1
|
Yamada N, Saito C, Kano H, Fukuuchi T, Yamaoka N, Kaneko K, Asami Y. Lactobacillus gasseri PA-3 directly incorporates purine mononucleotides and utilizes them for growth. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2020; 41:221-230. [PMID: 32954967 DOI: 10.1080/15257770.2020.1815768] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Lactococcus lactis has been reported unable to directly incorporate mononucleotides but instead requires their external dephosphorylation by nucleotidases to the corresponding nucleosides prior to their incorporation. Although Lactobacillus gasseri PA-3 (PA-3), a strain of lactic acid bacteria, has been found to incorporate purine mononucleotides such as adenosine 5'-monophosphate (AMP), it remains unclear whether these bacteria directly incorporate these mononucleotides or incorporate them after dephosphorylation to the corresponding nucleosides. This study evaluated whether PA-3 incorporated radioactively-labeled mononucleotides in the presence or absence of the 5'-nucleotidase inhibitor α,β-methylene ADP (APCP). PA-3 took up 14C-AMP in the presence of APCP, as well as incorporating 32P-AMP. Furthermore, radioactivity was detected in the RNA/DNA of bacterial cells cultured in the presence of 32P-AMP. Taken together, these findings indicated that PA-3 incorporated purine mononucleotides directly rather than after their dephosphorylation to purine nucleosides and that PA-3 utilizes these purine mononucleotides in the synthesis of RNA and DNA. Although additional studies are required to identify purine mononucleotide transporters in PA-3, this study is the first to show that some lactic acid bacteria directly incorporate purine mononucleotides and use them for growth.
Collapse
Affiliation(s)
- N Yamada
- Food Microbiology Research Laboratories, R&D Division, Meiji Co., Ltd, Tokyo, Japan.,Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma Sciences, Teikyo University, Tokyo, Japan
| | - C Saito
- Food Microbiology Research Laboratories, R&D Division, Meiji Co., Ltd, Tokyo, Japan.,Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma Sciences, Teikyo University, Tokyo, Japan
| | - H Kano
- Food Microbiology Research Laboratories, R&D Division, Meiji Co., Ltd, Tokyo, Japan.,Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma Sciences, Teikyo University, Tokyo, Japan
| | - T Fukuuchi
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma Sciences, Teikyo University, Tokyo, Japan
| | - N Yamaoka
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma Sciences, Teikyo University, Tokyo, Japan
| | - K Kaneko
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma Sciences, Teikyo University, Tokyo, Japan
| | - Y Asami
- Food Microbiology Research Laboratories, R&D Division, Meiji Co., Ltd, Tokyo, Japan
| |
Collapse
|
2
|
Martínez-Moñino AB, Zapata-Pérez R, García-Saura AG, Gil-Ortiz F, Pérez-Gilabert M, Sánchez-Ferrer Á. Characterization and mutational analysis of a nicotinamide mononucleotide deamidase from Agrobacterium tumefaciens showing high thermal stability and catalytic efficiency. PLoS One 2017; 12:e0174759. [PMID: 28388636 PMCID: PMC5384747 DOI: 10.1371/journal.pone.0174759] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/15/2017] [Indexed: 01/07/2023] Open
Abstract
NAD+ has emerged as a crucial element in both bioenergetic and signaling pathways since it acts as a key regulator of cellular and organismal homeostasis. Among the enzymes involved in its recycling, nicotinamide mononucleotide (NMN) deamidase is one of the key players in the bacterial pyridine nucleotide cycle, where it catalyzes the conversion of NMN into nicotinic acid mononucleotide (NaMN), which is later converted to NAD+ in the Preiss-Handler pathway. The biochemical characteristics of bacterial NMN deamidases have been poorly studied, although they have been investigated in some firmicutes, gamma-proteobacteria and actinobacteria. In this study, we present the first characterization of an NMN deamidase from an alphaproteobacterium, Agrobacterium tumefaciens (AtCinA). The enzyme was active over a broad pH range, with an optimum at pH 7.5. Moreover, the enzyme was quite stable at neutral pH, maintaining 55% of its activity after 14 days. Surprisingly, AtCinA showed the highest optimal (80°C) and melting (85°C) temperatures described for an NMN deamidase. The above described characteristics, together with its high catalytic efficiency, make AtCinA a promising biocatalyst for the production of pure NaMN. In addition, six mutants (C32A, S48A, Y58F, Y58A, T105A and R145A) were designed to study their involvement in substrate binding, and two (S31A and K63A) to determine their contribution to the catalysis. However, only four mutants (C32A, S48A Y58F and T105A) showed activity, although with reduced catalytic efficiency. These results, combined with a thermal and structural analysis, reinforce the Ser/Lys catalytic dyad mechanism as the most plausible among those proposed.
Collapse
Affiliation(s)
- Ana Belén Martínez-Moñino
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Campus Espinardo, E-30100 MURCIA, Spain
- Murcia Biomedical Research Institute (IMIB), Murcia, Spain
| | - Rubén Zapata-Pérez
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Campus Espinardo, E-30100 MURCIA, Spain
- Murcia Biomedical Research Institute (IMIB), Murcia, Spain
| | - Antonio Ginés García-Saura
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Campus Espinardo, E-30100 MURCIA, Spain
- Murcia Biomedical Research Institute (IMIB), Murcia, Spain
| | | | - Manuela Pérez-Gilabert
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Campus Espinardo, E-30100 MURCIA, Spain
- Murcia Biomedical Research Institute (IMIB), Murcia, Spain
| | - Álvaro Sánchez-Ferrer
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Campus Espinardo, E-30100 MURCIA, Spain
- Murcia Biomedical Research Institute (IMIB), Murcia, Spain
- * E-mail:
| |
Collapse
|
3
|
New insights into the phylogeny and molecular classification of nicotinamide mononucleotide deamidases. PLoS One 2013; 8:e82705. [PMID: 24340054 PMCID: PMC3855486 DOI: 10.1371/journal.pone.0082705] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 10/26/2013] [Indexed: 11/19/2022] Open
Abstract
Nicotinamide mononucleotide (NMN) deamidase is one of the key enzymes of the bacterial pyridine nucleotide cycle (PNC). It catalyzes the conversion of NMN to nicotinic acid mononucleotide, which is later converted to NAD+ by entering the Preiss-Handler pathway. However, very few biochemical data are available regarding this enzyme. This paper represents the first complete molecular characterization of a novel NMN deamidase from the halotolerant and alkaliphilic bacterium Oceanobacillus iheyensis (OiPncC). The enzyme was active over a broad pH range, with an optimum at pH 7.4, whilst maintaining 90 % activity at pH 10.0. Surprisingly, the enzyme was quite stable at such basic pH, maintaining 61 % activity after 21 days. As regard temperature, it had an optimum at 65 °C but its stability was better below 50 °C. OiPncC was a Michaelian enzyme towards its only substrate NMN, with a Km value of 0.18 mM and a kcat/Km of 2.1 mM-1 s-1. To further our understanding of these enzymes, a complete phylogenetic and structural analysis was carried out taking into account the two Pfam domains usually associated with them (MocF and CinA). This analysis sheds light on the evolution of NMN deamidases, and enables the classification of NMN deamidases into 12 different subgroups, pointing to a novel domain architecture never before described. Using a Logo representation, conserved blocks were determined, providing new insights on the crucial residues involved in the binding and catalysis of both CinA and MocF domains. The analysis of these conserved blocks within new protein sequences could permit the more efficient data curation of incoming NMN deamidases.
Collapse
|
4
|
Galeazzi L, Bocci P, Amici A, Brunetti L, Ruggieri S, Romine M, Reed S, Osterman AL, Rodionov DA, Sorci L, Raffaelli N. Identification of nicotinamide mononucleotide deamidase of the bacterial pyridine nucleotide cycle reveals a novel broadly conserved amidohydrolase family. J Biol Chem 2011; 286:40365-75. [PMID: 21953451 PMCID: PMC3220592 DOI: 10.1074/jbc.m111.275818] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 08/29/2011] [Indexed: 11/06/2022] Open
Abstract
The pyridine nucleotide cycle is a network of salvage and recycling routes maintaining homeostasis of NAD(P) cofactor pool in the cell. Nicotinamide mononucleotide (NMN) deamidase (EC 3.5.1.42), one of the key enzymes of the bacterial pyridine nucleotide cycle, was originally described in Enterobacteria, but the corresponding gene eluded identification for over 30 years. A genomics-based reconstruction of NAD metabolism across hundreds of bacterial species suggested that NMN deamidase reaction is the only possible way of nicotinamide salvage in the marine bacterium Shewanella oneidensis. This prediction was verified via purification of native NMN deamidase from S. oneidensis followed by the identification of the respective gene, termed pncC. Enzymatic characterization of the PncC protein, as well as phenotype analysis of deletion mutants, confirmed its proposed biochemical and physiological function in S. oneidensis. Of the three PncC homologs present in Escherichia coli, NMN deamidase activity was confirmed only for the recombinant purified product of the ygaD gene. A comparative analysis at the level of sequence and three-dimensional structure, which is available for one of the PncC family member, shows no homology with any previously described amidohydrolases. Multiple alignment analysis of functional and nonfunctional PncC homologs, together with NMN docking experiments, allowed us to tentatively identify the active site area and conserved residues therein. An observed broad phylogenomic distribution of predicted functional PncCs in the bacterial kingdom is consistent with a possible role in detoxification of NMN, resulting from NAD utilization by DNA ligase.
Collapse
Affiliation(s)
- Luca Galeazzi
- From the Department of Molecular Pathology and Innovative Therapies, Section of Biochemistry, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Paola Bocci
- From the Department of Molecular Pathology and Innovative Therapies, Section of Biochemistry, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Adolfo Amici
- From the Department of Molecular Pathology and Innovative Therapies, Section of Biochemistry, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Lucia Brunetti
- From the Department of Molecular Pathology and Innovative Therapies, Section of Biochemistry, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Silverio Ruggieri
- From the Department of Molecular Pathology and Innovative Therapies, Section of Biochemistry, Università Politecnica delle Marche, Ancona 60131, Italy
| | - Margaret Romine
- the Pacific Northwest National Laboratory, Richland, Washington 99352, and
| | - Samantha Reed
- the Pacific Northwest National Laboratory, Richland, Washington 99352, and
| | - Andrei L. Osterman
- the Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Dmitry A. Rodionov
- the Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Leonardo Sorci
- From the Department of Molecular Pathology and Innovative Therapies, Section of Biochemistry, Università Politecnica delle Marche, Ancona 60131, Italy
- the Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Nadia Raffaelli
- From the Department of Molecular Pathology and Innovative Therapies, Section of Biochemistry, Università Politecnica delle Marche, Ancona 60131, Italy
| |
Collapse
|
5
|
Magni G, Amici A, Emanuelli M, Raffaelli N, Ruggieri S. Enzymology of NAD+ synthesis. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 1999; 73:135-82, xi. [PMID: 10218108 DOI: 10.1002/9780470123195.ch5] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Beyond its role as an essential coenzyme in numerous oxidoreductase reactions as well as respiration, there is growing recognition that NAD+ fulfills many other vital regulatory functions both as a substrate and as an allosteric effector. This review describes the enzymes involved in pyridine nucleotide metabolism, starting with a detailed consideration of the anaerobic and aerobic pathways leading to quinolinate, a key precursor of NAD+. Conversion of quinolinate and 5'-phosphoribosyl-1'-pyrophosphate to NAD+ and diphosphate by phosphoribosyltransferase is then explored before proceeding to a discussion the molecular and kinetic properties of NMN adenylytransferase. The salient features of NAD+ synthetase as well as NAD+ kinase are likewise presented. The remainder of the review encompasses the metabolic steps devoted to (a) the salvaging of various niacin derivatives, including the roles played by NAD+ and NADH pyrophosphatases, nicotinamide deamidase, and NMN deamidase, and (b) utilization of niacins by nicotinate phosphoribosyltransferase and nicotinamide phosphoribosyltransferase.
Collapse
Affiliation(s)
- G Magni
- Istituto di Biochimica, Facoltà di Medicina, Università di Ancona, Italy
| | | | | | | | | |
Collapse
|
6
|
Cheng W, Roth J. Isolation of NAD cycle mutants defective in nicotinamide mononucleotide deamidase in Salmonella typhimurium. J Bacteriol 1995; 177:6711-7. [PMID: 7592458 PMCID: PMC177533 DOI: 10.1128/jb.177.23.6711-6717.1995] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The NAD or pyridine nucleotide cycle is the sequence of reactions involved in the breakdown of NAD to nicotinamide mononucleotide (NMN) and regeneration of NAD. This cycle is fivefold more active during aerobic growth of Salmonella typhimurium and under this condition breaks down half of the NAD pool every 90 min. DNA ligase is known to convert NAD to NMN but is only a minor contributor to the NAD cycle during aerobic growth. The dominant aerobic route of NMN formation is otherwise uncharacterized. Accumulated NMN generated by either of these routes is potentially dangerous in that it can inhibit the essential enzyme DNA ligase. The reactions which recycle NMN to NAD may serve to minimize the inhibition of ligase and other enzymes by accumulated NMN. The predominant recycling reaction in S. typhimurium appears to be NMN deamidase, which converts NMN directly to the biosynthetic intermediate nicotinic acid mononucleotide. Mutants defective in this recycling step were isolated and characterized. By starting with a ligase-deficient (lig mutant) parent strain that requires deamidase to assimilate exogenous NMN, two classes of mutants that are unable to grow on minimal NMN media were isolated. One class (pncC) maps at 83.7 min and shows only 2% of the wild-type levels of NMN deamidase. Under aerobic conditions, a lig+ allele allows a pncC mutant to grow on NMN and restores some deamidase activity. This growth ability and enzyme activity are not found in lig+ strains grown without oxygen. This suggests that the existence of a second NMN deamidase (pncL) dependent on ligase and stimulated during aerobic growth. The second class of mutants (pncD) gains a requirement for isoleucine plus valine with growth in the presence of exogenous NMN. We propose that pncD mutations reduce the activity of an ilv biosynthetic enzyme that is naturally sensitive to inhibition by NMN.
Collapse
Affiliation(s)
- W Cheng
- Biology Department, University of Utah, Salt Lake City 84112, USA
| | | |
Collapse
|
7
|
Activity of the nicotinamide mononucleotide transport system is regulated in Salmonella typhimurium. J Bacteriol 1991; 173:1311-20. [PMID: 1991724 PMCID: PMC207256 DOI: 10.1128/jb.173.3.1311-1320.1991] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Transport of nicotinamide mononucleotide (NMN) requires two functions, NadI(T) and PnuC. The PnuC protein is membrane associated, as judged by isolation of active TnphoA gene fusions and demonstration that the fusion protein is membrane associated. The PnuC function appears to be the major component of the transport system, since mutant alleles of the pnuC gene permit NMN transport in the absence of NadI(T) function. We present evidence that the activity of the NMN transport system varies in response to internal pyridine levels (presumably NAD). This control mechanism requires NadI(T) function, which is provided by a bifunctional protein encoded by the nadI gene (called nadR by Foster and co-workers [J. W. Foster, Y. K. Park, T. Fenger, and M. P. Spector, J. Bacteriol. 172:4187-4196]). The nadI protein regulates transcription of the nadA and nadB biosynthetic genes and modulates activity of the NMN permease; both regulatory activities respond to the internal pyridine nucleotide level.
Collapse
|
8
|
Abstract
Mutants of the nadI and pnuA genes were independently isolated on the basis of defects in repression of NAD biosynthetic genes and defects in transport nicotinamide mononucleotide (NMN). The mutations map at min 99 on the Salmonella chromosome, and the affected regions appear to be cotranscribed. Some pairs of nadI and pnuA mutations complement, suggesting the existence of independent functions. However, cis/trans tests with particular mutations provide evidence that both repressor and transport functions are actually performed by a single bifunctional protein. (This result confirms sequencing data of Foster and coworkers [J. W. Foster, Y. K. Park, T. Fenger, and M. P. Spector, J. Bacteriol. 172:4187-4196, 1990]). We have designated the gene for this bifunctional protein nadI and distinguish the regulatory and transport defects with phenotypic designations (R and T). When a nadI(R- T+) mutation (eliminating only repression function) is placed cis to a superrepressor mutation, nadI(Rs T-), the superrepression phenotype is lost. In contrast, placement of R- and Rs T- mutations in trans allows full superrepression. This result suggests that the transport function (eliminated by the Rs T- mutation) and the repression function are provided by the same protein. Insertion mutations in the promoter-proximal repressor region of the nadI gene eliminate transport function unless the inserted element can provide both for both transcription and translation start signals; this finding suggests that there is no transcriptional or translational start between the regions encoding repression and transport functions.
Collapse
|
9
|
Zhu N, Olivera BM, Roth JR. Genetic characterization of the pnuC gene, which encodes a component of the nicotinamide mononucleotide transport system in Salmonella typhimurium. J Bacteriol 1989; 171:4402-9. [PMID: 2546921 PMCID: PMC210218 DOI: 10.1128/jb.171.8.4402-4409.1989] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The pnuC gene, which encodes a component of the nicotinamide mononucleotide transport system, has been mapped and oriented. The gene order of the pnuC region, which is at min 17 of the Salmonella chromosome, is nadA-pnuC-aroG-gal. Polarity tests, with pnuC::Mu d-lac operon fusions, reveal that the pnuC gene is the promoter distal gene in an operon with the nadA gene, which encodes the second enzyme of the pyridine biosynthetic pathway. The nadA pnuC operon is regulated by the NadI repressor. The pnuC gene also has its own promoter, since strains with a nadA::Tn10d(Tc) insertion still express the pnuC gene at a low, unregulated level.
Collapse
Affiliation(s)
- N Zhu
- Department of Biology, University of Utah, Salt Lake City 84112
| | | | | |
Collapse
|
10
|
Abstract
NAD can serve as both a purine and a pyridine source for Salmonella typhimurium. Exogenous NAD is rapidly broken down into nicotinamide mononucleotide and AMP by an NAD pyrophosphatase, the first step in the pathway for the assimilation of exogenous NAD. We isolated and characterized mutants of S. typhimurium lacking NAD pyrophosphatase activity; such mutants were identified by their failure to use exogenous NAD as a purine source. These mutants carry mutations that map at a new locus, designated pnuE, between 86 and 87 min on the Salmonella chromosome.
Collapse
Affiliation(s)
- U E Park
- Department of Biology, University of Utah, Salt Lake City 84112
| | | | | |
Collapse
|
11
|
Zhu N, Olivera BM, Roth JR. Identification of a repressor gene involved in the regulation of NAD de novo biosynthesis in Salmonella typhimurium. J Bacteriol 1988; 170:117-25. [PMID: 3275606 PMCID: PMC210614 DOI: 10.1128/jb.170.1.117-125.1988] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mutations at the nadI locus affect expression of the first two genes of NAD synthesis, nadA and nadB, which are unlinked. Genetic data imply that the regulatory effects of nadI mutations are not due to indirect consequences of physiological alterations. Two types of mutations map in the nadI region. Common null mutations (nadI) show constitutive high-level expression of the nadB and nadA genes. Rare nadIs mutations cause constitutive low-level expression of nadB and nadA. Some nadIs mutations shut off the expression of the biosynthetic genes sufficiently to cause a nicotinic acid auxotrophy. Spontaneous revertants of auxotrophic nadIs mutants have a NadI- phenotype, including some with deletions of the nadI locus. The nadI locus encodes a repressor protein acting on the unlinked nadA and nadB genes.
Collapse
Affiliation(s)
- N Zhu
- Department of Biology, University of Utah, Salt Lake City 84112
| | | | | |
Collapse
|
12
|
Cookson BT, Olivera BM, Roth JR. Genetic characterization and regulation of the nadB locus of Salmonella typhimurium. J Bacteriol 1987; 169:4285-93. [PMID: 3305482 PMCID: PMC213742 DOI: 10.1128/jb.169.9.4285-4293.1987] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The nadB locus encodes the first enzyme of NAD synthesis. It has been reported that this gene and nadA are regulated by a positive regulatory protein encoded in the nadB region. In pursuing this regulatory mechanism, we constructed a fine-structure genetic map of the nadB gene. The region appears to include a single complementation group; no evidence for a positive regulatory element was found. Several mutations causing resistance to the analog 6-aminonicotinamide mapped within the structural gene and probably cause resistance to feedback inhibition. Regulatory mutations for nadB were isolated. These mutants mapped far from nadB near the pnuA gene, which encodes a function required for nicotinamide mononucleotide transport. The regulatory mutations appear to affect a distinct function encoded in the same operon as pnuA.
Collapse
|
13
|
Kahn DW, Anderson BM. Characterization of Haemophilus influenzae nucleotide pyrophosphatase. An enzyme of critical importance for growth of the organism. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)38487-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
14
|
Foster JW. Identification and characterization of a relA-dependent starvation-inducible locus (sin) in Salmonella typhimurium. J Bacteriol 1983; 156:424-8. [PMID: 6352685 PMCID: PMC215100 DOI: 10.1128/jb.156.1.424-428.1983] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
By use of Mu cts d1(Ap lac) phage, a strain of Salmonella typhimurium was isolated containing a Mu d insertion in a locus (sinA) which is induced during nicotinate, thiamine, purine, amino acid, phosphate, and carbon starvation conditions. Depending on the starvation condition, a 2- to 10-fold increase in beta-galactosidase activity was demonstrated. The sinA locus, which mapped at 32 U, became induced after a decline in growth rate due to starvation. The introduction of relA into the sinA-lac strain prevented induction by nicotinate starvation and partially prevented induction by phosphate starvation. The data suggest that sinA responds to changes in growth rate due to various nutrient starvation conditions and probably responds in part to changes in guanosine tetraphosphate levels.
Collapse
|
15
|
|
16
|
Liu G, Foster J, Manlapaz-Ramos P, Olivera BM. Nucleoside salvage pathway for NAD biosynthesis in Salmonella typhimurium. J Bacteriol 1982; 152:1111-6. [PMID: 6216244 PMCID: PMC221616 DOI: 10.1128/jb.152.3.1111-1116.1982] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
A previously undescribed nucleoside salvage pathway for NAD biosynthesis is defined in Salmonella typhimurium. Since neither nicotinamide nor nicotinic acid is an intermediate in this pathway, this second pyridine nucleotide salvage pathway is distinct from the classical Preiss-Handler pathway. The evidence indicates that the pathway is from nicotinamide ribonucleoside to nicotinamide mononucleotide (NMN) and then to nicotinic acid mononucleotide, followed by nicotinic acid adenine dinucleotide and NAD. The utilization of exogenous NMN for NAD biosynthesis has been reexamined, and in vivo evidence is provided that the intact NMN molecule traverses the membrane.
Collapse
|
17
|
Abstract
Extracts of Vibrio cholerae were assayed for various enzymatic activities associated with pyridine nucleotide cycle metabolism. The activities measured include NAD glycohydrolase, nicotinamide deamidase, nicotinamide mononucleotide deamidase, and nicotinic acid phosphoribosyltransferase. The results obtained demonstrate the existence in V. cholerae of the five-membered pyridine nucleotide cycle and the potential for a four-membered pyridine nucleotide cycle. The data presented also suggest that most of the NAD glycohydrolase in V. cholerae extracts is not directly related to cholera toxin.
Collapse
|
18
|
|
19
|
Foster JW. Pyridine nucleotide cycle of Salmonella typhimurium: in vitro demonstration of nicotinamide adenine dinucleotide glycohydrolase, nicotinamide mononucleotide glycohydrolase, and nicotinamide adenine dinucleotide pyrophosphatase activities. J Bacteriol 1981; 145:1002-9. [PMID: 6109709 PMCID: PMC217210 DOI: 10.1128/jb.145.2.1002-1009.1981] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Extracts of Salmonella typhimurium were chromatographed by using Sephadex G-150 to separate the various enzymes involved with pyridine nucleotide cycle metabolism. This procedure revealed a previously unsuspected nicotinamide adenine dinucleotide (NAD) glycohydrolase (EC 3.2.2.5) activity, which was not observed in crude extracts. In contrast to NAd glycohydrolase, NAD pyrophosphatase (EC 3.6.1.22) was readily measured in crude extracts. This enzyme possessed a native molecular weight of 120,000. Other enzymes examined included nicotinamide mononucleotide (NMN) deamidase (EC 3.5.1.00), molecular weight of 43,000; NMN glycohydrolase (EC 3.2.2.14), molecular weight of 67,000; nicotinic acid phosphoribosyl transferase (EC 2.4.2.11), molecular weight of 47,000; and nicotinamide deamidase (EC 3.5.1.19), molecular weight of 35,000. NMN deamidase and NMN glycohydrolase activities were both examined for end product repression by measuring their activities in crude extracts prepared from cells grown with and without 10(-5) M nicotinic acid. No repression was observed with either activity. Both activities were also examined for feedback inhibition by NAD, reduced NAD, and NADP. NMN deamidase was unaffected by any of the compounds tested. NMN glycohydrolase was greatly inhibited by NAD and reduced NAD, whereas NADP was much less effective. Inhibition of NMN glycohydrolase was found to level off at an NAD concentration of ca. 1 mN, the approximate intracellular concentration of NAD.
Collapse
|
20
|
Foster JW, Baskowsky-Foster AM. Pyridine nucleotide cycle of Salmonella typhimurium: in vivo recycling of nicotinamide adenine dinucleotide. J Bacteriol 1980; 142:1032-5. [PMID: 6445894 PMCID: PMC294135 DOI: 10.1128/jb.142.3.1032-1035.1980] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The relative contribution of the two known pyridine nucleotide cycles of Salmonella typhimurium towards the intracellular recycling of nicotinamide adenine dinucleotide was determined. The results indicate that intracellular nicotinamide adenine dinucleotide is recycled by both the four-membered pyridine nucleotide cycle (PNC IV) and the six-membered pyridine nucleotide cycle (PNC VI) with a relative contribution of 60 to 69% and 31 to 40%, respectively. These studies also revealed a nicotinic acid mononucleotide-degradative activity which converts nicotinic acid mononucleotide to nicotinic acid. This represents the first demonstration of a functional PNC IV pathway in S. typhimurium.
Collapse
|
21
|
Foster JW, Moat AG. Nicotinamide adenine dinucleotide biosynthesis and pyridine nucleotide cycle metabolism in microbial systems. Microbiol Rev 1980; 44:83-105. [PMID: 6997723 PMCID: PMC373235 DOI: 10.1128/mr.44.1.83-105.1980] [Citation(s) in RCA: 119] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|