1
|
Tinkering with Osmotically Controlled Transcription Allows Enhanced Production and Excretion of Ectoine and Hydroxyectoine from a Microbial Cell Factory. Appl Environ Microbiol 2018; 84:AEM.01772-17. [PMID: 29101191 DOI: 10.1128/aem.01772-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/28/2017] [Indexed: 12/21/2022] Open
Abstract
Ectoine and hydroxyectoine are widely synthesized by members of the Bacteria and a few members of the Archaea as potent osmostress protectants. We have studied the salient features of the osmostress-responsive promoter directing the transcription of the ectoine/hydroxyectoine biosynthetic gene cluster from the plant-root-associated bacterium Pseudomonas stutzeri by transferring it into Escherichia coli, an enterobacterium that does not produce ectoines naturally. Using ect-lacZ reporter fusions, we found that the heterologous ect promoter reacted with exquisite sensitivity in its transcriptional profile to graded increases in sustained high salinity, responded to a true osmotic signal, and required the buildup of an osmotically effective gradient across the cytoplasmic membrane for its induction. The involvement of the -10, -35, and spacer regions of the sigma-70-type ect promoter in setting promoter strength and response to osmotic stress was assessed through site-directed mutagenesis. Moderate changes in the ect promoter sequence that increase its resemblance to housekeeping sigma-70-type promoters of E. coli afforded substantially enhanced expression, both in the absence and in the presence of osmotic stress. Building on this set of ect promoter mutants, we engineered an E. coli chassis strain for the heterologous production of ectoines. This synthetic cell factory lacks the genes for the osmostress-responsive synthesis of trehalose and the compatible solute importers ProP and ProU, and it continuously excretes ectoines into the growth medium. By combining appropriate host strains and different plasmid variants, excretion of ectoine, hydroxyectoine, or a mixture of both compounds was achieved under mild osmotic stress conditions.IMPORTANCE Ectoines are compatible solutes, organic osmolytes that are used by microorganisms to fend off the negative consequences of high environmental osmolarity on cellular physiology. An understanding of the salient features of osmostress-responsive promoters directing the expression of the ectoine/hydroxyectoine biosynthetic gene clusters is lacking. We exploited the ect promoter from an ectoine/hydroxyectoine-producing soil bacterium for such a study by transferring it into a surrogate bacterial host. Despite the fact that E. coli does not synthesize ectoines naturally, the ect promoter retained its exquisitely sensitive osmotic control, indicating that osmoregulation of ect transcription is an inherent feature of the promoter and its flanking sequences. These sequences were narrowed to a 116-bp DNA fragment. Ectoines have interesting commercial applications. Building on data from a site-directed mutagenesis study of the ect promoter, we designed a synthetic cell factory that secretes ectoine, hydroxyectoine, or a mixture of both compounds into the growth medium.
Collapse
|
2
|
El Hanafi D, Bossi L. Activation and silencing of leu-500 promoter by transcription-induced DNA supercoiling in the Salmonella chromosome. Mol Microbiol 2000; 37:583-94. [PMID: 10931352 DOI: 10.1046/j.1365-2958.2000.02015.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The notion that transcription can generate supercoils in the DNA template largely stems from work with small circular plasmids. In the present work, we tested this model in the bacterial chromosome using a supercoiling-sensitive promoter as a functional sensor of superhelicity changes. The leu-500 promoter of Salmonella typhimurium is a mutant and inactive variant of the leucine operon promoter that regains activity if negative DNA supercoiling rises above normal levels, typically as a result of mutations affecting DNA topoisomerase I (topA mutants). Activation of the leu-500 promoter was analysed in topA mutant cells harbouring transcriptionally inducible tet or cat gene cassettes inserted in the region upstream from the leu operon. Some insertions inhibited leu-500 promoter activation in the absence of inducer. This effect is dramatic in the interval between 1.7 kb and 0.6 kb from the leu operon, suggesting that the insertions physically interfere with the mechanism responsible for activation. Superimposed on these effects, transcription of the inserted gene stimulated or inhibited leu-500 promoter activity depending on whether this gene was oriented divergently from the leu operon or in the same direction respectively. Interestingly, transcription-mediated inhibition of leu-500 promoter was observed with inserts as far as 5 kb from the leu operon, and it could be relieved by the introduction of a strong gyrase site between the inserted element and the leu-500 promoter. These results are consistent with the idea that transcriptionally generated positive and negative supercoils can diffuse along chromosomal DNA and, depending on their topological sign, elicit opposite responses from the leu-500 promoter.
Collapse
Affiliation(s)
- D El Hanafi
- Centre de Génétique Moléculaire, CNRS, 91198 Gif-sur-Yvette, France
| | | |
Collapse
|
3
|
Abstract
We show that Salmonella typhimurium harbours two fully functional prophages, Gifsy-1 and Gifsy-2, that can be induced by standard treatments or, more effectively, by exposing bacteria to hydrogen peroxide. Curing bacteria for the Gifsy-2 prophage significantly reduces Salmonella's ability to establish a systemic infection in mice. Cured strains recover their virulence properties upon relysogenization. Phage Gifsy-2 carries the sodC gene for a periplasmic [Cu,Zn]-superoxide dismutase previously implicated in the bacterial defences against killing by macrophages. The contribution of the Gifsy-1 prophage to virulence - undetectable in the presence of Gifsy-2 as prophage - becomes significant in cells that lack Gifsy-2 but carry the sodC gene integrated in the chromosome. This confirms the involvement of Gifsy-2-encoded SodC protein in Salmonella pathogenicity and suggests that the Gifsy-1 prophage carries one or more additional virulence genes that have a functional equivalent on the Gifsy-2 genome.
Collapse
Affiliation(s)
- N Figueroa-Bossi
- Centre de Génétique Moléculaire, CNRS, 91198 Gif-sur-Yvette, France
| | | |
Collapse
|
4
|
Chen D, Bachellier S, Lilley DM. Activation of the leu-500 promoter by a reversed polarity tetA gene. Response to global plasmid supercoiling. J Biol Chem 1998; 273:653-9. [PMID: 9417128 DOI: 10.1074/jbc.273.1.653] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The leu-500 promoter is inactivated by a mutation in the -10 region but can be activated in topA Escherichia coli and Salmonella strains. We have found that the tetA gene plays a vital role in the topA-dependent activation of a plasmid-borne leu-500 promoter. In previous studies, the leu-500 promoter and tetA gene have been arranged divergently. In this study we have reversed the polarity of the tetA gene, thus locating the leu-500 promoter at the 3' end of tetA. Despite being formally located in the downstream region of tetA, the leu-500 promoter is equally well activated in a topA strain in this environment, even though it is 1.6 kilobase pairs away from the promoter of the reversed tetA gene. Activation of the leu-500 promoter depends on transcription and translation of tetA but is largely insensitive to the function of other transcription units on the plasmid. These results require a change in viewpoint of the role of tetA, from local to global supercoiling. We conclude that transcription of the tetA gene is the main generator of transcription-induced supercoiling that activates the leu-500 promoter. Unbalanced relaxation of this supercoiling leads to a net increase in the negative linking difference of the plasmid globally, and there is a linear correlation between the change in global plasmid topology and the activation of the leu-500 promoter. Thus the leu-500 promoter appears to respond to the negative supercoiling of the plasmid overall.
Collapse
Affiliation(s)
- D Chen
- Cancer Research Campaign Nucleic Acid Structure Research Group, Department of Biochemistry, The University, Dundee DD1 4HN, United Kingdom
| | | | | |
Collapse
|
5
|
Spirito F, Bossi L. Long-distance effect of downstream transcription on activity of the supercoiling-sensitive leu-500 promoter in a topA mutant of Salmonella typhimurium. J Bacteriol 1996; 178:7129-37. [PMID: 8955393 PMCID: PMC178624 DOI: 10.1128/jb.178.24.7129-7137.1996] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Expression of the lacZ gene from the supercoiling-sensitive leu-500 promoter on a plasmid in topA mutant cells was stimulated by activating a divergently oriented Tac promoter, 400 bp upstream from leu-500. The stimulation was approximately threefold regardless of whether the Tac promoter drove the expression of the tet gene, whose product is membrane bound, or of the cat gene, whose product is cytosolic. Putting a second copy of the Tac promoter downstream from lacZ, approximately 3,000 bp from leu-500 in the same orientation as the latter, resulted in 30-fold increase in lacZ expression upon isopropyl-beta-D-thiogalactopyranoside induction. Again, these effects were independent of the nature of the gene upstream from leu-500 (tet or cat). With both tet- and cat-harboring constructs, activation of the two Tac promoter copies caused plasmid DNA to become hypernegatively supercoiled in topA mutant cells. Thus, neither leu-500 activation nor hypernegative plasmid DNA supercoiling appears to require membrane anchoring of DNA in this system. Replacing the downstream copy of Tac with a constitutive promoter resulted in high-level lacZ expression even when the upstream copy was repressed. Under these conditions, no hypernegative DNA supercoiling was observed, indicating that the activity of plasmid-borne leu-500 in topA mutant cells does not necessarily correlate with the linking deficit of plasmid DNA. The response of the leu-500-lacZ fusion to downstream transcription provides a sensitive assay for transcriptional supercoiling in bacteria.
Collapse
Affiliation(s)
- F Spirito
- Centre de Génétique Moléculaire du CNRS, Gif-sur-Yvette, France
| | | |
Collapse
|
6
|
Lilley DM, Chen D, Bowater RP. DNA supercoiling and transcription: topological coupling of promoters. Q Rev Biophys 1996; 29:203-25. [PMID: 8968111 DOI: 10.1017/s0033583500005825] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
DNA supercoiling is a consequence of the double-stranded nature of DNA. When a linear DNA molecule is ligated into a covalently closed circle, the two strands become intertwined like the links of a chain, and will remain so unless one of the strands is broken. The number of times one strand is linked with the other is described by a fundamental property of DNA supercoiling, the linking number (Lk).
Collapse
MESH Headings
- Base Sequence
- Biophysical Phenomena
- Biophysics
- DNA Topoisomerases, Type I/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Superhelical/chemistry
- DNA, Superhelical/genetics
- DNA, Superhelical/metabolism
- Gene Expression Regulation, Bacterial
- Genes, Bacterial
- Leucine/genetics
- Models, Biological
- Mutation
- Promoter Regions, Genetic
- Salmonella typhimurium/drug effects
- Salmonella typhimurium/genetics
- Salmonella typhimurium/metabolism
- Tetracycline Resistance/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- D M Lilley
- Department of Biochemistry, University of Dundee, UK
| | | | | |
Collapse
|
7
|
Free A, Dorman CJ. Escherichia coli tyrT gene transcription is sensitive to DNA supercoiling in its native chromosomal context: effect of DNA topoisomerase IV overexpression on tyrT promoter function. Mol Microbiol 1994; 14:151-61. [PMID: 7830553 DOI: 10.1111/j.1365-2958.1994.tb01275.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have investigated the in vivo DNA supercoiling sensitivity of the Escherichia coli tRNA(1tyr) gene (tyrT) promoter in its normal chromosomal location. Here, the native tyrT promoter is found to be exquisitely sensitive to mutations and to drugs which alter the level of DNA supercoiling. We show that the response of the tyrT promoter to supercoiling is qualitatively similar to that of a known supercoiling-sensitive tRNA gene promoter, hisR. Specifically, treatments which increase in vivo DNA supercoiling levels enhance transcription of these tRNA genes. Particularly striking is the strong enhancement of expression from both promoters by a transposon insertion mutation in the topA gene encoding DNA toposisomerase I. This phenotypic effect can be complemented by providing active topoisomerase I in trans from a recombinant plasmid. Interestingly, it can also be complemented by overexpression of the genes encoding the subunits of DNA topoisomerase IV. We believe that this is the first demonstration that DNA topoisomerase IV can influence gene expression and it suggests that DNA topoisomerase I is partially redundant, at least in E. coli.
Collapse
Affiliation(s)
- A Free
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College, Dublin, Republic of Ireland
| | | |
Collapse
|
8
|
Chen D, Bowater R, Lilley DM. Topological promoter coupling in Escherichia coli: delta topA-dependent activation of the leu-500 promoter on a plasmid. J Bacteriol 1994; 176:3757-64. [PMID: 8206854 PMCID: PMC205565 DOI: 10.1128/jb.176.12.3757-3764.1994] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The leu-500 promoter of Salmonella typhimurium is activated in topA mutants. We have previously shown that this promoter can be activated on circular plasmids in a manner that depends on transcription and translation of the tetracycline resistance gene tetA and insertion of its product into the cell membrane. We have suggested that in the absence of enzymatic relaxation by topoisomerase I, the local domain of transcription-induced DNA supercoiling reaches a steady-state level that leads to the activation of the leu-500 promoter. In the present paper, we have shown that the leu-500 promoter may also be activated in Escherichia coli. Comparison of the closely related pair of E. coli strains DM800 (delta topA) and SD108 (topA+) shows that the activation is dependent on the presence of a null mutation in topA. We have also shown that activation of the plasmid-borne leu-500 promoter depends, as in S. typhimurium, on the function of an adjacent tetA gene, suggesting that membrane anchorage of the TetA peptide prevents dissipation of transcription-induced supercoiling by superhelical diffusion. The activity of the leu-500 promoter is boosted by placing a divergent tac promoter on the side opposite to tetA. The topoisomer distributions of these plasmids extracted from the cell have been analyzed. We find that when the parent plasmid pLEU500Tc, containing the leu-500 promoter upstream of the complete tetA gene, is extracted from E. coli DM800 (delta topA), the distribution of linking numbers is bimodal. There is a fraction with a lower level of supercoiling (mean linking difference approximately -0.05) that is constant for all plasmids extracted from either delta topA or topA+ cells. In addition, we observe a second fraction with highly negatively supercoiled DNA (mean linking difference approximately -0.09) only in DNA extracted from delta topA cells. The proportion of the oversupercoiled fraction correlates with the activity of the leu-500 promoter: it is strongly reduced when the tetA promoter is deleted or when translation of TetA is prematurely terminated, while it is increased when the strong tac promoter is present in cis. We suggest that this oversupercoiled fraction represents the proportion of plasmid molecules active in tetA transcription and that it is this supercoiling that activates the leu-500 promoter.
Collapse
Affiliation(s)
- D Chen
- Department of Biochemistry, The University, Dundee, United Kingdom
| | | | | |
Collapse
|
9
|
Forsberg AJ, Pavitt GD, Higgins CF. Use of transcriptional fusions to monitor gene expression: a cautionary tale. J Bacteriol 1994; 176:2128-32. [PMID: 8144484 PMCID: PMC205324 DOI: 10.1128/jb.176.7.2128-2132.1994] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Gene fusions are frequently used to facilitate studies of gene expression and promoter activity. We have found that certain reporter genes can, themselves, influence promoter activity. For example, the commonly used luxAB reporter genes can activate or repress transcription from a subset of promoters, generating data apparently at odds with those obtained with other reporter genes. These effects are probably related to an intrinsically curved DNA segment in the 5' coding sequence of the luxA gene. Thus, caution must be observed when one is interpreting results obtained with a single reporter gene system such as luxAB.
Collapse
Affiliation(s)
- A J Forsberg
- Imperial Cancer Research Fund Laboratories, University of Oxford, John Radcliffe Hospital, United Kingdom
| | | | | |
Collapse
|
10
|
Menzel R, Gellert M. The biochemistry and biology of DNA gyrase. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1994; 29A:39-69. [PMID: 7826864 DOI: 10.1016/s1054-3589(08)60539-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- R Menzel
- Bristol-Myers Squibb Pharmaceutical Institute, Princeton, New Jersey 08540
| | | |
Collapse
|
11
|
Chen D, Bowater R, Dorman CJ, Lilley DM. Activity of a plasmid-borne leu-500 promoter depends on the transcription and translation of an adjacent gene. Proc Natl Acad Sci U S A 1992; 89:8784-8. [PMID: 1326763 PMCID: PMC50005 DOI: 10.1073/pnas.89.18.8784] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
leu-500 is a chromosomal promoter mutation in Salmonella typhimurium that normally causes the promoter to be inactive in the initiation of RNA synthesis. But in a strain that has mutations in topA, the gene encoding DNA topoisomerase I, the mutant promoter becomes active. We show that the leu-500 promoter can function on a plasmid when it is adjacent to the tetracycline-resistance gene tetA. Activation of the leu-500 promoter requires that the tetA gene is transcribed and translated and that the host cell is topA. We propose that the A----G mutation in the -10 region of the leu-500 promoter is compensated by local negative supercoiling arising from transcription of the tetA gene, which may reach elevated levels in a topA background, provided that diffusional dissipation is reduced due to anchoring of the TetA peptide in the membrane. This is a clear example of the modulation of the activity of a promoter by the activity of another promoter in cis, when they can be coupled through the topology of the template.
Collapse
Affiliation(s)
- D Chen
- Department of Biochemistry, University, Dundee, United Kingdom
| | | | | | | |
Collapse
|
12
|
Abstract
Cyclic AMP (cAMP) is found in a variety of prokaryotes including both eubacteria and archaebacteria. cAMP plays a role in regulating gene expression, not only for the classic inducible catabolic operons, but also for other categories. In the enteric coliforms, the effects of cAMP on gene expression are mediated through its interaction with and allosteric modification of a cAMP-binding protein (CRP). The CRP-cAMP complex subsequently binds specific DNA sequences and either activates or inhibits transcription depending upon the positioning of the complex relative to the promoter. Enteric coliforms have provided a model to explore the mechanisms involved in controlling adenylate cyclase activity, in regulating adenylate cyclase synthesis, and in performing detailed examinations of CRP-cAMP complex-regulated gene expression. This review summarizes recent work focused on elucidating the molecular mechanisms of CRP-cAMP complex-mediated processes. For other bacteria, less detail is known. cAMP has been implicated in regulating antibiotic production, phototrophic growth, and pathogenesis. A role for cAMP has been suggested in nitrogen fixation. Often the only data that support cAMP involvement in these processes includes cAMP measurement, detection of the enzymes involved in cAMP metabolism, or observed effects of high concentrations of the nucleotide on cell growth.
Collapse
Affiliation(s)
- J L Botsford
- Department of Biology, New Mexico State University, Las Cruces 88003
| | | |
Collapse
|
13
|
Abstract
Cyclic AMP (cAMP) is found in a variety of prokaryotes including both eubacteria and archaebacteria. cAMP plays a role in regulating gene expression, not only for the classic inducible catabolic operons, but also for other categories. In the enteric coliforms, the effects of cAMP on gene expression are mediated through its interaction with and allosteric modification of a cAMP-binding protein (CRP). The CRP-cAMP complex subsequently binds specific DNA sequences and either activates or inhibits transcription depending upon the positioning of the complex relative to the promoter. Enteric coliforms have provided a model to explore the mechanisms involved in controlling adenylate cyclase activity, in regulating adenylate cyclase synthesis, and in performing detailed examinations of CRP-cAMP complex-regulated gene expression. This review summarizes recent work focused on elucidating the molecular mechanisms of CRP-cAMP complex-mediated processes. For other bacteria, less detail is known. cAMP has been implicated in regulating antibiotic production, phototrophic growth, and pathogenesis. A role for cAMP has been suggested in nitrogen fixation. Often the only data that support cAMP involvement in these processes includes cAMP measurement, detection of the enzymes involved in cAMP metabolism, or observed effects of high concentrations of the nucleotide on cell growth.
Collapse
Affiliation(s)
- J L Botsford
- Department of Biology, New Mexico State University, Las Cruces 88003
| | | |
Collapse
|
14
|
Droffner ML, Yamamoto N. The leucine operon carrying theleu-500 promoter mutation is expressed under anaerobic conditions. Curr Microbiol 1991. [DOI: 10.1007/bf02091957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Abstract
Many promoters are sensitive to DNA supercoiling, and it is becoming apparent that this may play an important role in gene regulation. The twin supercoiled-domain hypothesis (Liu and Wang, 1987) proposes that transcription can lead to local variation in supercoiling. The mutant leu-500 promoter has presented a long-standing problem to the understanding of the control of promoter function by DNA supercoiling. This promoter is activated by mutations in the gene encoding topoisomerase I, but is apparently unaffected by mutations in the genes encoding DNA gyrase. We propose a model to explain the anomalous regulation of this promoter, based on the twin supercoiled-domain model. This allows us to account for the unusual properties of the leu-500 promoter, and confirms the biological importance of the twin supercoiled-domain model. We suggest that such topological coupling between promoters may be general, leading to co-operativity and anti-co-operativity between divergent promoter pairs.
Collapse
Affiliation(s)
- D M Lilley
- Department of Biochemistry, University of Dundee, UK
| | | |
Collapse
|
16
|
DNA supercoiling and environmental regulation of gene expression in pathogenic bacteria. Infect Immun 1991; 59:745-9. [PMID: 1997427 PMCID: PMC258322 DOI: 10.1128/iai.59.3.745-749.1991] [Citation(s) in RCA: 116] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
17
|
|
18
|
Higgins CF, Dorman CJ, Stirling DA, Waddell L, Booth IR, May G, Bremer E. A physiological role for DNA supercoiling in the osmotic regulation of gene expression in S. typhimurium and E. coli. Cell 1988; 52:569-84. [PMID: 2830029 DOI: 10.1016/0092-8674(88)90470-9] [Citation(s) in RCA: 554] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The proU locus encodes an osmotically inducible glycine betaine transport system that is important in the adaptation to osmotic stress. We present evidence that DNA supercoiling plays a key role in the osmotic induction of proU transcription. An increase in extracellular osmolarity increases in vivo DNA supercoiling, and the expression of proU is highly sensitive to these changes. Furthermore, topA mutations can mimic an increase in osmolarity, facilitating proU expression even in media of low osmolarity in which it is not normally expressed. Selection for trans-acting mutations that affect proU expression has yielded only mutations that alter DNA supercoiling, either in topA or a new genetic locus, osmZ, which strongly influences in vivo supercoiling. Mutations in osmZ are highly pleiotropic, affecting expression of a variety of chromosomal genes including ompF, ompC, fimA, and the bgl operon, as well as increasing the frequency of site-specific DNA inversions that mediate fimbrial phase variation.
Collapse
Affiliation(s)
- C F Higgins
- Department of Biochemistry, University of Dundee, Scotland
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
top mutations (formerly supX) eliminate DNA topoisomerase I activity and suppress the leu-500 promoter mutation in Salmonella typhimurium (K. M. Overbye, S. K. Basu, and P. Margolin, Cold Spring Harbor Symp. Quant. Biol. 47:785-791, 1983). Sublethal doses of coumermycin which reduce intracellular levels of supercoiling activity in a top mutant eliminated suppression of the leu-500 mutation. This result provides evidence that increased DNA supercoiling suppresses the leu-500 promoter mutation in top mutants.
Collapse
|
20
|
Characterization of the 3' end of the leucine operon of Salmonella typhimurium. MOLECULAR & GENERAL GENETICS : MGG 1985; 199:486-94. [PMID: 2993799 DOI: 10.1007/bf00330763] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The nucleotide sequence of the leuD gene of Salmonella typhimurium and of the downstream flanking region are presented. S1 mapping experiments identified 3' endpoints of leu mRNA 140 and 285 nucleotides downstream of the UAA stop codon of leuD mRNA. Experiments employing pulse-labeled RNA suggest that these endpoints result from transcription termination rather than RNA processing. Our results indicate that the organization of the 3' non-translated region of the leu operon from S. typhimurium resembles that of the trp operon of Escherichia coli. Further, our results suggest that the leu operon of S. typhimurium does not contain structural genes other than those identified by genetic experiments, i.e. leu, A,B,C and D.
Collapse
|
21
|
Carter PW, Weiss DL, Weith HL, Calvo JM. Mutations that convert the four leucine codons of the Salmonella typhimurium leu leader to four threonine codons. J Bacteriol 1985; 162:943-9. [PMID: 3922957 PMCID: PMC215867 DOI: 10.1128/jb.162.3.943-949.1985] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In Salmonella typhimurium, expression of the leucine operon is regulated by a transcription attenuation mechanism. According to a current model of attenuation, elevated expression of this operon requires that a ribosome stall at one of four adjacent codons for leucine on a leader RNA. We used oligonucleotide-directed mutagenesis to convert the four leucine codons of the S. typhimurium leu leader to four threonine codons. Analysis of the resulting mutant operon showed that almost all regulation by leucine had been abolished. The mutant operon was, instead, partially derepressed by a limitation for charged threonine tRNA. These results provide direct evidence for the function for the four leucine codons postulated by the attenuator model. An unexpected observation made during these studies was that the wild-type leu operon was partially derepressed by starvation for threonine.
Collapse
|