1
|
Oliveira MA, Baura VA, Aquino B, Huergo LF, Kadowaki MA, Chubatsu LS, Souza EM, Dixon R, Pedrosa FO, Wassem R, Monteiro RA. Role of conserved cysteine residues in Herbaspirillum seropedicae NifA activity. Res Microbiol 2009; 160:389-95. [DOI: 10.1016/j.resmic.2009.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 05/29/2009] [Accepted: 06/10/2009] [Indexed: 11/24/2022]
|
2
|
Cheltsov AV, Guida WC, Ferreira GC. Circular permutation of 5-aminolevulinate synthase: effect on folding, conformational stability, and structure. J Biol Chem 2003; 278:27945-55. [PMID: 12736261 DOI: 10.1074/jbc.m207011200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The first and regulatory step of heme biosynthesis in mammals begins with the pyridoxal 5'-phosphate-dependent condensation reaction catalyzed by 5-aminolevulinate synthase. The enzyme functions as a homodimer with the two active sites at the dimer interface. Previous studies demonstrated that circular permutation of 5-aminolevulinate synthase does not prevent folding of the polypeptide chain into a structure amenable to binding of the pyridoxal 5'-phosphate cofactor and assembly of the two subunits into a functional enzyme. However, while maintaining a wild type-like three-dimensional structure, active, circularly permuted 5-aminolevulinate synthase variants possess different topologies. To assess whether the aminolevulinate synthase overall structure can be reached through alternative or multiple folding pathways, we investigated the guanidine hydrochloride-induced unfolding, conformational stability, and structure of active, circularly permuted variants in relation to those of the wild type enzyme using fluorescence, circular dichroism, activity, and size exclusion chromatography. Aminolevulinate synthase and circularly permuted variants folded reversibly; the equilibrium unfolding/refolding profiles were biphasic and, in all but one case, protein concentration-independent, indicating a unimolecular process with the presence of at least one stable intermediate. The formation of this intermediate was preceded by the disruption of the dimeric interface or dissociation of the dimer without significant change in the secondary structural content of the subunits. In contrast to the similar stabilities associated with the dimeric interface, the energy for the unfolding of the intermediate as well as the overall conformational stabilities varied among aminolevulinate synthase and variants. The unfolding of one functional permuted variant was protein concentration-dependent and had a potentially different folding mechanism. We propose that the order of the ALAS secondary structure elements does not determine the ability of the polypeptide chain to fold but does affect its folding mechanism.
Collapse
Affiliation(s)
- Anton V Cheltsov
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Florida, Tampa, Florida 33612, USA
| | | | | |
Collapse
|
3
|
Monteiro RA, de Souza EM, Yates MG, Pedrosa FO, Chubatsu LS. Fnr is involved in oxygen control of Herbaspirillum seropedicae N-truncated NifA protein activity in Escherichia coli. Appl Environ Microbiol 2003; 69:1527-31. [PMID: 12620839 PMCID: PMC150060 DOI: 10.1128/aem.69.3.1527-1531.2003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herbaspirillum seropedicae is an endophytic diazotroph belonging to the beta-subclass of the class Proteobacteria, which colonizes many members of the Gramineae. The activity of the NifA protein, a transcriptional activator of nif genes in H. seropedicae, is controlled by ammonium ions through its N-terminal domain and by oxygen through mechanisms that are not well understood. Here we report that the NifA protein of H. seropedicae is inactive and more susceptible to degradation in an fnr Escherichia coli background. Both effects correlate with oxygen exposure and iron deprivation. Our results suggest that the oxygen sensitivity and iron requirement for H. seropedicae NifA activity involve the Fnr protein.
Collapse
Affiliation(s)
- Rose A Monteiro
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, Curitiba, PR 81531-990, Brazil
| | | | | | | | | |
Collapse
|
4
|
Cheltsov AV, Barber MJ, Ferreira GC. Circular permutation of 5-aminolevulinate synthase. Mapping the polypeptide chain to its function. J Biol Chem 2001; 276:19141-9. [PMID: 11279050 PMCID: PMC4547487 DOI: 10.1074/jbc.m100329200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
5-Aminolevulinate synthase is the first enzyme of the heme biosynthetic pathway in non-plant eukaryotes and some prokaryotes. The enzyme functions as a homodimer and requires pyridoxal 5'-phosphate as a cofactor. Although the roles of defined amino acids in the active site and catalytic mechanism have been recently explored using site-directed mutagenesis, much less is known about the role of the 5-aminolevulinate synthase polypeptide chain arrangement in folding, structure, and ultimately, function. To assess the importance of the continuity of the polypeptide chain, circularly permuted 5-aminolevulinate synthase variants were constructed through either rational design or screening of an engineered random library. One percent of the random library clones were active, and a total of 21 active variants had sequences different from that of the wild type 5-aminolevulinate synthase. Out of these 21 variants, 9 displayed unique circular permutations of the 5-aminolevulinate synthase polypeptide chain. The new termini of the active variants disrupted secondary structure elements and loop regions and fell in 100 amino acid regions from each terminus. This indicates that the natural continuity of the 5-aminolevulinate synthase polypeptide chain and the sequential arrangement of the secondary structure elements are not requirements for proper folding, binding of the cofactor, or assembly of the two subunits. Furthermore, the order of two identified functional elements (i.e. the catalytic and the glycine-binding domains) is apparently irrelevant for proper functioning of the enzyme. Although the wild type 5-aminolevulinate synthase and the circularly permuted variants appear to have similar, predicted overall tertiary structures, they exhibit differences in the arrangement of the secondary structure elements and in the cofactor-binding site environment. Taken together, the data lead us to propose that the 5-aminolevulinate synthase overall structure can be reached through multiple or alternative folding pathways.
Collapse
Affiliation(s)
- Anton V. Cheltsov
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Florida, Tampa, Florida 33612
| | - Michael J. Barber
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Florida, Tampa, Florida 33612
- Institute for Biomolecular Science, University of South Florida, Tampa, Florida 33612
| | - Gloria C. Ferreira
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Florida, Tampa, Florida 33612
- Institute for Biomolecular Science, University of South Florida, Tampa, Florida 33612
- H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, Florida 33612
- To whom correspondence should be addressed: Dept. of Biochemistry and Molecular Biology, College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612. Tel.: 813-974-5797; Fax: 813-974-0504;
| |
Collapse
|
5
|
Screen S, Watson J, Dixon R. Oxygen sensitivity and metal ion-dependent transcriptional activation by NIFA protein from Rhizobium leguminosarum biovar trifolii. MOLECULAR & GENERAL GENETICS : MGG 1994; 245:313-22. [PMID: 7816041 DOI: 10.1007/bf00290111] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The NIFA protein from Rhizobium leguminosarum biovar trifolii (R. trifolii) strain ANU843 lacks an N-terminal domain present in homologous NIFA proteins from other diazotrophs. The R. trifolii nifA gene product is unstable when expressed in Escherichia coli under both aerobic and microaerobic conditions. Stability is increased by fusion of additional amino acids to the N-terminus of the protein or by expression of nifA in sno mutant (presumed protease deficient) strains of E. coli. Transcriptional activation in vivo by R. trifolii NIFA decreases under aerobic growth conditions, or when cultures are depleted of metal ions. In sno mutant strains this decrease in activity reflects a loss of specific activity rather than proteolytic degradation, implying that R. trifolii NIFA requires metal ions for activity and is oxygen sensitive. The addition of 30 amino acids to the amino-terminus of R. trifoli NIFA results in an oxygen-tolerant protein, with metal ion-dependent activity. Metal ions are therefore not only required for oxygen sensing by R. trifolii NIFA but may play an additional role in determining NIFA structure or activity.
Collapse
Affiliation(s)
- S Screen
- Agricultural and Food Research Council, University of Sussex, Brighton, UK
| | | | | |
Collapse
|
6
|
Abstract
This review presents a comparison between the complex genetic regulatory networks that control nitrogen fixation in three representative rhizobial species, Rhizobium meliloti, Bradyrhizobium japonicum, and Azorhizobium caulinodans. Transcription of nitrogen fixation genes (nif and fix genes) in these bacteria is induced primarily by low-oxygen conditions. Low-oxygen sensing and transmission of this signal to the level of nif and fix gene expression involve at least five regulatory proteins, FixL, FixJ, FixK, NifA, and RpoN (sigma 54). The characteristic features of these proteins and their functions within species-specific regulatory pathways are described. Oxygen interferes with the activities of two transcriptional activators, FixJ and NifA. FixJ activity is modulated via phosphorylation-dephosphorylation by the cognate sensor hemoprotein FixL. In addition to the oxygen responsiveness of the NifA protein, synthesis of NifA is oxygen regulated at the level of transcription. This type of control includes FixLJ in R. meliloti and FixLJ-FixK in A. caulinodans or is brought about by autoregulation in B. japonicum. NifA, in concert with sigma 54 RNA polymerase, activates transcription from -24/-12-type promoters associated with nif and fix genes and additional genes that are not directly involved in nitrogen fixation. The FixK proteins constitute a subgroup of the Crp-Fnr family of bacterial regulators. Although the involvement of FixLJ and FixK in nifA regulation is remarkably different in the three rhizobial species discussed here, they constitute a regulatory cascade that uniformly controls the expression of genes (fixNOQP) encoding a distinct cytochrome oxidase complex probably required for bacterial respiration under low-oxygen conditions. In B. japonicum, the FixLJ-FixK cascade also controls genes for nitrate respiration and for one of two sigma 54 proteins.
Collapse
Affiliation(s)
- H M Fischer
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Zürich, Switzerland
| |
Collapse
|
7
|
Abstract
A list of currently identified gene products of Escherichia coli is given, together with a bibliography that provides pointers to the literature on each gene product. A scheme to categorize cellular functions is used to classify the gene products of E. coli so far identified. A count shows that the numbers of genes concerned with small-molecule metabolism are on the same order as the numbers concerned with macromolecule biosynthesis and degradation. One large category is the category of tRNAs and their synthetases. Another is the category of transport elements. The categories of cell structure and cellular processes other than metabolism are smaller. Other subjects discussed are the occurrence in the E. coli genome of redundant pairs and groups of genes of identical or closely similar function, as well as variation in the degree of density of genetic information in different parts of the genome.
Collapse
Affiliation(s)
- M Riley
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| |
Collapse
|
8
|
|
9
|
Krey R, Pühler A, Klipp W. A defined amino acid exchange close to the putative nucleotide binding site is responsible for an oxygen-tolerant variant of the Rhizobium meliloti NifA protein. MOLECULAR & GENERAL GENETICS : MGG 1992; 234:433-41. [PMID: 1406589 DOI: 10.1007/bf00538703] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In Rhizobium meliloti the NifA protein plays a central role in the expression of genes involved in nitrogen fixation. The R. meliloti NifA protein has been found to be oxygen sensitive and therefore acts as a transcriptional activator only under microaerobic conditions. In order to generate oxygen-tolerant variants of the NifA protein a plasmid carrying the R. meliloti nifA gene was mutagenized in vitro with hydroxylamine. About 70 mutated nifA genes were isolated which mediated up to 12-fold increased NifA activity at high oxygen concentrations. A cloning procedure involving the combination of DNA fragments from mutated and wild-type nifA genes allowed mapping of the mutation sites within the central part of the nifA gene. For 17 mutated nifA genes the exact mutation sites were determined by DNA sequence analysis. It was found that all 17 mutated nifA genes carried identical guanosine--adenosine mutations resulting in a methionine--isoleucine exchange (M217I) near the putative nucleotide binding site within the central domain. Secondary structure predictions indicated that the conformation of the putative nucleotide binding site may be altered in the oxygen-tolerant NifA proteins. A model is proposed which assumes that at high oxygen concentrations the loss of activity of the R. meliloti NifA protein is due to a conformational change in the nucleotide binding site that may abolish binding or hydrolysis of the nucleotide. Such a conformational change may be blocked in the oxygen-tolerant NifA protein, thus allowing interaction with the nucleotide at high oxygen concentrations.
Collapse
Affiliation(s)
- R Krey
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Germany
| | | | | |
Collapse
|
10
|
Morett E, Fischer HM, Hennecke H. Influence of oxygen on DNA binding, positive control, and stability of the Bradyrhizobium japonicum NifA regulatory protein. J Bacteriol 1991; 173:3478-87. [PMID: 2045367 PMCID: PMC207961 DOI: 10.1128/jb.173.11.3478-3487.1991] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Central to the genetic regulatory circuit that controls Bradyrhizobium japonicum nif and fix gene expression is the NifA protein. NifA activates transcription of several nif and fix genes and autoregulates its expression during symbiosis in soybean root nodules or in free-living microaerobic conditions. High O2 tensions result in the lack of nif expression, possibly by inactivation of NifA through oxidation of an essential metal cofactor. Several B. japonicum nif and fix promoters have upstream activator sequences (UAS) required for optimal activation. The UAS are located more than 100 bp from the -24/-12 promoter and have been proposed to be binding sites for NifA. We investigated the interaction of NifA with the nifD promoter region by using in vivo dimethyl sulfate footprinting. NifA-dependent protection from methylation of the two UAS of this promoter was detected. Footprinting experiments in the presence of rifampin showed that UAS-bound NifA led to the formation of an open nifD promoter-RNA polymerase sigma 54 complex. Shift to aerobic growth resulted in a rapid loss of protection of both the UAS and the promoter, indicating that the DNA-binding and the activation functions of NifA were controlled by the O2 status of the cell. After an almost complete inactivation by oxygen, the NifA protein began to degrade. Furthermore, metal deprivation also caused degradation of NifA. In this case, however, the rates of NifA inactivation and NifA degradation were not clearly distinguishable. The results are discussed in the light of a previously proposed model, according to which the oxidation state of a NifA-metal complex influences the conformation of NifA for both DNA-binding and positive control functions.
Collapse
Affiliation(s)
- E Morett
- Mikrobiologisches Institut, Eidgenössische Technische Hochschule, Zürich, Switzerland
| | | | | |
Collapse
|