of fermentable carbohydrates. It is therefore important to develop a detailed understanding of the mechanisms of carbohydrate uptake so that effective engineering strategies can be identified. This review surveys present knowledge of sugar uptake and its control in solventogenic clostridia. The major mechanism of sugar uptake is the PEP-dependent phosphotransferase system (PTS), which both transports and phosphorylates its sugar substrates and plays a central role in metabolic regulation. Clostridial genome sequences have indicated the presence of numerous phosphotransferase systems for uptake of hexose sugars, hexose derivatives and disaccharides. On the other hand, uptake of sugars such as pentoses occurs via non-PTS mechanisms. Progress in characterization of clostridial sugar transporters and manipulation of control mechanisms to optimise sugar fermentation is described.
Collapse
Affiliation(s)
- Wilfrid J Mitchell
- School of Life Sciences, Heriot-Watt University, Riccarton, Edinburgh, EH14 4AS, UK.
| |
Collapse
|
25
|
Liu D, Xu J, Wang Y, Chen Y, Shen X, Niu H, Guo T, Ying H. Comparative transcriptomic analysis of Clostridium acetobutylicum biofilm and planktonic cells. J Biotechnol 2016; 218:1-12. [DOI: 10.1016/j.jbiotec.2015.11.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/17/2015] [Accepted: 11/20/2015] [Indexed: 12/23/2022]
|
26
|
Jin Y, Fang Y, Huang M, Sun J, Huang Y, Gao X, Li R, He K, Zhao H. Combination of RNA sequencing and metabolite data to elucidate improved toxic compound tolerance and butanol fermentation of Clostridium acetobutylicum from wheat straw hydrolysate by supplying sodium sulfide. BIORESOURCE TECHNOLOGY 2015; 198:77-86. [PMID: 26364231 DOI: 10.1016/j.biortech.2015.08.139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/21/2015] [Accepted: 08/22/2015] [Indexed: 06/05/2023]
Abstract
Sodium sulfide (SS) was added to the non-detoxified wheat straw hydrolysate for ABE fermentation by Clostridium acetobutylicum CICC8012. Biochemical measurements demonstrated that supplementation with SS promoted earlier and enhanced conversion of acid to ABE and led to a 27.48% improvement in sugar consumption, a 20.48% improvement in the sugar-based ABE yield, a 47.63% improvement in the butanol titer, and a 53.50% improvement in the ABE concentration. The response of C. acetobutylicum CICC8012 at the mRNA level was examined by a transcriptional analysis performed with RNA sequencing. The expression of genes involved in the membrane transport of carbohydrates, glycolysis, and ABE formation increased following SS-supplemented fermentation, whereas the expression of genes encoding enzymes involved in acid formation decreased, which indicates that supplemental SS affected the central fermentative pathway, down-regulated the metabolic flux toward the acid formation branches, and up-regulated the metabolic flux toward the ABE formation branches.
Collapse
Affiliation(s)
- Yanling Jin
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Yang Fang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengjun Huang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaolong Sun
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhong Huang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Xiaofeng Gao
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renqiang Li
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaize He
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China
| | - Hai Zhao
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu 610041, China.
| |
Collapse
|
27
|
Current status and prospects of industrial bio-production of n-butanol in China. Biotechnol Adv 2015; 33:1493-501. [DOI: 10.1016/j.biotechadv.2014.10.007] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/17/2014] [Accepted: 10/19/2014] [Indexed: 01/04/2023]
|
28
|
Chang C, Tesar C, Li X, Kim Y, Rodionov DA, Joachimiak A. A novel transcriptional regulator of L-arabinose utilization in human gut bacteria. Nucleic Acids Res 2015; 43:10546-59. [PMID: 26438537 PMCID: PMC4666351 DOI: 10.1093/nar/gkv1005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 09/23/2015] [Indexed: 01/08/2023] Open
Abstract
Carbohydrate metabolism plays a crucial role in the ecophysiology of human gut microbiota. Mechanisms of transcriptional regulation of sugar catabolism in commensal and prevalent human gut bacteria such as Bacteroides thetaiotaomicron remain mostly unknown. By a combination of bioinformatics and experimental approaches, we have identified an NrtR family transcription factor (BT0354 in B. thetaiotaomicron, BtAraR) as a novel regulator controlling the arabinose utilization genes. L-arabinose was confirmed to be a negative effector of BtAraR. We have solved the crystal structures of the apo and L-arabinose-bound BtAraR proteins, as well as the complex of apo-protein with a specific DNA operator. BtAraR forms a homodimer with each subunit comprised of the ligand-binding Nudix hydrolase-like domain and the DNA-binding winged-helix-turn-helix (wHTH) domain. We have identified the residues involved in binding of L-arabinose and recognition of DNA. The majority of these residues are well conserved in the AraR orthologs in Bacteroidetes. In the structure of the BtAraR-DNA complex, we found the unique interaction of arginine intercalating its guanidinum moiety into the base pair stacking of B-DNA. L-arabinose binding induces movement of wHTH domains, resulting in a conformation unsuitable for DNA binding. Our analysis facilitates reconstruction of the metabolic and regulatory networks involved in carbohydrate utilization in human gut Bacteroides.
Collapse
Affiliation(s)
- Changsoo Chang
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL 60439, USA Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Christine Tesar
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Xiaoqing Li
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - Youngchang Kim
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL 60439, USA Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Dmitry A Rodionov
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russia
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL 60439, USA Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
29
|
Suvorova IA, Korostelev YD, Gelfand MS. GntR Family of Bacterial Transcription Factors and Their DNA Binding Motifs: Structure, Positioning and Co-Evolution. PLoS One 2015; 10:e0132618. [PMID: 26151451 PMCID: PMC4494728 DOI: 10.1371/journal.pone.0132618] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/16/2015] [Indexed: 12/03/2022] Open
Abstract
The GntR family of transcription factors (TFs) is a large group of proteins present in diverse bacteria and regulating various biological processes. Here we use the comparative genomics approach to reconstruct regulons and identify binding motifs of regulators from three subfamilies of the GntR family, FadR, HutC, and YtrA. Using these data, we attempt to predict DNA-protein contacts by analyzing correlations between binding motifs in DNA and amino acid sequences of TFs. We identify pairs of positions with high correlation between amino acids and nucleotides for FadR, HutC, and YtrA subfamilies and show that the most predicted DNA-protein interactions are quite similar in all subfamilies and conform well to the experimentally identified contacts formed by FadR from E. coli and AraR from B. subtilis. The most frequent predicted contacts in the analyzed subfamilies are Arg-G, Asn-A, Asp-C. We also analyze the divergon structure and preferred site positions relative to regulated genes in the FadR and HutC subfamilies. A single site in a divergon usually regulates both operons and is approximately in the middle of the intergenic area. Double sites are either involved in the co-operative regulation of both operons and then are in the center of the intergenic area, or each site in the pair independently regulates its own operon and tends to be near it. We also identify additional candidate TF-binding boxes near palindromic binding sites of TFs from the FadR, HutC, and YtrA subfamilies, which may play role in the binding of additional TF-subunits.
Collapse
Affiliation(s)
- Inna A. Suvorova
- Research and Training Center on Bioinformatics, Institute for Information Transmission Problems RAS (The Kharkevich Institute), Moscow, Russia
- * E-mail:
| | - Yuri D. Korostelev
- Research and Training Center on Bioinformatics, Institute for Information Transmission Problems RAS (The Kharkevich Institute), Moscow, Russia
| | - Mikhail S. Gelfand
- Research and Training Center on Bioinformatics, Institute for Information Transmission Problems RAS (The Kharkevich Institute), Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow, Russia
| |
Collapse
|
30
|
Sund CJ, Liu S, Germane KL, Servinsky MD, Gerlach ES, Hurley MM. Phosphoketolase flux in Clostridium acetobutylicum during growth on l-arabinose. Microbiology (Reading) 2015; 161:430-440. [DOI: 10.1099/mic.0.000008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Christian J. Sund
- US Army Research Laboratory, Sensors and Electron Devices Directorate, 2800 Powder Mill Road, Adelphi, MD 20783, USA
| | - Sanchao Liu
- Federal Staffing Resources, 2200 Somerville Rd, Annapolis, MD 21401, USA
| | - Katherine L. Germane
- Oak Ridge Associated Universities, 4692 Millennium Drive, Suite 101, Belcamp, MD 21017, USA
| | - Matthew D. Servinsky
- US Army Research Laboratory, Sensors and Electron Devices Directorate, 2800 Powder Mill Road, Adelphi, MD 20783, USA
| | - Elliot S. Gerlach
- Federal Staffing Resources, 2200 Somerville Rd, Annapolis, MD 21401, USA
| | - Margaret M. Hurley
- US Army Research Laboratory, RDRL-WML-B, 4600 Deer Creek Loop, Aberdeen Proving Ground, MD 21005, USA
| |
Collapse
|
31
|
Zhang J, Liu YJ, Cui GZ, Cui Q. A novel arabinose-inducible genetic operation system developed for Clostridium cellulolyticum. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:36. [PMID: 25763107 PMCID: PMC4355141 DOI: 10.1186/s13068-015-0214-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/29/2015] [Indexed: 05/07/2023]
Abstract
BACKGROUND Clostridium cellulolyticum and other cellulolytic Clostridium strains are natural producers of lignocellulosic biofuels and chemicals via the consolidated bioprocessing (CBP) route, and systems metabolic engineering is indispensable to meet the cost-efficient demands of industry. Several genetic tools have been developed for Clostridium strains, and an efficient and stringent inducible genetic operation system is still required for the precise regulation of the target gene function. RESULTS Here, we provide a stringent arabinose-inducible genetic operation (ARAi) system for C. cellulolyticum, including an effective gene expression platform with an oxygen-independent fluorescent reporter, a sensitive MazF-based counterselection genetic marker, and a precise gene knock-out method based on an inducible ClosTron system. A novel arabinose-inducible promoter derived from Clostridium acetobutylicum is employed in the ARAi system to control the expression of the target gene, and the gene expression can be up-regulated over 800-fold with highly induced stringency. The inducible ClosTron method of the ARAi system decreases the off-target frequency from 100% to 0, which shows the precise gene targeting in C. cellulolyticum. The inducible effect of the ARAi system is specific to a universal carbon source L-arabinose, implying that the system could be used widely for clostridial strains with various natural substrates. CONCLUSIONS The inducible genetic operation system ARAi developed in this study, containing both controllable gene expression and disruption tools, has the highest inducing activity and stringency in Clostridium by far. Thus, the ARAi system will greatly support the efficient metabolic engineering of C. cellulolyticum and other mesophilic Clostridium strains for lignocellulose bioconversion.
Collapse
Affiliation(s)
- Jie Zhang
- />Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189, Songling Road, Qingdao, 266101 People’s Republic of China
- />Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189, Songling Road, Qingdao, 266101 People’s Republic of China
- />University of Chinese Academy of Sciences, Chinese Academy of Sciences, 19, Yuquan Road, Beijing, 100049 People’s Republic of China
| | - Ya-Jun Liu
- />Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189, Songling Road, Qingdao, 266101 People’s Republic of China
- />Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189, Songling Road, Qingdao, 266101 People’s Republic of China
| | - Gu-Zhen Cui
- />Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189, Songling Road, Qingdao, 266101 People’s Republic of China
- />Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189, Songling Road, Qingdao, 266101 People’s Republic of China
| | - Qiu Cui
- />Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189, Songling Road, Qingdao, 266101 People’s Republic of China
- />Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189, Songling Road, Qingdao, 266101 People’s Republic of China
- />Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189, Songling Road, Qingdao, 266101 People’s Republic of China
| |
Collapse
|
32
|
Sun Z, Chen Y, Yang C, Yang S, Gu Y, Jiang W. A novel three-component system-based regulatory model for D-xylose sensing and transport in Clostridium beijerinckii. Mol Microbiol 2014; 95:576-89. [PMID: 25441682 DOI: 10.1111/mmi.12894] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2014] [Indexed: 12/11/2022]
Abstract
D-Xylose is the most abundant fermentable pentose in nature and can serve as a carbon source for many bacterial species. Since D-xylose constitutes the major component of hemicellulose, its metabolism is important for lignocellulosic biomass utilization. Here, we report a six-protein module for D-xylose signaling, uptake and regulation in solvent-producing Clostridium beijerinckii. This module consists of a novel 'three-component system' (a putative periplasmic ABC transporter substrate-binding protein XylFII and a two-component system LytS/YesN) and an ABC-type D-xylose transporter XylFGH. Interestingly, we demonstrate that, although XylFII harbors a transmembrane domain, it is not involved in D-xylose transport. Instead, XylFII acts as a signal sensor to assist the response of LytS/YesN to extracellular D-xylose, thus enabling LytS/YesN to directly activate the transcription of the adjacent xylFGH genes and thereby promote the uptake of D-xylose. To our knowledge, XylFII is a novel single transmembrane sensor that assists two-component system to respond to extracellular sugar molecules. Also of significance, this 'three-component system' is widely distributed in Firmicutes, indicating that it may play a broad role in this bacterial phylum. The results reported here provide new insights into the regulatory mechanism of D-xylose sensing and transport in bacteria.
Collapse
Affiliation(s)
- Zhe Sun
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | | | | | | | | | | |
Collapse
|
33
|
Utilization of economical substrate-derived carbohydrates by solventogenic clostridia: pathway dissection, regulation and engineering. Curr Opin Biotechnol 2014; 29:124-31. [DOI: 10.1016/j.copbio.2014.04.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/21/2014] [Accepted: 04/02/2014] [Indexed: 01/15/2023]
|
34
|
Arabidopsis miR171-targeted scarecrow-like proteins bind to GT cis-elements and mediate gibberellin-regulated chlorophyll biosynthesis under light conditions. PLoS Genet 2014; 10:e1004519. [PMID: 25101599 PMCID: PMC4125095 DOI: 10.1371/journal.pgen.1004519] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 06/02/2014] [Indexed: 11/29/2022] Open
Abstract
An extraordinarily precise regulation of chlorophyll biosynthesis is essential for plant growth and development. However, our knowledge on the complex regulatory mechanisms of chlorophyll biosynthesis is very limited. Previous studies have demonstrated that miR171-targeted scarecrow-like proteins (SCL6/22/27) negatively regulate chlorophyll biosynthesis via an unknown mechanism. Here we showed that SCLs inhibit the expression of the key gene encoding protochlorophyllide oxidoreductase (POR) in light-grown plants, but have no significant effect on protochlorophyllide biosynthesis in etiolated seedlings. Histochemical analysis of β-glucuronidase (GUS) activity in transgenic plants expressing pSCL27::rSCL27-GUS revealed that SCL27-GUS accumulates at high levels and suppresses chlorophyll biosynthesis at the leaf basal proliferation region during leaf development. Transient gene expression assays showed that the promoter activity of PORC is indeed regulated by SCL27. Consistently, chromatin immunoprecipitation and quantitative PCR assays showed that SCL27 binds to the promoter region of PORC in vivo. An electrophoretic mobility shift assay revealed that SCL27 is directly interacted with G(A/G)(A/T)AA(A/T)GT cis-elements of the PORC promoter. Furthermore, genetic analysis showed that gibberellin (GA)-regulated chlorophyll biosynthesis is mediated, at least in part, by SCLs. We demonstrated that SCL27 interacts with DELLA proteins in vitro and in vivo by yeast-two-hybrid and coimmunoprecipitation analysis and found that their interaction reduces the binding activity of SCL27 to the PORC promoter. Additionally, we showed that SCL27 activates MIR171 gene expression, forming a feedback regulatory loop. Taken together, our data suggest that the miR171-SCL module is critical for mediating GA-DELLA signaling in the coordinate regulation of chlorophyll biosynthesis and leaf growth in light. Chlorophyll biosynthesis is essential for plant growth and development. To date, the regulatory mechanisms of chlorophyll biosynthesis have been well understood only in dark conditions. Previous reports showed that miR171-targeted SCL6/22/27 proteins were involved in chlorophyll biosynthesis. However, the molecular mechanism of SCL action remains unclear. In this study, we found that SCLs negatively regulated chlorophyll biosynthesis though suppressing the expression of the key gene PROTOCHLOROPHYLLIDE OXIDOREDUCTASE (POR). SCL27 is highly expressed at the basal cell proliferation region of young leaves, suggesting an important role of SCLs in inhibiting chloroplast development before cell expansion. In addition, GT-cis elements were required for SCL27 directly binding to the PORC promoter. Furthermore, we showed that SCLs mediated GA-regulated chlorophyll biosynthesis through direct interaction with DELLA proteins. The interaction between SCLs and DELLAs reduced the DNA binding activity of SCL27. Our uncovered GA-DELLA-SCL module and its DNA binding targets provide new insights into molecular mechanisms by which chlorophyll biosynthesis and cell proliferation are coordinately regulated during leaf development in response to developmental and environmental cues.
Collapse
|
35
|
Huang W, Shang Y, Chen P, Gao Q, Wang C. MrpacC regulates sporulation, insect cuticle penetration and immune evasion inMetarhizium robertsii. Environ Microbiol 2014; 17:994-1008. [DOI: 10.1111/1462-2920.12451] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 01/30/2014] [Indexed: 01/04/2023]
Affiliation(s)
- Wei Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology; Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai 200032 China
| | - Yanfang Shang
- Key Laboratory of Insect Developmental and Evolutionary Biology; Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai 200032 China
| | - Peilin Chen
- Key Laboratory of Insect Developmental and Evolutionary Biology; Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai 200032 China
| | - Qiang Gao
- Key Laboratory of Insect Developmental and Evolutionary Biology; Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai 200032 China
| | - Chengshu Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology; Institute of Plant Physiology and Ecology; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai 200032 China
| |
Collapse
|
36
|
Jin L, Zhang H, Chen L, Yang C, Yang S, Jiang W, Gu Y. Combined overexpression of genes involved in pentose phosphate pathway enables enhanced d-xylose utilization by Clostridium acetobutylicum. J Biotechnol 2014; 173:7-9. [DOI: 10.1016/j.jbiotec.2014.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/24/2013] [Accepted: 01/02/2014] [Indexed: 12/01/2022]
|
37
|
Rodionova IA, Li X, Thiel V, Stolyar S, Stanton K, Fredrickson JK, Bryant DA, Osterman AL, Best AA, Rodionov DA. Comparative genomics and functional analysis of rhamnose catabolic pathways and regulons in bacteria. Front Microbiol 2013; 4:407. [PMID: 24391637 PMCID: PMC3870299 DOI: 10.3389/fmicb.2013.00407] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 12/09/2013] [Indexed: 12/29/2022] Open
Abstract
L-rhamnose (L-Rha) is a deoxy-hexose sugar commonly found in nature. L-Rha catabolic pathways were previously characterized in various bacteria including Escherichia coli. Nevertheless, homology searches failed to recognize all the genes for the complete L-Rha utilization pathways in diverse microbial species involved in biomass decomposition. Moreover, the regulatory mechanisms of L-Rha catabolism have remained unclear in most species. A comparative genomics approach was used to reconstruct the L-Rha catabolic pathways and transcriptional regulons in the phyla Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Proteobacteria, and Thermotogae. The reconstructed pathways include multiple novel enzymes and transporters involved in the utilization of L-Rha and L-Rha-containing polymers. Large-scale regulon inference using bioinformatics revealed remarkable variations in transcriptional regulators for L-Rha utilization genes among bacteria. A novel bifunctional enzyme, L-rhamnulose-phosphate aldolase (RhaE) fused to L-lactaldehyde dehydrogenase (RhaW), which is not homologous to previously characterized L-Rha catabolic enzymes, was identified in diverse bacteria including Chloroflexi, Bacilli, and Alphaproteobacteria. By using in vitro biochemical assays we validated both enzymatic activities of the purified recombinant RhaEW proteins from Chloroflexus aurantiacus and Bacillus subtilis. Another novel enzyme of the L-Rha catabolism, L-lactaldehyde reductase (RhaZ), was identified in Gammaproteobacteria and experimentally validated by in vitro enzymatic assays using the recombinant protein from Salmonella typhimurium. C. aurantiacus induced transcription of the predicted L-Rha utilization genes when L-Rha was present in the growth medium and consumed L-Rha from the medium. This study provided comprehensive insights to L-Rha catabolism and its regulation in diverse Bacteria.
Collapse
Affiliation(s)
| | - Xiaoqing Li
- Sanford-Burnham Medical Research Institute La Jolla, CA, USA
| | - Vera Thiel
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park PA, USA
| | - Sergey Stolyar
- Pacific Northwest National Laboratory, Biological Sciences Division Richland, WA, USA
| | | | - James K Fredrickson
- Pacific Northwest National Laboratory, Biological Sciences Division Richland, WA, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park PA, USA ; Department of Chemistry and Biochemistry, Montana State University Bozeman, MT, USA
| | | | - Aaron A Best
- Department of Biology, Hope College Holland, MI, USA
| | - Dmitry A Rodionov
- Sanford-Burnham Medical Research Institute La Jolla, CA, USA ; A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences Moscow, Russia
| |
Collapse
|
38
|
Rodionov DA, Rodionova IA, Li X, Ravcheev DA, Tarasova Y, Portnoy VA, Zengler K, Osterman AL. Transcriptional regulation of the carbohydrate utilization network in Thermotoga maritima. Front Microbiol 2013; 4:244. [PMID: 23986752 PMCID: PMC3750489 DOI: 10.3389/fmicb.2013.00244] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 07/31/2013] [Indexed: 01/01/2023] Open
Abstract
Hyperthermophilic bacteria from the Thermotogales lineage can produce hydrogen by fermenting a wide range of carbohydrates. Previous experimental studies identified a large fraction of genes committed to carbohydrate degradation and utilization in the model bacterium Thermotoga maritima. Knowledge of these genes enabled comprehensive reconstruction of biochemical pathways comprising the carbohydrate utilization network. However, transcriptional factors (TFs) and regulatory mechanisms driving this network remained largely unknown. Here, we used an integrated approach based on comparative analysis of genomic and transcriptomic data for the reconstruction of the carbohydrate utilization regulatory networks in 11 Thermotogales genomes. We identified DNA-binding motifs and regulons for 19 orthologous TFs in the Thermotogales. The inferred regulatory network in T. maritima contains 181 genes encoding TFs, sugar catabolic enzymes and ABC-family transporters. In contrast to many previously described bacteria, a transcriptional regulation strategy of Thermotoga does not employ global regulatory factors. The reconstructed regulatory network in T. maritima was validated by gene expression profiling on a panel of mono- and disaccharides and by in vitro DNA-binding assays. The observed upregulation of genes involved in catabolism of pectin, trehalose, cellobiose, arabinose, rhamnose, xylose, glucose, galactose, and ribose showed a strong correlation with the UxaR, TreR, BglR, CelR, AraR, RhaR, XylR, GluR, GalR, and RbsR regulons. Ultimately, this study elucidated the transcriptional regulatory network and mechanisms controlling expression of carbohydrate utilization genes in T. maritima. In addition to improving the functional annotations of associated transporters and catabolic enzymes, this research provides novel insights into the evolution of regulatory networks in Thermotogales.
Collapse
Affiliation(s)
- Dmitry A Rodionov
- Sanford-Burnham Medical Research Institute La Jolla, CA, USA ; A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Kazanov MD, Li X, Gelfand MS, Osterman AL, Rodionov DA. Functional diversification of ROK-family transcriptional regulators of sugar catabolism in the Thermotogae phylum. Nucleic Acids Res 2012. [PMID: 23209028 PMCID: PMC3553997 DOI: 10.1093/nar/gks1184] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Large and functionally heterogeneous families of transcription factors have complex evolutionary histories. What shapes specificities toward effectors and DNA sites in paralogous regulators is a fundamental question in biology. Bacteria from the deep-branching lineage Thermotogae possess multiple paralogs of the repressor, open reading frame, kinase (ROK) family regulators that are characterized by carbohydrate-sensing domains shared with sugar kinases. We applied an integrated genomic approach to study functions and specificities of regulators from this family. A comparative analysis of 11 Thermotogae genomes revealed novel mechanisms of transcriptional regulation of the sugar utilization networks, DNA-binding motifs and specific functions. Reconstructed regulons for seven groups of ROK regulators were validated by DNA-binding assays using purified recombinant proteins from the model bacterium Thermotoga maritima. All tested regulators demonstrated specific binding to their predicted cognate DNA sites, and this binding was inhibited by specific effectors, mono- or disaccharides from their respective sugar catabolic pathways. By comparing ligand-binding domains of regulators with structurally characterized kinases from the ROK family, we elucidated signature amino acid residues determining sugar-ligand regulator specificity. Observed correlations between signature residues and the sugar-ligand specificities provide the framework for structure functional classification of the entire ROK family.
Collapse
Affiliation(s)
- Marat D Kazanov
- Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
40
|
Novel high butanol production from lactic acid and pentose by Clostridium saccharoperbutylacetonicum. J Biosci Bioeng 2012; 114:526-30. [DOI: 10.1016/j.jbiosc.2012.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/03/2012] [Accepted: 06/04/2012] [Indexed: 11/23/2022]
|
41
|
Arabinose is metabolized via a phosphoketolase pathway in Clostridium acetobutylicum ATCC 824. J Ind Microbiol Biotechnol 2012; 39:1859-67. [PMID: 22922942 DOI: 10.1007/s10295-012-1186-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 08/01/2012] [Indexed: 10/28/2022]
Abstract
In this report, a novel zymogram assay and coupled phosphoketolase assay were employed to demonstrate that Clostridium acetobutylicum gene CAC1343 encodes a bi-functional xylulose-5-P/fructose-6-P phosphoketolase (XFP). The specific activity of purified recombinant XFP was 6.9 U/mg on xylulose-5-P and 21 U/mg on fructose-6-P, while the specific activity of XFP in concentrated C. acetobutylicum whole-cell extract was 0.094 and 0.52 U/mg, respectively. Analysis of crude cell extracts indicated that XFP activity was present in cells grown on arabinose but not glucose and quantitative PCR was used to show that CAC1343 mRNA expression was induced 185-fold during growth on arabinose when compared to growth on glucose. HPLC analysis of metabolites revealed that during growth on xylose and glucose more butyrate than acetate was formed with final acetate:butyrate ratios of 0.72 and 0.83, respectively. Growth on arabinose caused a metabolic shift to more oxidized products with a final acetate:butyrate ratio of 1.95. The shift towards more oxidized products is consistent with the presence of an XFP, suggesting that arabinose is metabolized via a phosphoketolase pathway while xylose is probably metabolized via the pentose phosphate pathway.
Collapse
|
42
|
Phosphoketolase pathway for xylose catabolism in Clostridium acetobutylicum revealed by 13C metabolic flux analysis. J Bacteriol 2012; 194:5413-22. [PMID: 22865845 DOI: 10.1128/jb.00713-12] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Solvent-producing clostridia are capable of utilizing pentose sugars, including xylose and arabinose; however, little is known about how pentose sugars are catabolized through the metabolic pathways in clostridia. In this study, we identified the xylose catabolic pathways and quantified their fluxes in Clostridium acetobutylicum based on [1-(13)C]xylose labeling experiments. The phosphoketolase pathway was found to be active, which contributed up to 40% of the xylose catabolic flux in C. acetobutylicum. The split ratio of the phosphoketolase pathway to the pentose phosphate pathway was markedly increased when the xylose concentration in the culture medium was increased from 10 to 20 g liter(-1). To our knowledge, this is the first time that the in vivo activity of the phosphoketolase pathway in clostridia has been revealed. A phosphoketolase from C. acetobutylicum was purified and characterized, and its activity with xylulose-5-P was verified. The phosphoketolase was overexpressed in C. acetobutylicum, which resulted in slightly increased xylose consumption rates during the exponential growth phase and a high level of acetate accumulation.
Collapse
|
43
|
Pleiotropic functions of catabolite control protein CcpA in Butanol-producing Clostridium acetobutylicum. BMC Genomics 2012; 13:349. [PMID: 22846451 PMCID: PMC3507653 DOI: 10.1186/1471-2164-13-349] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 06/28/2012] [Indexed: 12/24/2022] Open
Abstract
Background Clostridium acetobutylicum has been used to produce butanol in industry. Catabolite control protein A (CcpA), known to mediate carbon catabolite repression (CCR) in low GC gram-positive bacteria, has been identified and characterized in C. acetobutylicum by our previous work (Ren, C. et al. 2010, Metab Eng 12:446–54). To further dissect its regulatory function in C. acetobutylicum, CcpA was investigated using DNA microarray followed by phenotypic, genetic and biochemical validation. Results CcpA controls not only genes in carbon metabolism, but also those genes in solvent production and sporulation of the life cycle in C. acetobutylicum: i) CcpA directly repressed transcription of genes related to transport and metabolism of non-preferred carbon sources such as d-xylose and l-arabinose, and activated expression of genes responsible for d-glucose PTS system; ii) CcpA is involved in positive regulation of the key solventogenic operon sol (adhE1-ctfA-ctfB) and negative regulation of acidogenic gene bukII; and iii) transcriptional alterations were observed for several sporulation-related genes upon ccpA inactivation, which may account for the lower sporulation efficiency in the mutant, suggesting CcpA may be necessary for efficient sporulation of C. acetobutylicum, an important trait adversely affecting the solvent productivity. Conclusions This study provided insights to the pleiotropic functions that CcpA displayed in butanol-producing C. acetobutylicum. The information could be valuable for further dissecting its pleiotropic regulatory mechanism in C. acetobutylicum, and for genetic modification in order to obtain more effective butanol-producing Clostridium strains.
Collapse
|
44
|
Xiao H, Li Z, Jiang Y, Yang Y, Jiang W, Gu Y, Yang S. Metabolic engineering of D-xylose pathway in Clostridium beijerinckii to optimize solvent production from xylose mother liquid. Metab Eng 2012; 14:569-78. [PMID: 22677452 DOI: 10.1016/j.ymben.2012.05.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 04/29/2012] [Accepted: 05/22/2012] [Indexed: 11/18/2022]
Abstract
Clostridium beijerinckii is an attractive butanol-producing microbe for its advantage in co-fermenting hexose and pentose sugars. However, this Clostridium strain exhibits undesired efficiency in utilizing D-xylose, one of the major building blocks contained in lignocellulosic materials. Here, we reported a useful metabolic engineering strategy to improve D-xylose consumption by C. beijerinckii. Gene cbei2385, encoding a putative D-xylose repressor XylR, was first disrupted in the C. beijerinckii NCIMB 8052, resulting in a significant increase in D-xylose consumption. A D-xylose proton-symporter (encoded by gene cbei0109) was identified and then overexpressed to further optimize D-xylose utilization, yielding an engineered strain 8052xylR-xylT(ptb) (xylR inactivation plus xylT overexpression driven by ptb promoter). We investigated the strain 8052xylR-xylT(ptb) in fermenting xylose mother liquid, an abundant by-product from industrial-scale xylose preparation from corncob and rich in D-xylose, finally achieving a 35% higher Acetone, Butanol and Ethanol (ABE) solvent titer (16.91 g/L) and a 38% higher yield (0.29 g/g) over those of the wild-type strain. The strategy used in this study enables C. beijerinckii more suitable for butanol production from lignocellulosic materials.
Collapse
Affiliation(s)
- Han Xiao
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | | | | | |
Collapse
|