1
|
Naganathan A, Culver GM. Interdependency and Redundancy Add Complexity and Resilience to Biogenesis of Bacterial Ribosomes. Annu Rev Microbiol 2022; 76:193-210. [PMID: 35609945 DOI: 10.1146/annurev-micro-041020-121806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The pace and efficiency of ribosomal subunit production directly impact the fitness of bacteria. Biogenesis demands more than just the union of ribosomal components, including RNA and proteins, to form this functional ribonucleoprotein particle. Extra-ribosomal protein factors play a fundamental role in the efficiency and efficacy of ribosomal subunit biogenesis. A paucity of data on intermediate steps, multiple and overlapping pathways, and the puzzling number of functions that extra-ribosomal proteins appear to play in vivo make unraveling the formation of this macromolecular assemblage difficult. In this review, we outline with examples the multinodal landscape of factor-assisted mechanisms that influence ribosome synthesis in bacteria. We discuss in detail late-stage events that mediate correct ribosome formation and the transition to translation initiation and thereby ensure high-fidelity protein synthesis.
Collapse
Affiliation(s)
- Anusha Naganathan
- Department of Biology, University of Rochester, Rochester, New York, USA; ,
| | - Gloria M Culver
- Department of Biology, University of Rochester, Rochester, New York, USA; ,
- Center for RNA Biology and Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York, USA
| |
Collapse
|
2
|
Benda M, Woelfel S, Faßhauer P, Gunka K, Klumpp S, Poehlein A, Kálalová D, Šanderová H, Daniel R, Krásný L, Stülke J. Quasi-essentiality of RNase Y in Bacillus subtilis is caused by its critical role in the control of mRNA homeostasis. Nucleic Acids Res 2021; 49:7088-7102. [PMID: 34157109 PMCID: PMC8266666 DOI: 10.1093/nar/gkab528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 05/28/2021] [Accepted: 06/08/2021] [Indexed: 01/18/2023] Open
Abstract
RNA turnover is essential in all domains of life. The endonuclease RNase Y (rny) is one of the key components involved in RNA metabolism of the model organism Bacillus subtilis. Essentiality of RNase Y has been a matter of discussion, since deletion of the rny gene is possible, but leads to severe phenotypic effects. In this work, we demonstrate that the rny mutant strain rapidly evolves suppressor mutations to at least partially alleviate these defects. All suppressor mutants had acquired a duplication of an about 60 kb long genomic region encompassing genes for all three core subunits of the RNA polymerase—α, β, β′. When the duplication of the RNA polymerase genes was prevented by relocation of the rpoA gene in the B. subtilis genome, all suppressor mutants carried distinct single point mutations in evolutionary conserved regions of genes coding either for the β or β’ subunits of the RNA polymerase that were not tolerated by wild type bacteria. In vitro transcription assays with the mutated polymerase variants showed a severe decrease in transcription efficiency. Altogether, our results suggest a tight cooperation between RNase Y and the RNA polymerase to establish an optimal RNA homeostasis in B. subtilis cells.
Collapse
Affiliation(s)
- Martin Benda
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Simon Woelfel
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Patrick Faßhauer
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Katrin Gunka
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Stefan Klumpp
- Institute for the Dynamics of Complex Systems, Georg-August-University Göttingen, Göttingen, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Debora Kálalová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Šanderová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| | - Libor Krásný
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jörg Stülke
- Department of General Microbiology, GZMB, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
3
|
Ali N, Gowrishankar J. Cross-subunit catalysis and a new phenomenon of recessive resurrection in Escherichia coli RNase E. Nucleic Acids Res 2020; 48:847-861. [PMID: 31802130 PMCID: PMC6954427 DOI: 10.1093/nar/gkz1152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022] Open
Abstract
RNase E is a 472-kDa homo-tetrameric essential endoribonuclease involved in RNA processing and turnover in Escherichia coli. In its N-terminal half (NTH) is the catalytic active site, as also a substrate 5′-sensor pocket that renders enzyme activity maximal on 5′-monophosphorylated RNAs. The protein's non-catalytic C-terminal half (CTH) harbours RNA-binding motifs and serves as scaffold for a multiprotein degradosome complex, but is dispensable for viability. Here, we provide evidence that a full-length hetero-tetramer, composed of a mixture of wild-type and (recessive lethal) active-site mutant subunits, exhibits identical activity in vivo as the wild-type homo-tetramer itself (‘recessive resurrection’). When all of the cognate polypeptides lacked the CTH, the active-site mutant subunits were dominant negative. A pair of C-terminally truncated polypeptides, which were individually inactive because of additional mutations in their active site and 5′-sensor pocket respectively, exhibited catalytic function in combination, both in vivo and in vitro (i.e. intragenic or allelic complementation). Our results indicate that adjacent subunits within an oligomer are separately responsible for 5′-sensing and cleavage, and that RNA binding facilitates oligomerization. We propose also that the CTH mediates a rate-determining initial step for enzyme function, which is likely the binding and channelling of substrate for NTH’s endonucleolytic action.
Collapse
Affiliation(s)
- Nida Ali
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal 576104, India
| | - Jayaraman Gowrishankar
- Laboratory of Bacterial Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| |
Collapse
|
4
|
Enzymatic activity necessary to restore the lethality due to Escherichia coli RNase E deficiency is distributed among bacteria lacking RNase E homologues. PLoS One 2017; 12:e0177915. [PMID: 28542621 PMCID: PMC5436854 DOI: 10.1371/journal.pone.0177915] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/05/2017] [Indexed: 12/20/2022] Open
Abstract
Escherichia coli RNase E (Eco-RNase E), encoded by rne (Eco-rne), is considered the global RNA decay initiator. Although Eco-RNase E is an essential gene product in E. coli, some bacterial species, such as Bacillus subtilis, do not possess Eco-RNase E sequence homologues. B. subtilis instead possesses RNase J1/J2 (Bsu-RNase J1/J2) and RNase Y (Bsu-RNase Y) to execute RNA decay. Here we found that E. coli lacking the Eco-rne gene (Δrne E. coli) was viable conditional on M9 minimal media by introducing Bsu-RNase J1/J2 or Bsu-RNase Y. We also cloned an extremely short Eco-RNase E homologue (Wpi-RNase E) and a canonical sized Bsu-RNase J1/J2 homologue (Wpi-RNase J) from Wolbachia pipientis, an α-proteobacterial endosymbiont of arthropods. We found that Wpi-RNase J restored the colony-forming ability (CFA) of Δrne E. coli, whereas Wpi-RNase E did not. Unexpectedly, Wpi-RNase E restored defective CFA due to lack of Eco-RNase G, a paralogue of Eco-RNase E. Our results indicate that bacterial species that lack Eco-RNase E homologues or bacterial species that possess Eco-RNase E homologues which lack Eco-RNase E-like activities have a modest Eco-RNase E-like function using RNase J and/or RNase Y. These results suggest that Eco-RNase E-like activities might distribute among a wide array of bacteria and that functions of RNases may have changed dynamically during evolutionary divergence of bacterial lineages.
Collapse
|
5
|
Takada H, Shimada T, Dey D, Quyyum MZ, Nakano M, Ishiguro A, Yoshida H, Yamamoto K, Sen R, Ishihama A. Differential Regulation of rRNA and tRNA Transcription from the rRNA-tRNA Composite Operon in Escherichia coli. PLoS One 2016; 11:e0163057. [PMID: 28005933 PMCID: PMC5179076 DOI: 10.1371/journal.pone.0163057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/01/2016] [Indexed: 11/18/2022] Open
Abstract
Escherichia coli contains seven rRNA operons, each consisting of the genes for three rRNAs (16S, 23S and 5S rRNA in this order) and one or two tRNA genes in the spacer between 16S and 23S rRNA genes and one or two tRNA genes in the 3’ proximal region. All of these rRNA and tRNA genes are transcribed from two promoters, P1 and P2, into single large precursors that are afterward processed to individual rRNAs and tRNAs by a set of RNases. In the course of Genomic SELEX screening of promoters recognized by RNA polymerase (RNAP) holoenzyme containing RpoD sigma, a strong binding site was identified within 16S rRNA gene in each of all seven rRNA operons. The binding in vitro of RNAP RpoD holoenzyme to an internal promoter, referred to the promoter of riRNA (an internal RNA of the rRNA operon), within each 16S rRNA gene was confirmed by gel shift assay and AFM observation. Using this riRNA promoter within the rrnD operon as a representative, transcription in vitro was detected with use of the purified RpoD holoenzyme, confirming the presence of a constitutive promoter in this region. LacZ reporter assay indicated that this riRNA promoter is functional in vivo. The location of riRNA promoter in vivo as identified using a set of reporter plasmids agrees well with that identified in vitro. Based on transcription profile in vitro and Northern blot analysis in vivo, the majority of transcript initiated from this riRNA promoter was estimated to terminate near the beginning of 23S rRNA gene, indicating that riRNA leads to produce the spacer-coded tRNA. Under starved conditions, transcription of the rRNA operon is markedly repressed to reduce the intracellular level of ribosomes, but the levels of both riRNA and its processed tRNAGlu stayed unaffected, implying that riRNA plays a role in the continued steady-state synthesis of tRNAs from the spacers of rRNA operons. We then propose that the tRNA genes organized within the spacers of rRNA-tRNA composite operons are expressed independent of rRNA synthesis under specific conditions where further synthesis of ribosomes is not needed.
Collapse
Affiliation(s)
- Hiraku Takada
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan
| | - Tomohiro Shimada
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan
- Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Nagatsuda, Yokohama, Japan
| | - Debashish Dey
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | | | - Masahiro Nakano
- Institute for Virus Research, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Akira Ishiguro
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan
| | - Hideji Yoshida
- Department of Physics, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Kaneyoshi Yamamoto
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
| | - Ranjan Sen
- Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Akira Ishihama
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, Japan
- * E-mail:
| |
Collapse
|
6
|
Tamura M, Honda N, Fujimoto H, Cohen SN, Kato A. PpsA-mediated alternative pathway to complement RNase E essentiality in Escherichia coli. Arch Microbiol 2016; 198:409-21. [PMID: 26883538 DOI: 10.1007/s00203-016-1201-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 01/21/2016] [Accepted: 02/01/2016] [Indexed: 12/22/2022]
Abstract
Escherichia coli cells require RNase E, encoded by the essential gene rne, to propagate. The growth properties on different carbon sources of E. coli cells undergoing suppression of RNase E production suggested that reduction in RNase E is associated with decreased expression of phosphoenolpyruvate synthetase (PpsA), which converts pyruvate to phosphoenolpyruvate during gluconeogenesis. Western blotting and genetic complementation confirmed the role of RNase E in PpsA expression. Adventitious ppsA overexpression from a multicopy plasmid was sufficient to restore colony formation of ∆rne E. coli on minimal media containing glycerol or succinate as the sole carbon source. Complementation of ∆rne by ppsA overproduction was observed during growth on solid media but was only partial, and bacteria showed slowed cell division and grew as filamentous chains. We found that restoration of colony-forming ability by ppsA complementation occurred independent of the presence of endogenous RNase G or second-site suppressors of RNase E essentiality. Our investigations demonstrate the role of phosphoryl transfer catalyzable by PpsA as a determinant of RNase E essentiality in E. coli.
Collapse
Affiliation(s)
- Masaru Tamura
- Department of Quality Assurance and Radiological Protection, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.
| | - Naoko Honda
- Department of Quality Assurance and Radiological Protection, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Hirofumi Fujimoto
- Department of Quality Assurance and Radiological Protection, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Stanley N Cohen
- Departments of Genetics and Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| | - Atsushi Kato
- Department of Quality Assurance and Radiological Protection, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| |
Collapse
|
7
|
Khemici V, Linder P. RNA helicases in bacteria. Curr Opin Microbiol 2016; 30:58-66. [PMID: 26808656 DOI: 10.1016/j.mib.2016.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/06/2016] [Indexed: 11/18/2022]
Abstract
RNA plays a crucial role in the control of bacterial gene expression, either as carrier of information or as positive or negative regulators. Moreover, the machinery to decode the information, the ribosome, is a large ribonucleoprotein complex composed of rRNAs and many proteins. RNAs are normally single stranded but have the propensity to fold into secondary structures or anneal each other. In some instances these interactions are beneficial for the function of the RNA, but in other cases they may be deleterious. All cells have therefore developed proteins that act as chaperones or helicases to keep RNA metabolism alive.
Collapse
Affiliation(s)
- Vanessa Khemici
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, 1, rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Patrick Linder
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, 1, rue Michel Servet, 1211 Geneva 4, Switzerland.
| |
Collapse
|
8
|
The RNA Helicase DeaD Stimulates ExsA Translation To Promote Expression of the Pseudomonas aeruginosa Type III Secretion System. J Bacteriol 2015; 197:2664-74. [PMID: 26055113 DOI: 10.1128/jb.00231-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 05/30/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The Pseudomonas aeruginosa type III secretion system (T3SS) is a primary virulence factor important for phagocytic avoidance, disruption of host cell signaling, and host cell cytotoxicity. ExsA is the master regulator of T3SS transcription. The expression, synthesis, and activity of ExsA is tightly regulated by both intrinsic and extrinsic factors. Intrinsic regulation consists of the well-characterized ExsECDA partner-switching cascade, while extrinsic factors include global regulators that alter exsA transcription and/or translation. To identify novel extrinsic regulators of ExsA, we conducted a transposon mutagenesis screen in the absence of intrinsic control. Transposon disruptions within gene PA2840, which encodes a homolog of the Escherichia coli RNA-helicase DeaD, significantly reduced T3SS gene expression. Recent studies indicate that E. coli DeaD can promote translation by relieving inhibitory secondary structures within target mRNAs. We report here that PA2840, renamed DeaD, stimulates ExsA synthesis at the posttranscriptional level. Genetic experiments demonstrate that the activity of an exsA translational fusion is reduced in a deaD mutant. In addition, exsA expression in trans fails to restore T3SS gene expression in a deaD mutant. We hypothesized that DeaD relaxes mRNA secondary structure to promote exsA translation and found that altering the mRNA sequence of exsA or the native exsA Shine-Dalgarno sequence relieved the requirement for DeaD in vivo. Finally, we show that purified DeaD promotes ExsA synthesis using in vitro translation assays. Together, these data reveal a novel regulatory mechanism for P. aeruginosa DeaD and add to the complexity of global regulation of T3SS. IMPORTANCE Although members of the DEAD box family of RNA helicases are appreciated for their roles in mRNA degradation and ribosome biogenesis, an additional role in gene regulation is now emerging in bacteria. By relaxing secondary structures in mRNAs, DEAD box helicases are now thought to promote translation by enhancing ribosomal recruitment. We identify here an RNA helicase that plays a critical role in promoting ExsA synthesis, the central regulator of the Pseudomonas aeruginosa type III secretion system, and provide additional evidence that DEAD box helicases directly stimulate translation of target genes. The finding that DeaD stimulates exsA translation adds to a growing list of transcriptional and posttranscriptional regulatory mechanisms that control type III gene expression.
Collapse
|
9
|
Redder P, Hausmann S, Khemici V, Yasrebi H, Linder P. Bacterial versatility requires DEAD-box RNA helicases. FEMS Microbiol Rev 2015; 39:392-412. [PMID: 25907111 DOI: 10.1093/femsre/fuv011] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2015] [Indexed: 11/13/2022] Open
Abstract
RNA helicases of the DEAD-box and DEAH-box families are important players in many processes involving RNA molecules. These proteins can modify RNA secondary structures or intermolecular RNA interactions and modulate RNA-protein complexes. In bacteria, they are known to be involved in ribosome biogenesis, RNA turnover and translation initiation. They thereby play an important role in the adaptation of bacteria to changing environments and to respond to stress conditions.
Collapse
Affiliation(s)
- Peter Redder
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, 1, rue Michel Servet, CH 1211 Geneva 4, Switzerland
| | - Stéphane Hausmann
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, 1, rue Michel Servet, CH 1211 Geneva 4, Switzerland
| | - Vanessa Khemici
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, 1, rue Michel Servet, CH 1211 Geneva 4, Switzerland
| | - Haleh Yasrebi
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, 1, rue Michel Servet, CH 1211 Geneva 4, Switzerland
| | - Patrick Linder
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, 1, rue Michel Servet, CH 1211 Geneva 4, Switzerland
| |
Collapse
|
10
|
Nagata Y, Senbongi J, Ishibashi Y, Sudo R, Miyakoshi M, Ohtsubo Y, Tsuda M. Identification of Burkholderia multivorans ATCC 17616 genetic determinants for fitness in soil by using signature-tagged mutagenesis. MICROBIOLOGY-SGM 2014; 160:883-891. [PMID: 24530988 DOI: 10.1099/mic.0.077057-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To identify bacterial genetic determinants for fitness in a soil environment, signature-tagged mutagenesis (STM) was applied to a soil bacterium, Burkholderia multivorans ATCC 17616. This strain was randomly mutagenized by each of 36 different signature-tagged plasposons, and 36 mutants with different tags were grouped as a set. A total of 192 sets consisting of 6912 independent mutants were each inoculated into soil and incubated. Two-step STM screening based on quantitative real-time PCR of total DNAs extracted from the resulting soil samples using the tag-specific primers led to the selection of 39 mutant candidates that exhibited a reduction in relative competitive fitness during incubation in the soil, and 32 plasposon-insertion sites were determined. Among them, mutants having plasposon insertion in fur, deaD or hrpA exhibited reduced fitness during incubation in soil when compared with the control strain. The deficiency in the soil fitness of the fur mutant was recovered by the introduction of the wild-type fur gene, indicating that the fur gene is one of the genetic determinants for fitness in the soil.
Collapse
Affiliation(s)
- Yuji Nagata
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Junko Senbongi
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Yoko Ishibashi
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Rie Sudo
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Masatoshi Miyakoshi
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Yoshiyuki Ohtsubo
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Masataka Tsuda
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
11
|
Initiation of mRNA decay in bacteria. Cell Mol Life Sci 2013; 71:1799-828. [PMID: 24064983 PMCID: PMC3997798 DOI: 10.1007/s00018-013-1472-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 09/01/2013] [Accepted: 09/03/2013] [Indexed: 12/24/2022]
Abstract
The instability of messenger RNA is fundamental to the control of gene expression. In bacteria, mRNA degradation generally follows an "all-or-none" pattern. This implies that if control is to be efficient, it must occur at the initiating (and presumably rate-limiting) step of the degradation process. Studies of E. coli and B. subtilis, species separated by 3 billion years of evolution, have revealed the principal and very disparate enzymes involved in this process in the two organisms. The early view that mRNA decay in these two model organisms is radically different has given way to new models that can be resumed by "different enzymes-similar strategies". The recent characterization of key ribonucleases sheds light on an impressive case of convergent evolution that illustrates that the surprisingly similar functions of these totally unrelated enzymes are of general importance to RNA metabolism in bacteria. We now know that the major mRNA decay pathways initiate with an endonucleolytic cleavage in E. coli and B. subtilis and probably in many of the currently known bacteria for which these organisms are considered representative. We will discuss here the different pathways of eubacterial mRNA decay, describe the major players and summarize the events that can precede and/or favor nucleolytic inactivation of a mRNA, notably the role of the 5' end and translation initiation. Finally, we will discuss the role of subcellular compartmentalization of transcription, translation, and the RNA degradation machinery.
Collapse
|
12
|
Pietras Z, Hardwick SW, Swiezewski S, Luisi BF. Potential regulatory interactions of Escherichia coli RraA protein with DEAD-box helicases. J Biol Chem 2013; 288:31919-29. [PMID: 24045937 PMCID: PMC3814787 DOI: 10.1074/jbc.m113.502146] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Members of the DEAD-box family of RNA helicases contribute to virtually every aspect of RNA metabolism, in organisms from all domains of life. Many of these helicases are constituents of multicomponent assemblies, and their interactions with partner proteins within the complexes underpin their activities and biological function. In Escherichia coli the DEAD-box helicase RhlB is a component of the multienzyme RNA degradosome assembly, and its interaction with the core ribonuclease RNase E boosts the ATP-dependent activity of the helicase. Earlier studies have identified the regulator of ribonuclease activity A (RraA) as a potential interaction partner of both RNase E and RhlB. We present structural and biochemical evidence showing how RraA can bind to, and modulate the activity of RhlB and another E. coli DEAD-box enzyme, SrmB. Crystallographic structures are presented of RraA in complex with a portion of the natively unstructured C-terminal tail of RhlB at 2.8-Å resolution, and in complex with the C-terminal RecA-like domain of SrmB at 2.9 Å. The models suggest two distinct mechanisms by which RraA might modulate the activity of these and potentially other helicases.
Collapse
Affiliation(s)
- Zbigniew Pietras
- From the Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, United Kingdom and
| | | | | | | |
Collapse
|
13
|
Zhou L, Zhang AB, Wang R, Marcotte EM, Vogel C. The proteomic response to mutants of the Escherichia coli RNA degradosome. MOLECULAR BIOSYSTEMS 2013; 9:750-7. [PMID: 23403814 PMCID: PMC3709862 DOI: 10.1039/c3mb25513a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The Escherichia coli RNA degradosome recognizes and degrades RNA through the coordination of four main protein components, the endonuclease RNase E, the exonuclease PNPase, the RhlB helicase and the metabolic enzyme enolase. To help our understanding of the functions of the RNA degradosome, we quantified expression changes of >2300 proteins using mass spectrometry based shotgun proteomics in E. coli strains deficient in rhlB, eno, pnp (which displays temperature sensitive growth), or rne(1-602) which encodes a C-terminal truncation mutant of RNase E and is deficient in degradosome assembly. Global protein expression changes are most similar between the pnp and rhlB mutants, confirming the functional relationship between the genes. We observe down-regulation of protein chaperones including GroEL and DnaK (which associate with the degradosome), a decrease in translation related proteins in Δpnp, ΔrhlB and rne(1-602) cells, and a significant increase in the abundance of aminoacyl-tRNA synthetases. Analysis of the observed proteomic changes points to a shared motif, CGCTGG, that may be associated with RNA degradosome targets. Further, our data provide information on the expression modulation of known degradosome-associated proteins, such as DeaD and RNase G, as well as other RNA helicases and RNases - suggesting or confirming functional complementarity in some cases. Taken together, our results emphasize the role of the RNA degradosome in the modulation of the bacterial proteome and provide the first large-scale proteomic description of the response to perturbation of this major pathway of RNA degradation.
Collapse
Affiliation(s)
- Li Zhou
- University of Texas at Austin, Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Austin, TX
- Department of Molecular Biology, Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ang B Zhang
- New York University, Department of Biology, Center for Genomics and Systems Biology, New York, NY
| | - Rong Wang
- University of Texas at Austin, Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Austin, TX
- National Heart Lung and Blood Institute, NIH, NIH, Bethesda, Maryland, USA
| | - Edward M Marcotte
- University of Texas at Austin, Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Austin, TX
| | - Christine Vogel
- University of Texas at Austin, Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, Austin, TX
- New York University, Department of Biology, Center for Genomics and Systems Biology, New York, NY
| |
Collapse
|
14
|
Iost I, Bizebard T, Dreyfus M. Functions of DEAD-box proteins in bacteria: current knowledge and pending questions. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:866-77. [PMID: 23415794 DOI: 10.1016/j.bbagrm.2013.01.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/30/2013] [Accepted: 01/31/2013] [Indexed: 11/18/2022]
Abstract
DEAD-box proteins are RNA-dependent ATPases that are widespread in all three kingdoms of life. They are thought to rearrange the structures of RNA or ribonucleoprotein complexes but their exact mechanism of action is rarely known. Whereas in yeast most DEAD-box proteins are essential, no example of an essential bacterial DEAD-box protein has been reported so far; at most, their absence results in cold-sensitive growth. Moreover, whereas yeast DEAD-box proteins are implicated in virtually all reactions involving RNA, in E. coli (the bacterium where DEAD-box proteins have been mostly studied) their role is limited to ribosome biogenesis, mRNA degradation, and possibly translation initiation. Plausible reasons for these differences are discussed here. In spite of their dispensability, E. coli DEAD-box proteins are valuable models for the mechanism of action of DEAD-box proteins in general because the reactions in which they participate can be reproduced in vitro. Here we review our present understanding of this mechanism of action. Using selected examples for which information is available: (i) we describe how, by interacting directly with a particular RNA motif or by binding to proteins that themselves recognize such a motif, DEAD-box proteins are brought to their specific RNA substrate(s); (ii) we discuss the nature of the structural transitions that DEAD-box proteins induce on their substrates; and (iii) we analyze the reasons why these proteins are mostly important at low temperatures. This article is part of a Special Issue entitled: The Biology of RNA helicases-Modulation for life.
Collapse
Affiliation(s)
- Isabelle Iost
- Univ. Bordeaux, ARNA Laboratory, F-33000 Bordeaux, France.
| | | | | |
Collapse
|
15
|
Bacterial helicases in post-transcriptional control. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:878-83. [PMID: 23291566 DOI: 10.1016/j.bbagrm.2012.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 12/17/2012] [Accepted: 12/20/2012] [Indexed: 12/25/2022]
Abstract
Among the five superfamilies of helicases involved in RNA and DNA metabolism, superfamily 2 and superfamily 5 include bacterial RNA-helicases. These enzymes have been shown to be involved in ribosome biogenesis and post-transcriptional gene regulation. Here, we focus on bacterial regulatory mechanisms that are mediated by RNA helicases belonging to superfamily 2, which includes DEAD-box and DEAH-box helicases. Some of these helicases are part of bacterial degradosomes and were shown to unwind RNA duplexes. We will review examples where these enzymes have been implicated in translatability and metabolic stability of bacterial transcripts. This article is part of a Special Issue entitled: The Biology of RNA helicases - Modulation for life.
Collapse
|
16
|
Abstract
Escherichia coli cells normally require RNase E activity to form colonies (colony-forming ability [CFA]). The CFA-defective phenotype of cells lacking RNase E is partly reversed by overexpression of the related endoribonuclease RNase G or by mutation of the gene encoding the RNA helicase DeaD. We found that the carbon source utilization by rne deaD doubly mutant bacteria differs from that of rne(+) cells and from that of cells mutated in deaD alone and that the loss of rne function in these bacteria limits conversion of the glycolytic pathway product phosphoenolpyruvate to the tricarboxylic acid (TCA) cycle intermediate oxaloacetic acid. We show that the mechanism underlying this effect is reduced production of the enzyme phosphoenolpyruvate carboxylase (PPC) and that adventitious overexpression of PPC, which facilitates phosphoenolpyruvate utilization and connects the glycolytic pathway with the TCA cycle, restored CFA to rne deaD mutant bacteria cultured on carbon sources that otherwise were unable to sustain growth. We further show that bacteria producing full-length RNase E, which allows formation of degradosomes, have nutritional requirements different from those of cells supplied with only the N-terminal catalytic region of RNase E and that mitigation of RNase E deficiency by overexpression of a related RNase, RNase G, is also affected by carbon source. Our results reveal previously unsuspected effects of RNase E deficiency and degradosome formation on nutrient utilization by E. coli cells.
Collapse
|
17
|
Abstract
Similar to proteins, RNA molecules must fold into the correct conformation and associate with protein complexes in order to be functional within a cell. RNA helicases rearrange RNA secondary structure and RNA-protein interactions in an ATP-dependent reaction, performing crucial functions in all aspects of RNA metabolism. In prokaryotes, RNA helicase activity is associated with roles in housekeeping functions including RNA turnover, ribosome biogenesis, translation and small RNA metabolism. In addition, RNA helicase expression and/or activity are frequently altered during cellular response to abiotic stress, implying they perform defined roles during cellular adaptation to changes in the growth environment. Specifically, RNA helicases contribute to the formation of cold-adapted ribosomes and RNA degradosomes, implying a role in alleviation of RNA secondary structure stabilization at low temperature. A common emerging theme involves RNA helicases acting as scaffolds for protein-protein interaction and functioning as molecular clamps, holding RNA-protein complexes in specific conformations. This review highlights recent advances in DEAD-box RNA helicase association with cellular response to abiotic stress in prokaryotes.
Collapse
Affiliation(s)
- George W Owttrim
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
18
|
Phadtare S. Escherichia coli cold-shock gene profiles in response to over-expression/deletion of CsdA, RNase R and PNPase and relevance to low-temperature RNA metabolism. Genes Cells 2012; 17:850-74. [PMID: 22957931 DOI: 10.1111/gtc.12002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 08/01/2012] [Indexed: 12/12/2022]
Abstract
Cold-shock response is elicited by the transfer of exponentially growing cells from their optimum temperature to a significantly lower growth temperature and is characterized by the induction of several cold-shock proteins. These proteins, which presumably possess a variety of different activities, are critical for survival and continued growth at low temperature. One of the main consequences of cold shock is stabilization of the secondary structures in nucleic acids leading to hindrance of RNA degradation. Cold-shock proteins, such as RNA helicase CsdA, and 3'-5' processing exoribonucleases, such as PNPase and RNase R, are presumably involved in facilitating the RNA metabolism at low temperature. As a step toward elucidating the individual contributions of these proteins to low-temperature RNA metabolism, the global transcript profiles of cells lacking CsdA, RNase R and PNPase proteins as well as cells individually over-expressing these proteins as compared to the wild-type cells were analyzed at 15 °C. The analysis showed distinct sets of genes, which are possible targets of each of these proteins. This analysis will help further our understanding of the low-temperature RNA metabolism.
Collapse
Affiliation(s)
- Sangita Phadtare
- Department of Biochemistry, Robert Wood Johnson Medical School, UMDNJ, CABM, 679 Hoes Lane, Piscataway, NJ 08854, USA.
| |
Collapse
|