1
|
Wang LYR, Jokinen CC, Laing CR, Johnson RP, Ziebell K, Gannon VPJ. Assessing the genomic relatedness and evolutionary rates of persistent verotoxigenic Escherichia coli serotypes within a closed beef herd in Canada. Microb Genom 2020; 6. [PMID: 32496181 PMCID: PMC7371104 DOI: 10.1099/mgen.0.000376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Verotoxigenic Escherichia coli (VTEC) are food- and water-borne pathogens associated with both sporadic illness and outbreaks of enteric disease. While it is known that cattle are reservoirs of VTEC, little is known about the genomic variation of VTEC in cattle, and whether the variation in genomes reported for human outbreak strains is consistent with individual animal or group/herd sources of infection. A previous study of VTEC prevalence identified serotypes carried persistently by three consecutive cohorts of heifers within a closed herd of cattle. This present study aimed to: (i) determine whether the genomic relatedness of bovine isolates is similar to that reported for human strains associated with single source outbreaks, (ii) estimate the rates of genome change among dominant serotypes over time within a cattle herd, and (iii) identify genomic features of serotypes associated with persistence in cattle. Illumina MiSeq genome sequencing and genotyping based on allelic and single nucleotide variations were completed, while genome change over time was measured using Bayesian evolutionary analysis sampling trees. The accessory genome, including the non-protein-encoding intergenic regions (IGRs), virulence factors, antimicrobial-resistance genes and plasmid gene content of representative persistent and sporadic cattle strains were compared using Fisher’s exact test corrected for multiple comparisons. Herd strains from serotypes O6:H34 (n=22), O22:H8 (n=30), O108:H8 (n=39), O139:H19 (n=44) and O157:H7 (n=106) were readily distinguishable from epidemiologically unrelated strains of the same serotype using a similarity threshold of 10 or fewer allele differences between adjacent nodes. Temporal-cohort clustering within each serotype was supported by date randomization analysis. Substitutions per site per year were consistent with previously reported values for E. coli; however, there was low branch support for these values. Acquisition of the phage-encoded Shiga toxin 2 gene in serotype O22:H8 was observed. Pan-genome analyses identified accessory regions that were more prevalent in persistent serotypes (P≤0.05) than in sporadic serotypes. These results suggest that VTEC serotypes from a specific cattle population are highly clonal with a similar level of relatedness as human single-source outbreak-associated strains, but changes in the genome occur gradually over time. Additionally, elements in the accessory genomes may provide a selective advantage for persistence of VTEC within cattle herds.
Collapse
Affiliation(s)
- Lu Ya Ruth Wang
- National Microbiology Laboratory, Public Health Agency of Canada, Lethbridge, Alberta, Canada
| | | | - Chad R Laing
- National Centre for Animal Disease, Canadian Food Inspection Agency, Lethbridge, Alberta, Canada
| | - Roger P Johnson
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Kim Ziebell
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Victor P J Gannon
- National Microbiology Laboratory, Public Health Agency of Canada, Lethbridge, Alberta, Canada
| |
Collapse
|
2
|
Yogiara, Kim D, Hwang JK, Pan JG. Escherichia coli ASKA Clone Library Harboring tRNA-Specific Adenosine Deaminase (tadA) Reveals Resistance towards Xanthorrhizol. Molecules 2015; 20:16290-305. [PMID: 26370953 PMCID: PMC6331797 DOI: 10.3390/molecules200916290] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/27/2015] [Accepted: 08/31/2015] [Indexed: 11/16/2022] Open
Abstract
Xanthorrhizol is a potent antimicrobial compound isolated from the rhizome of Curcuma xanthorrhiza. However, the mechanism of xanthorrhizol action is unknown. To screen for probable target(s), we introduced the ASKA pooled-plasmid library into Escherichia coli W3110 imp4213 and enriched the library for resistant clones with increasing concentrations of xanthorrhizol. After three rounds of enrichment, we found nine genes that increased xanthorrhizol resistance. The resistant clones were able to grow in LB medium containing 256 µg/mL xanthorrhizol, representing a 16-fold increase in the minimum inhibitory concentration. Subsequent DNA sequence analysis revealed that overexpression of tadA, galU, fucU, ydeA, ydaC, soxS, nrdH, yiiD, and mltF genes conferred increased resistance towards xanthorrhizol. Among these nine genes, tadA is the only essential gene. tadA encodes a tRNA-specific adenosine deaminase. Overexpression of E. coli W3110 imp4213 (pCA24N-tadA) conferred resistance to xanthorrhizol up to 128 µg/mL. Moreover, overexpression of two tadA mutant enzymes (A143V and F149G) led to a twofold increase in the MIC. These results suggest that the targets of xanthorrhizol may include tadA, which has never before been explored as an antibiotic target.
Collapse
Affiliation(s)
- Yogiara
- Department of Biotechnology, Yonsei University, 50-Yonsei-ro Seodaemun-gu, Seoul 120-749, Korea.
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Jenderal Sudirman 51, Jakarta 12930, Indonesia.
| | - Dooil Kim
- Superbacteria Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 111 Gwahangno, Yuseong, Daejeon 305-806, Korea.
| | - Jae-Kwan Hwang
- Department of Biotechnology, Yonsei University, 50-Yonsei-ro Seodaemun-gu, Seoul 120-749, Korea.
| | - Jae-Gu Pan
- Superbacteria Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 111 Gwahangno, Yuseong, Daejeon 305-806, Korea.
| |
Collapse
|
3
|
Charbon G, Bjørn L, Mendoza-Chamizo B, Frimodt-Møller J, Løbner-Olesen A. Oxidative DNA damage is instrumental in hyperreplication stress-induced inviability of Escherichia coli. Nucleic Acids Res 2014; 42:13228-41. [PMID: 25389264 PMCID: PMC4245963 DOI: 10.1093/nar/gku1149] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In Escherichia coli, an increase in the ATP bound form of the DnaA initiator protein results in hyperinitiation and inviability. Here, we show that such replication stress is tolerated during anaerobic growth. In hyperinitiating cells, a shift from anaerobic to aerobic growth resulted in appearance of fragmented chromosomes and a decrease in terminus concentration, leading to a dramatic increase in ori/ter ratio and cessation of cell growth. Aerobic viability was restored by reducing the level of reactive oxygen species (ROS) or by deleting mutM (Fpg glycosylase). The double-strand breaks observed in hyperinitiating cells therefore results from replication forks encountering single-stranded DNA lesions generated while removing oxidized bases, primarily 8-oxoG, from the DNA. We conclude that there is a delicate balance between chromosome replication and ROS inflicted DNA damage so the number of replication forks can only increase when ROS formation is reduced or when the pertinent repair is compromised.
Collapse
Affiliation(s)
- Godefroid Charbon
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark
| | - Louise Bjørn
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark
| | - Belén Mendoza-Chamizo
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark Department of Biochemistry, Molecular Biology and Genetics, University of Extremadura, E06071 Badajoz, Spain
| | - Jakob Frimodt-Møller
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark
| | - Anders Løbner-Olesen
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark
| |
Collapse
|
4
|
Guo Y, Quiroga C, Chen Q, McAnulty MJ, Benedik MJ, Wood TK, Wang X. RalR (a DNase) and RalA (a small RNA) form a type I toxin-antitoxin system in Escherichia coli. Nucleic Acids Res 2014; 42:6448-62. [PMID: 24748661 PMCID: PMC4041452 DOI: 10.1093/nar/gku279] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
For toxin/antitoxin (TA) systems, no toxin has been identified that functions by cleaving DNA. Here, we demonstrate that RalR and RalA of the cryptic prophage rac form a type I TA pair in which the antitoxin RNA is a trans-encoded small RNA with 16 nucleotides of complementarity to the toxin mRNA. We suggest the newly discovered antitoxin gene be named ralA for RalR antitoxin. Toxin RalR functions as a non-specific endonuclease that cleaves methylated and unmethylated DNA. The RNA chaperone Hfq is required for RalA antitoxin activity and appears to stabilize RalA. Also, RalR/RalA is beneficial to the Escherichia coli host for responding to the antibiotic fosfomycin. Hence, our results indicate that cryptic prophage genes can be functionally divergent from their active phage counterparts after integration into the host genome.
Collapse
Affiliation(s)
- Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| | - Cecilia Quiroga
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802-4400, USA
| | - Qin Chen
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802-4400, USA
| | - Michael J McAnulty
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802-4400, USA
| | - Michael J Benedik
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802-4400, USA
| | - Thomas K Wood
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA 16802-4400, USA Department of Biology, Texas A & M University, College Station, TX 77843-3258, USA
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China
| |
Collapse
|