1
|
Buyuklyan JA, Zakalyukina YV, Osterman IA, Biryukov MV. Modern Approaches to the Genome Editing of Antibiotic Biosynthetic Clusters in Actinomycetes. Acta Naturae 2023; 15:4-16. [PMID: 37908767 PMCID: PMC10615194 DOI: 10.32607/actanaturae.23426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/19/2023] [Indexed: 11/02/2023] Open
Abstract
Representatives of the phylum Actinomycetota are one of the main sources of secondary metabolites, including antibiotics of various classes. Modern studies using high-throughput sequencing techniques enable the detection of dozens of potential antibiotic biosynthetic genome clusters in many actinomycetes; however, under laboratory conditions, production of secondary metabolites amounts to less than 5% of the total coding potential of producer strains. However, many of these antibiotics have already been described. There is a continuous "rediscovery" of known antibiotics, and new molecules become almost invisible against the general background. The established approaches aimed at increasing the production of novel antibiotics include: selection of optimal cultivation conditions by modifying the composition of nutrient media; co-cultivation methods; microfluidics, and the use of various transcription factors to activate silent genes. Unfortunately, these tools are non-universal for various actinomycete strains, stochastic in nature, and therefore do not always lead to success. The use of genetic engineering technologies is much more efficient, because they allow for a directed and controlled change in the production of target metabolites. One example of such technologies is mutagenesis-based genome editing of antibiotic biosynthetic clusters. This targeted approach allows one to alter gene expression, suppressing the production of previously characterized molecules, and thereby promoting the synthesis of other unknown antibiotic variants. In addition, mutagenesis techniques can be successfully applied both to new producer strains and to the genes of known isolates to identify new compounds.
Collapse
Affiliation(s)
- J A Buyuklyan
- Center for Translational Medicine, Sirius University of Science and Technology, Sochi, 354340 Russian Federation
| | - Yu V Zakalyukina
- Center for Translational Medicine, Sirius University of Science and Technology, Sochi, 354340 Russian Federation
- Lomonosov Moscow State University, Moscow, 119234 Russian Federation
| | - I A Osterman
- Center for Translational Medicine, Sirius University of Science and Technology, Sochi, 354340 Russian Federation
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region, 143025 Russian Federation
| | - M V Biryukov
- Center for Translational Medicine, Sirius University of Science and Technology, Sochi, 354340 Russian Federation
- Lomonosov Moscow State University, Moscow, 119234 Russian Federation
| |
Collapse
|
2
|
Fogg PCM, Colloms S, Rosser S, Stark M, Smith MCM. New applications for phage integrases. J Mol Biol 2014; 426:2703-16. [PMID: 24857859 PMCID: PMC4111918 DOI: 10.1016/j.jmb.2014.05.014] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/09/2014] [Accepted: 05/16/2014] [Indexed: 11/28/2022]
Abstract
Within the last 25 years, bacteriophage integrases have rapidly risen to prominence as genetic tools for a wide range of applications from basic cloning to genome engineering. Serine integrases such as that from ϕC31 and its relatives have found an especially wide range of applications within diverse micro-organisms right through to multi-cellular eukaryotes. Here, we review the mechanisms of the two major families of integrases, the tyrosine and serine integrases, and the advantages and disadvantages of each type as they are applied in genome engineering and synthetic biology. In particular, we focus on the new areas of metabolic pathway construction and optimization, biocomputing, heterologous expression and multiplexed assembly techniques. Integrases are versatile and efficient tools that can be used in conjunction with the various extant molecular biology tools to streamline the synthetic biology production line. Phage integrases are site-specific recombinases that mediate controlled and precise DNA integration and excision. The serine integrases, such as ϕC31 integrase, can be used for efficient recombination in heterologous hosts as they use short recombination substrates, they are directional and they do not require host factors. Both serine and tyrosine integrases, such as λ integrase, are versatile tools for DNA cloning and assembly in vivo and in vitro. Controlled expression of orthologous serine integrases and their cognate recombination directionality factors can be used to generate living biocomputers. Serine integrases are increasingly being exploited for synthetic biology applications.
Collapse
Affiliation(s)
- Paul C M Fogg
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Sean Colloms
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Susan Rosser
- School of Biological Sciences, University of Edinburgh, King's Building, Edinburgh EH9 3JR, UK
| | - Marshall Stark
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Margaret C M Smith
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK.
| |
Collapse
|
3
|
Hickman AB, Waninger S, Scocca JJ, Dyda F. Molecular organization in site-specific recombination: the catalytic domain of bacteriophage HP1 integrase at 2.7 A resolution. Cell 1997; 89:227-37. [PMID: 9108478 DOI: 10.1016/s0092-8674(00)80202-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
HP1 integrase promotes site-specific recombination of the HP1 genome into that of Haemophilus influenzae. The isolated C-terminal domain (residues 165-337) of the protein interacts with the recombination site and contains the four catalytic residues conserved in the integrase family. This domain represents a novel fold consisting principally of well-packed alpha helices, a surface beta sheet, and an ordered 17-residue C-terminal tail. The conserved triad of basic residues and the active-site tyrosine are contributed by a single monomer and occupy fixed positions in a defined active-site cleft. Dimers are formed by mutual interactions of the tail of one monomer with an adjacent monomer; this orients active-site clefts antiparallel to each other.
Collapse
Affiliation(s)
- A B Hickman
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
4
|
Esposito D, Scocca JJ. Purification and characterization of HP1 Cox and definition of its role in controlling the direction of site-specific recombination. J Biol Chem 1997; 272:8660-70. [PMID: 9079698 DOI: 10.1074/jbc.272.13.8660] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The protein that activates site-specific excision of the HP1 genome from the Hemophilus influenzae chromosome, HP1 Cox, was purified. Native Cox consists of four 8.9-kDa protomers. Tetrameric Cox self-associates to octamers; the apparent dissociation constant was 8 microM protomer, suggesting that under reaction conditions Cox is largely tetrameric. Cox binding sites consist of two direct repeats of the consensus motif 5'-GGTMAWWWWA; one Cox tetramer binds to each motif. Cox binding interfered with the interaction of HP1 integrase with one of its binding sites, IBS5. This competition is central to directional control, as shown by studies on mutated sites. Both Cox binding sites were necessary for Cox to fully inhibit integration and activate excision, although Cox continued to affect recombination when the single binding site proximal to IBS5 remained intact. Eliminating the IBS5 site completely prevented integration but greatly enhanced excision. Excisive recombination continued to require Cox even when IBS5 was inactivated. Cox must therefore play a positive role in assembling the nucleoprotein complexes producing excisive recombination, by inducing the formation of a critical conformation in those complexes.
Collapse
Affiliation(s)
- D Esposito
- Department of Biochemistry, The Johns Hopkins University School of Hygiene and Public Health, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
5
|
Pedulla ML, Lee MH, Lever DC, Hatfull GF. A novel host factor for integration of mycobacteriophage L5. Proc Natl Acad Sci U S A 1996; 93:15411-6. [PMID: 8986825 PMCID: PMC26418 DOI: 10.1073/pnas.93.26.15411] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/1996] [Accepted: 10/24/1996] [Indexed: 02/03/2023] Open
Abstract
Bacterial integration host factors (IHFs) play central roles in the cellular processes of recombination, DNA replication, transcription, and bacterial pathogenesis. We describe here a novel mycobacterial IHF (mIHF) of Mycobacterium smegmatis and Mycobacterium tuberculosis that stimulates integration of mycobacteriophage L5. mIHF is the product of a single gene and is unrelated at the sequence level to other integration host factors. By itself, mIHF does not bind preferentially to attP DNA, although it significantly alters the pattern of integrase (Int) binding, promoting the formation of specific integrase-mIHF-attP intasome complexes.
Collapse
Affiliation(s)
- M L Pedulla
- Department of Biological Sciences, University of Pittsburgh, PA 15260, USA
| | | | | | | |
Collapse
|
6
|
|
7
|
Abstract
Transposon insertion mutagenesis and transformation were used to locate genes responsible for excision in the temperature phage HP1 of Haemophilus influenzae. A 6.5 kb segment of DNA near the left end of the phage genome was sequenced, and 11 new open reading frames were identified. Two face-to-face overlapping promoter sequences organized these open reading frames into two operons transcribed in opposite directions. Interruption of the first open reading frame in the rightward operon created lysogens unable to produce phages. Provision of the uninterrupted open reading frame in trans restored phage production. The gene identified by this procedure, cox, was cloned and the protein product was expressed at high levels in Escherichia coli. The Cox protein is a 79-residue basic protein with a predicted strong helix-turn-helix DNA-binding motif. Extracts induced to express high levels of Cox contained a 9 kDa protein. These extracts inhibited integrative recombination and were required for excisive recombination mediated by HP1 integrase. The HP1 cox gene location is similar to that of the homologous excisive and regulatory genes from coliphages P2 and 186. These phages appear to share a distinctive organization of recombination proteins and transcriptional domains differing markedly from phage lambda and its relatives.
Collapse
Affiliation(s)
- D Esposito
- Department of Biochemistry, Johns Hopkins University School of Hygiene and Public Health, Baltimore, Maryland 21205
| | | |
Collapse
|
8
|
Raya RR, Fremaux C, De Antoni GL, Klaenhammer TR. Site-specific integration of the temperate bacteriophage phi adh into the Lactobacillus gasseri chromosome and molecular characterization of the phage (attP) and bacterial (attB) attachment sites. J Bacteriol 1992; 174:5584-92. [PMID: 1512192 PMCID: PMC206502 DOI: 10.1128/jb.174.17.5584-5592.1992] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The temperate bacteriophage phi adh integrates its genome into the chromosomal DNA of Lactobacillus gasseri ADH by a site-specific recombination process. Southern hybridization analysis of BclI-digested genomic DNA from six relysogenized derivatives of the prophage-cured strain NCK102 displayed phage-chromosomal junction fragments identical to those of the lysogenic parent. The phi adh attachment site sequence, attP, was located within a 365-bp EcoRI-HindIII fragment of phage phi adh. This fragment was cloned and sequenced. DNA sequence analysis revealed striking features common to the attachment sites of other site-specific recombination systems: five direct repeats of the sequence TGTCCCTTTT(C/T) and a 14-bp inverted repeat. Oligonucleotides derived from the sequence of the attP-containing fragment enabled us to amplify predicted junction fragment sequences and thus to identify attL, attR, and attB. The core region was defined as the 16-bp sequence TACACTTCTTAGGAGG. Phage-encoded functions essential for site-specific insertion of phage phi adh were located in a 4.5-kb BclI fragment. This fragment was cloned in plasmid pSA34 to generate the insertional vector pTRK182. Plasmid pTRK182 was introduced into L. gasseri NCK102 by electroporation. Hybridization analysis showed that a single copy of pTRK182 had integrated at the attB site of the NCK102 erythromycin-resistant transformants. This is the first site-specific recombination system described in lactobacilli, as well as the first attP-based site-specific integration vector constructed for L. gasseri ADH.
Collapse
Affiliation(s)
- R R Raya
- Southeast Dairy Foods Research Center, North Carolina State University, Raleigh 27695-7624
| | | | | | | |
Collapse
|
9
|
Site-specific integration of the Haemophilus influenzae bacteriophage HP1. Identification of the points of recombinational strand exchange and the limits of the host attachment site. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50506-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
10
|
Hwang ES, Scocca JJ. Interaction of integration host factor from Escherichia coli with the integration region of the Haemophilus influenzae bacteriophage HP1. J Bacteriol 1990; 172:4852-60. [PMID: 2203732 PMCID: PMC213139 DOI: 10.1128/jb.172.9.4852-4860.1990] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The specific DNA-binding protein integration host factor (IHF) of Escherichia coli stimulates the site-specific recombination reaction between the attP site of bacteriophage HP1 and the attB site of its host, Haemophilus influenzae, in vitro and also appears to regulate the expression of HP1 integrase. IHF interacts specifically with DNA segments containing the att sites and the integrase regulatory region, as judged by IHF-dependent retardation of relevant DNA fragments during gel electrophoresis. The locations of the protein-binding sites were identified by DNase I protection experiments. Three sites in the HP1 attP region bound IHF, two binding sites were present in the vicinity of the attB region, and one region containing three partially overlapping sites was present in the HP1 integrase regulatory segment. The binding sites defined in these experiments all contained sequences which matched the consensus IHF binding sequences first identified in the lambda attP region. An activity which stimulated the HP1 site-specific integration reaction was found in extracts of H. influenzae, suggesting that an IHF-like protein is present in this organism.
Collapse
Affiliation(s)
- E S Hwang
- Department of Biochemistry, Johns Hopkins University School of Hygiene and Public Health, Baltimore, Maryland 21205
| | | |
Collapse
|
11
|
Goodman SD, Scocca JJ. Nucleotide sequence and expression of the gene for the site-specific integration protein from bacteriophage HP1 of Haemophilus influenzae. J Bacteriol 1989; 171:4232-40. [PMID: 2546915 PMCID: PMC210195 DOI: 10.1128/jb.171.8.4232-4240.1989] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The nucleotide sequence of the leftmost 2,363 base pairs of the HP1 genome, which includes the attachment site (attP) and the integration region, was determined. This sequence contained an open reading frame encoding a 337-residue polypeptide, which is a member of the integrase family of site-specific recombination proteins as judged by sequence comparison. The open reading frame was located immediately adjacent to the att site and was oriented so that initiation of translation would begin distal to the att site and end in its immediate vicinity. Expression of this DNA segment in Escherichia coli provided extracts which promoted site-specific recombination between plasmids containing cloned HP1 attP and Haemophilus influenzae attB sites. This recombination was directional, since no reaction was observed between plasmids containing attR and attL sites. The reaction was stimulated by the accessory protein integration host factor of E. coli. Evidence was also obtained that the integration host factor influenced the levels of HP1 integrase expression. The deduced amino acid sequence of HP1 integrase has remarkable similarity to that deduced for the integrase of coliphage 186.
Collapse
Affiliation(s)
- S D Goodman
- Department of Biochemistry, Johns Hopkins University School of Hygiene and Public Health, Baltimore, Maryland 21205
| | | |
Collapse
|