Osorio AV, Camarena L, Salazar G, Noll-Louzada M, Bastarrachea F. Nitrogen regulation in an Escherichia coli strain with a temperature sensitive glutamyl-tRNA synthetase.
MOLECULAR & GENERAL GENETICS : MGG 1993;
239:400-8. [PMID:
7686246 DOI:
10.1007/bf00276938]
[Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Escherichia coli cells carrying the gltX351 allele are unable to grow at 42 degrees C (Ts phenotype) due to an altered glutamyl-tRNA synthetase. We found that gltX351 cells display a new phenotype termed Gsd-, i.e. an inability to raise glutamine synthetase activity above low constitutive levels in minimal medium with 6.8 mM glutamine as sole nitrogen source. When 0.5 mM NH4+ or 12 mM glutamate replaced glutamine, the glutamine synthetase activities of gltX351 cells were raised to wild-type levels. Northern experiments showed that the Gsd- phenotype is the result of an impairment in transcription initiation from the Ntr-regulated promoter, glnAp2. Intragenic and extragenic secondary mutations appeared frequently in gltX351 cells, which suppressed their Gsd- but not their Ts phenotype. Moreover, in heterozygous gltX+/gltX351 partial diploids, gltX351 was dominant for the Gsd- phenotype and recessive for the Tr phenotype. A slight increase in the glutamine pool and in the intracellular glutamine: 2-oxoglutarate ratio was also observed but this could not account for the Gsd- phenotype of gltX351 cells. In cells carrying gltX351 and a suppressor of the Gsd- phenotype, sup-1, tightly linked to gltX351, the glutamine pool and glutamine: 2-oxoglutarate intracellular ratio were even higher than in the gltX351 single mutant. These results indicate that the gltX351 mutant polypeptide may be the direct cause of the Gsd- phenotype. The possibility that it interacts with one or more components that trigger the Ntr response is discussed.
Collapse