1
|
Darji H, Verma N, Lugani Y, Mehrotra P, Sindhu DK, Vemuluri VR. Polyphasic characterization of and genomic insights into a haloalkali-tolerant Saccharibacillus alkalitolerans sp. nov., that produces three cellulase isozymes and several antimicrobial compounds. Antonie van Leeuwenhoek 2021; 114:1043-1057. [PMID: 33913068 DOI: 10.1007/s10482-021-01575-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/01/2021] [Indexed: 10/21/2022]
Abstract
A cellulase producing novel bacterial strain VR-M41T was isolated from an open-air vegetable and fruit market. Cells are found to be rod-shaped, endospore forming, positive for Gram's stain and negative for catalase, oxidase and urease. Strain VR-M41T was halotolerant (upto 8.0% NaCl, w/v), motile and facultative anaerobe. It grew at wide range of pH (6.0-10.0) and temperatures (20-40 °C). Strain VR-M41T produced three isozymes of Carboxymethylcellulase. The 16S rRNA gene sequence of strain VR-M41T was 97.3% similar to both Saccharibacillus kuerlensis DSM 22868T and Saccharibacillus sacchari DSM 19268T, and less than 96.4% with the rest of the valid species of the genus Saccharibacillus. Whole-genome ANI, dDDH and genome phylogenetic tree analysis revealed that strain VR-M41T significantly differed from Saccharibacillus kuerlensis DSM 22868T and Saccharibacillus sacchari DSM 19268T (ANI 79.6-79.7% and dDDH 23.1%). The strain comprised of MK-7 and anteiso-C 15:0 (42.2%) as predominant isoprenoid quinone and fatty acid respectively. Major polar lipids were found to be diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The draft genome of strain VR-M41T consisted of 5,386,426 base pairs with 5103 annotated genes, out of which 2147 corresponded to hypothetical proteins and 2956 with functional assignments. Pan-genome analysis revealed the presence of 2998 core genes, 828 accessory genes, and 1131 unique genes of Saccharibacillus. Strain VR-M41T produced antimicrobials against Staphylococcus aureus, Streptococcus pneumoniae, Micrococcus luteus and Shigella flexneri. Significant phenotypic and genotypic differentiating characteristics from closely related species, indicated that strain VR-M41T is a novel species of the genus Saccharibacillus, for which the name Saccharibacillus alkalitolerans sp. nov., is proposed. The type strain is VR-M41T (= KCTC 43183T=NBRC 114337T).
Collapse
Affiliation(s)
- Himanshu Darji
- Microbial Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Neha Verma
- Microbial Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Chandigarh, 160036, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Yogita Lugani
- Microbial Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Priyam Mehrotra
- Microbial Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Chandigarh, 160036, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Dev Kant Sindhu
- Microbial Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Chandigarh, 160036, India
| | - Venkata Ramana Vemuluri
- Microbial Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Chandigarh, 160036, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
2
|
Ge SM, Xie BE, Chen SF. Characterization of two trpE genes encoding anthranilate synthase alpha-subunit in Azospirillum brasilense. Biochem Biophys Res Commun 2006; 341:494-9. [PMID: 16430864 DOI: 10.1016/j.bbrc.2006.01.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Accepted: 01/04/2006] [Indexed: 10/25/2022]
Abstract
The previous report from our laboratory has recently identified a new trpE gene (termed trpE2) which exists independently in Azospirillum brasilense Yu62. In this study, amplification of trpE(G) (termed trpE1(G) here) confirmed that there are two copies of trpE gene, one trpE being fused into trpG while the other trpE existed independently. This is the first report to suggest that two copies of the trpE gene exist in this bacterium. Comparison of the nucleotide sequence demonstrated that putative leader peptide, terminator, and anti-terminator were found upstream of trpE1(G) while these sequence features did not exist in front of trpE2. The beta-galactosidase activity of an A. brasilense strain carrying a trpE2-lacZ fusion remained constant at different tryptophan concentrations, but the beta-galactosidase activity of the same strain carrying a trpE1(G)-lacZ fusion decreased as the tryptophan concentration increased. These data suggest that the expression of trpE1(G) is regulated at the transcriptional level by attenuation while trpE2 is constantly expressed. The anthranilate synthase assays with trpE1(G)- and trpE2- mutants demonstrated that TrpE1(G) fusion protein is feedback inhibited by tryptophan while TrpE2 protein is not. We also found that both trpE1(G) and trpE2 gene products were involved in IAA synthesis.
Collapse
Affiliation(s)
- Shi-Mei Ge
- College of Biological Sciences and National Key Laboratory for Agrobiotechnology, Key Laboratory of Agro-Microbial and Application, China Agricultural University, Beijing 100094, PR China
| | | | | |
Collapse
|
3
|
Olekhnovich I, Gussin GN. Effects of mutations in the Pseudomonas putida miaA gene: regulation of the trpE and trpGDC operons in P. putida by attenuation. J Bacteriol 2001; 183:3256-60. [PMID: 11325956 PMCID: PMC95228 DOI: 10.1128/jb.183.10.3256-3260.2001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tn5 insertion mutants defective in regulation of the Pseudomonas putida trpE and trpGDC operons by tryptophan were found to contain insertions in the P. putida miaA gene, whose product (in Escherichia coli) modifies tRNA(Trp) and is required for attenuation. Nucleotide sequences upstream of trpE and trpG encode putative leader peptides similar in sequence to leader peptides found in other bacterial species, and the phenotypes of the mutants strongly suggest that transcription of these operons is regulated solely by attenuation.
Collapse
Affiliation(s)
- I Olekhnovich
- Department of Microbiology, Belarus State University, Minsk 220050, Belarus
| | | |
Collapse
|
4
|
Schrögel O, Allmansberger R. Optimisation of the BgaB reporter system: determination of transcriptional regulation of stress responsive genes in Bacillus subtilis. FEMS Microbiol Lett 1997; 153:237-43. [PMID: 9252593 DOI: 10.1111/j.1574-6968.1997.tb10488.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We constructed and characterised a new system to determine transcriptional regulation of genes in Bacillus subtilis. The system is based on the B. stearothermophilus-derived beta-galactosidase BgaB. In contrast to the systems described up to now the BgaB protein is not degraded in response to environmental stresses. We optimised buffer conditions for BgaB assays and developed a protocol which allows measurement of BgaB activity without background problems. To test the system we determined induction of the B. subtilis clpC gene in response to stress. Induction of this gene in response to stress occurred as described.
Collapse
Affiliation(s)
- O Schrögel
- Lehrstuhl für Mikrobiologie, Universität Erlangen, Germany
| | | |
Collapse
|
5
|
Lai CY, Baumann L, Baumann P. Amplification of trpEG: adaptation of Buchnera aphidicola to an endosymbiotic association with aphids. Proc Natl Acad Sci U S A 1994; 91:3819-23. [PMID: 8170994 PMCID: PMC43673 DOI: 10.1073/pnas.91.9.3819] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Survival of aphids is dependent on an association with a prokaryotic endosymbiont (Buchnera aphidicola) found in specialized cells within the aphid body cavity. Recent nutritional and physiological studies have indicated that one of the functions of the endosymbionts is the synthesis of tryptophan [Douglas, A. E. & Prosser, W. A. (1992) J. Insect Physiol. 38, 565-568]. B. aphidicola resembles in many of its properties free-living prokaryotes. An adaptation to an endosymbiosis involving the overproduction of tryptophan would necessitate alterations that modify the effect of regulatory systems that in free-living organisms function to reduce enzyme activity under conditions of excess tryptophan. We have cloned and sequenced the genes for B. aphidicola trpEG encoding anthranilate synthase, the first enzyme of the tryptophan biosynthetic pathway, which in free-living bacteria is feedback-inhibited by tryptophan. Amino acid sequence comparisons indicate that the B. aphidicola enzyme has all of the key residues involved in allosteric feedback inhibition. Evidence is presented indicating that trpEG is present as four tandem repeats on a circular plasmid. Relative to B. aphidicola trpDC(F)BA (the chromosomal genes coding for the remaining enzymes of the tryptophan biosynthetic pathway) trpEG is amplified 14- to 15-fold. These findings suggest that the effect of inhibition by accumulated tryptophan may be overcome by overproduction of anthranilate synthase. Our results demonstrate the acquisition of a new property (gene amplification) as an adaptation to an endosymbiotic association in which B. aphidicola overproduces tryptophan for the aphid host.
Collapse
Affiliation(s)
- C Y Lai
- Microbiology Section, University of California, Davis 95616-8665
| | | | | |
Collapse
|
6
|
Schäferjohann J, Yoo JG, Kusian B, Bowien B. The cbb operons of the facultative chemoautotroph Alcaligenes eutrophus encode phosphoglycolate phosphatase. J Bacteriol 1993; 175:7329-40. [PMID: 8226680 PMCID: PMC206877 DOI: 10.1128/jb.175.22.7329-7340.1993] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The two highly homologous cbb operons of Alcaligenes eutrophus H16 that are located on the chromosome and on megaplasmid pHG1 contain genes encoding several enzymes of the Calvin carbon reduction cycle. Sequence analysis of a region from the promoter-distal part revealed two open reading frames, designated cbbT and cbbZ, at equivalent positions within the operons. Comparisons with known sequences suggested cbbT to encode transketolase (TK; EC 2.2.1.1) as an additional enzyme of the cycle. No significant overall sequence similarities were observed for cbbZ. Although both regions exhibited very high nucleotide identities, 93% (cbbZ) and 96% (cbbT), only the chromosomally encoded genes were heterologously expressed to high levels in Escherichia coli. The molecular masses of the observed gene products, CbbT (74 kDa) and CbbZ (24 kDa), correlated well with the values calculated on the basis of the sequence information. TK activities were strongly elevated in E. coli clones expressing cbbT, confirming the identity of the gene. Strains of E. coli harboring the chromosomal cbbZ gene showed high levels of activity of 2-phosphoglycolate phosphatase (PGP; EC 3.1.3.18), a key enzyme of glycolate metabolism in autotrophic organisms that is not present in wild-type E. coli. Derepression of the cbb operons during autotrophic growth resulted in considerably increased levels of TK activity and the appearance of PGP activity in A. eutrophus, although the pHG1-encoded cbbZ gene was apparently not expressed. To our knowledge, this study represents the first cloning and sequencing of a PGP gene from any organism.
Collapse
Affiliation(s)
- J Schäferjohann
- Institut für Mikrobiologie, Georg-August-Universität Göttingen, Germany
| | | | | | | |
Collapse
|