1
|
Yesudhas AJR, Ganapathy Raman P, Thirumalai A, Saxena S, Subramanian R. Production of propionic acid through biotransformation of glucose and d-lactic acid by construction of synthetic acrylate pathway in metabolically engineered E. coli. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.2020760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | | | - Shuchi Saxena
- Centre for Biotechnology, Anna University, Chennai, India
| | | |
Collapse
|
2
|
Liang YF, Long ZX, Zhang YJ, Luo CY, Yan LT, Gao WY, Li H. The chemical mechanisms of the enzymes in the branched-chain amino acids biosynthetic pathway and their applications. Biochimie 2021; 184:72-87. [PMID: 33607240 DOI: 10.1016/j.biochi.2021.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/04/2021] [Accepted: 02/10/2021] [Indexed: 12/27/2022]
Abstract
l-Valine, l-isoleucine, and l-leucine are three key proteinogenic amino acids, and they are also the essential amino acids required for mammalian growth, possessing important and to some extent, special physiological and biological functions. Because of the branched structures in their carbon chains, they are also named as branched-chain amino acids (BCAAs). This review will highlight the advance in studies of the enzymes involved in the biosynthetic pathway of BCAAs, concentrating on their chemical mechanisms and applications in screening herbicides and antibacterial agents. The uses of some of these enzymes in lab scale organic synthesis are also discussed.
Collapse
Affiliation(s)
- Yan-Fei Liang
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China
| | - Zi-Xian Long
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China
| | - Ya-Jian Zhang
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China
| | - Cai-Yun Luo
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China
| | - Le-Tian Yan
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China
| | - Wen-Yun Gao
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China.
| | - Heng Li
- College of Life Sciences, National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
3
|
Synthesis of citramalic acid from glycerol by metabolically engineered Escherichia coli. J Ind Microbiol Biotechnol 2017; 44:1483-1490. [PMID: 28744578 DOI: 10.1007/s10295-017-1971-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/18/2017] [Indexed: 10/19/2022]
Abstract
Citramalic acid (citramalate) serves as a five-carbon precursor for the chemical synthesis of methacrylic acid. We compared citramalate and acetate accumulation from glycerol using Escherichia coli strains expressing a modified citramalate synthase gene cimA from Methanococcus jannaschii. These studies revealed that gltA coding citrate synthase, leuC coding 3-isopropylmalate dehydratase, and acetate pathway genes play important roles in elevating citramalate and minimizing acetate formation. Controlled 1.0 L batch experiments confirmed that deletions in all three acetate-production genes (poxB, ackA, and pta) were necessary to reduce acetate formation to less than 1 g/L during citramalate production from 30 g/L glycerol. Fed-batch processes using MEC568/pZE12-cimA (gltA leuC ackA-pta poxB) generated over 31 g/L citramalate and less than 2 g/L acetate from either purified or crude glycerol at yields exceeding 0.50 g citramalate/g glycerol in 132 h. These results hold promise for the viable formation of citramalate from unrefined glycerol.
Collapse
|
4
|
Wu X, Eiteman MA. Production of citramalate by metabolically engineeredEscherichia coli. Biotechnol Bioeng 2016; 113:2670-2675. [DOI: 10.1002/bit.26035] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/19/2016] [Accepted: 06/13/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Xianghao Wu
- BioChemical Engineering; College of Engineering; University of Georgia; Athens Georgia 30602
| | - Mark A. Eiteman
- BioChemical Engineering; College of Engineering; University of Georgia; Athens Georgia 30602
| |
Collapse
|
5
|
Abstract
A list of currently identified gene products of Escherichia coli is given, together with a bibliography that provides pointers to the literature on each gene product. A scheme to categorize cellular functions is used to classify the gene products of E. coli so far identified. A count shows that the numbers of genes concerned with small-molecule metabolism are on the same order as the numbers concerned with macromolecule biosynthesis and degradation. One large category is the category of tRNAs and their synthetases. Another is the category of transport elements. The categories of cell structure and cellular processes other than metabolism are smaller. Other subjects discussed are the occurrence in the E. coli genome of redundant pairs and groups of genes of identical or closely similar function, as well as variation in the degree of density of genetic information in different parts of the genome.
Collapse
Affiliation(s)
- M Riley
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| |
Collapse
|
6
|
Skala J, Capieaux E, Balzi E, Chen WN, Goffeau A. Complete sequence of the Saccharomyces cerevisiae LEU1 gene encoding isopropylmalate isomerase. Yeast 1991; 7:281-5. [PMID: 1840714 DOI: 10.1002/yea.320070310] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- J Skala
- Unité de Biochimie Physiologique, Université Catholique de Louvain, Belgium
| | | | | | | | | |
Collapse
|
7
|
Stover CK, Kemper J, Marsh RC. Molecular cloning and characterization of supQ/newD, a gene substitution system for the leuD gene of Salmonella typhimurium. J Bacteriol 1988; 170:3115-24. [PMID: 2838459 PMCID: PMC211257 DOI: 10.1128/jb.170.7.3115-3124.1988] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The isopropylmalate isomerase of Salmonella typhimurium and Escherichia coli is a complex of the leuC and leuD gene products. The supQ/new D gene substitution system in S. typhimurium restores leucine prototrophy to leuD mutants of S. typhimurium. Previous genetic evidence supports a model that indicates the replacement of the missing LeuD polypeptide by the newD gene product. This model proposed that this gene substitution is possible when a mutation at the supQ locus (near newD) liberates unaltered newD polypeptide from its normal complex with the supQ protein product. In this study, recombinant plasmids carrying newD, supQ, or both were transformed into E. coli and S. typhimurium strains deleted for the leuD and supQ genes to test the supQ/newD gene substitution model for suppression of leucine auxotrophy. It was determined that the newD gene encodes a 22-kilodalton polypeptide which can restore leucine prototrophy to leuD deletion strains and that a functional supQ gene prevents this suppression. It was also determined that the supQ and newD genes are separated by a gene encoding a 50-kilodalton protein, pB. While there is extensive DNA sequence homology between the leucine operons of S. typhimurium and E. coli, DNA hybridization experiments did not indicate substantial homology between the newD and leuD genes. These data, taken together with previously obtained genetic data, eliminate the possibility that supQ and newD are recently translocated segments of the leucine operon.
Collapse
Affiliation(s)
- C K Stover
- Department of Molecular and Cellular Biology, University of Texas, Richardson 75080
| | | | | |
Collapse
|
8
|
Buvinger WE, Lampel KA, Bojanowski RJ, Riley M. Location and analysis of nucleotide sequences at one end of a putative lac transposon in the Escherichia coli chromosome. J Bacteriol 1984; 159:618-23. [PMID: 6086580 PMCID: PMC215688 DOI: 10.1128/jb.159.2.618-623.1984] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A segment of Escherichia coli DNA that contained a discontinuity of homology with Salmonella typhimurium DNA was isolated. The segment, 1,430 base pairs long, was derived from one end of the lac "loop," a region of about 12 kilobase pairs of E. coli DNA, including the lac operon which has no detectable homology with S. typhimurium DNA (K. Lampel and M. Riley, Mol. Gen. Genet. 186:82-86, 1982). The nucleotide sequence of the 1,430-base-pair segment of DNA was determined. The location of the junction of discontinuity of homology within the segment was established by hybridization experiments. Nucleotide sequences at or near the junction were determined to be similar to sequences that are involved in site-specific inversion in S. typhimurium, E. coli, phage P1, and phage Mu. Similar sequences are also present within the terminal inverted repeat sequences of transposon Tn5 and at the V-D-J joining sequences of eucaryotic immunoglobulin genes. Therefore, the lac operon, together with flanking DNA, may have been inserted into the E. coli chromosome at one time via a site-specific recombination event. Rearrangement events of this kind undoubtedly have played a significant role in the evolutionary divergence of chromosomal DNAs.
Collapse
|
9
|
Riley M, O'Reilly C, McConnell D. Physical map of Salmonella typhimurium LT2 DNA in the vicinity of the proA gene. J Bacteriol 1984; 157:655-7. [PMID: 6319371 PMCID: PMC215297 DOI: 10.1128/jb.157.2.655-657.1984] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
More than 55 kilobases of chromosomal DNA of Salmonella typhimurium LT2, including the gpt, proA, ataA, and newD genes, were cloned in plasmid vector pULB113. The locations of the genes and selected restriction endonuclease cleavage sites were established, and some of the restriction enzyme fragments were subcloned in plasmid vector pBR322.
Collapse
|
10
|
|
11
|
|
12
|
Fultz PN, Kemper J. Wild-type isopropylmalate isomerase in Salmonella typhimurium is composed of two different subunits. J Bacteriol 1981; 148:210-9. [PMID: 7026530 PMCID: PMC216183 DOI: 10.1128/jb.148.1.210-219.1981] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The isopropylmalate isomerase in Salmonella typhimurium is the second enzyme specific for leucine biosynthesis. It is a complex enzyme composed of two subunits which are coded for by two genes of the leucine operon, leuC and leuD. The two polypeptides have been shown to copurify through successive ammonium sulfate fractionations and have been identified on sodium dodecyl sulfate-polyacrylamide gels as having molecular weights of 51,000 (leuC gene product) and 23,500 (leuD gene product). They have also been shown to be fairly stable, since in vitro complementation of cell-free extracts of leuC and leuD mutant strains was demonstrated, with only a 40% loss of activity 16 h after preparation of the extracts. The native isopropylmalate isomerase was shown to have a Km for its substrate alpha-isopropylmalate of 3 x 10(-4)M.
Collapse
|
13
|
Fultz PN, Choung KK, Kemper J. Construction and characterization of Salmonella typhimurium strains that accumulate and excrete alpha- and beta-isopropylmalate. J Bacteriol 1980; 142:513-20. [PMID: 6991477 PMCID: PMC294015 DOI: 10.1128/jb.142.2.513-520.1980] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Two Salmonella typhimurium strains, which could be used as sources for the leucine biosynthetic intermediates alpha- and beta-isopropylmalate were constructed by a series of P22-mediated transductions. One strain, JK527 [flr-19 leuA2010 Delta(leuD-ara)798 fol-162], accumulated and excreted alpha-isopropylmalate, whereas the second strain, JK553 (flr-19 leuA2010 leuB698), accumulated and excreted alpha- and beta-isopropylmalate. The yield of alpha-isopropylmalate isolated from the culture medium of JK527 was more than five times the amount obtained from a comparable volume of medium in which Neurospora crassa strain FLR(92)-1-216 (normally used as the source for alpha- and beta-isopropylmalate) was grown. Not only was the yield greater, but S. typhimurium strains are much easier to handle and grow to saturation much faster than N. crassa strains. The combination of the two regulatory mutations flr-19, which results in constitutive expression of the leucine operon, and leuA2010, which renders the first leucine-specific biosynthetic enzyme insensitive to feedback inhibition by leucine, generated limitations in the production of valine and pantothenic acid. The efficient, irreversible, and unregulated conversion of alpha-ketoisovaleric acid into alpha-isopropylmalate (alpha-isopropylmalate synthetase K(m) for alpha-ketoisovaleric acid, 6 x 10(-5) M) severely restricted the amount of alpha-ketoisovaleric acid available for conversion into valine and pantothenic acid (ketopantoate hydroxymethyltransferase K(m) for alpha-ketoisovaleric acid, 1.1 x 10(-3) M; transaminase B K(m) for alpha-ketoisovaleric acid, 2 x 10(-3) M).
Collapse
|