1
|
Kling JD, Lee MD, Walworth NG, Webb EA, Coelho JT, Wilburn P, Anderson SI, Zhou Q, Wang C, Phan MD, Fu F, Kremer CT, Litchman E, Rynearson TA, Hutchins DA. Dual thermal ecotypes coexist within a nearly genetically identical population of the unicellular marine cyanobacterium Synechococcus. Proc Natl Acad Sci U S A 2023; 120:e2315701120. [PMID: 37972069 PMCID: PMC10665897 DOI: 10.1073/pnas.2315701120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/11/2023] [Indexed: 11/19/2023] Open
Abstract
The extent and ecological significance of intraspecific functional diversity within marine microbial populations is still poorly understood, and it remains unclear if such strain-level microdiversity will affect fitness and persistence in a rapidly changing ocean environment. In this study, we cultured 11 sympatric strains of the ubiquitous marine picocyanobacterium Synechococcus isolated from a Narragansett Bay (RI) phytoplankton community thermal selection experiment. Thermal performance curves revealed selection at cool and warm temperatures had subdivided the initial population into thermotypes with pronounced differences in maximum growth temperatures. Curiously, the genomes of all 11 isolates were almost identical (average nucleotide identities of >99.99%, with >99% of the genome aligning) and no differences in gene content or single nucleotide variants were associated with either cool or warm temperature phenotypes. Despite a very high level of genomic similarity, sequenced epigenomes for two strains showed differences in methylation on genes associated with photosynthesis. These corresponded to measured differences in photophysiology, suggesting a potential pathway for future mechanistic research into thermal microdiversity. Our study demonstrates that present-day marine microbial populations can harbor cryptic but environmentally relevant thermotypes which may increase their resilience to future rising temperatures.
Collapse
Affiliation(s)
- Joshua D. Kling
- Department of Biological Sciences, University of Southern California, Los Angeles, CA90007
| | - Michael D. Lee
- ZOLL Medical Corporation, Chelmsford, MA01824
- Blue Marble Space Institute of Science, Seattle, WA98154
| | - Nathan G. Walworth
- Department of Biological Sciences, University of Southern California, Los Angeles, CA90007
| | - Eric A. Webb
- Department of Biological Sciences, University of Southern California, Los Angeles, CA90007
| | - Jordan T. Coelho
- Department of Biological Sciences, University of Southern California, Los Angeles, CA90007
| | - Paul Wilburn
- ZOLL Medical Corporation, Chelmsford, MA01824
- Kellogg Biological Station, College of Natural Science, Michigan State University, Hickory Corners, MI49060
| | - Stephanie I. Anderson
- Graduate School of Oceanography, The University of Rhode Island, Narragansett, RI02882
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Qianqian Zhou
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian361005, China
| | - Chunguang Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian361005, China
| | - Megan D. Phan
- Department of Biological Sciences, University of Southern California, Los Angeles, CA90007
| | - Feixue Fu
- Department of Biological Sciences, University of Southern California, Los Angeles, CA90007
| | - Colin T. Kremer
- Kellogg Biological Station, College of Natural Science, Michigan State University, Hickory Corners, MI49060
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT06269
| | - Elena Litchman
- Kellogg Biological Station, College of Natural Science, Michigan State University, Hickory Corners, MI49060
- Department of Global Ecology, Carnegie Institution, Stanford University, Palo Alto, CA94305
| | - Tatiana A. Rynearson
- Graduate School of Oceanography, The University of Rhode Island, Narragansett, RI02882
| | - David A. Hutchins
- Department of Biological Sciences, University of Southern California, Los Angeles, CA90007
| |
Collapse
|
2
|
Walworth NG, Lee MD, Dolzhenko E, Fu FX, Smith AD, Webb EA, Hutchins DA. Long-Term m5C Methylome Dynamics Parallel Phenotypic Adaptation in the Cyanobacterium Trichodesmium. Mol Biol Evol 2021; 38:927-939. [PMID: 33022053 PMCID: PMC7947765 DOI: 10.1093/molbev/msaa256] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A major challenge in modern biology is understanding how the effects of short-term biological responses influence long-term evolutionary adaptation, defined as a genetically determined increase in fitness to novel environments. This is particularly important in globally important microbes experiencing rapid global change, due to their influence on food webs, biogeochemical cycles, and climate. Epigenetic modifications like methylation have been demonstrated to influence short-term plastic responses, which ultimately impact long-term adaptive responses to environmental change. However, there remains a paucity of empirical research examining long-term methylation dynamics during environmental adaptation in nonmodel, ecologically important microbes. Here, we show the first empirical evidence in a marine prokaryote for long-term m5C methylome modifications correlated with phenotypic adaptation to CO2, using a 7-year evolution experiment (1,000+ generations) with the biogeochemically important marine cyanobacterium Trichodesmium. We identify m5C methylated sites that rapidly changed in response to high (750 µatm) CO2 exposure and were maintained for at least 4.5 years of CO2 selection. After 7 years of CO2 selection, however, m5C methylation levels that initially responded to high-CO2 returned to ancestral, ambient CO2 levels. Concurrently, high-CO2 adapted growth and N2 fixation rates remained significantly higher than those of ambient CO2 adapted cell lines irrespective of CO2 concentration, a trend consistent with genetic assimilation theory. These data demonstrate the maintenance of CO2-responsive m5C methylation for 4.5 years alongside phenotypic adaptation before returning to ancestral methylation levels. These observations in a globally distributed marine prokaryote provide critical evolutionary insights into biogeochemically important traits under global change.
Collapse
Affiliation(s)
- Nathan G Walworth
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Michael D Lee
- Exobiology Branch, NASA Ames Research Center, Mountain View, CA, USA
- Blue Marble Space Institute of Science, Seattle, WA, 98154, USA
| | - Egor Dolzhenko
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Fei-Xue Fu
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Andrew D Smith
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Eric A Webb
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - David A Hutchins
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Hagemann M, Gärtner K, Scharnagl M, Bolay P, Lott SC, Fuss J, Huettel B, Reinhardt R, Klähn S, Hess WR. Identification of the DNA methyltransferases establishing the methylome of the cyanobacterium Synechocystis sp. PCC 6803. DNA Res 2018; 25:343-352. [PMID: 29444255 PMCID: PMC6105098 DOI: 10.1093/dnares/dsy006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/24/2018] [Indexed: 11/12/2022] Open
Abstract
DNA methylation in bacteria is important for defense against foreign DNA, but is also involved in DNA repair, replication, chromosome partitioning, and regulatory processes. Thus, characterization of the underlying DNA methyltransferases in genetically tractable bacteria is of paramount importance. Here, we characterized the methylome and orphan methyltransferases in the model cyanobacterium Synechocystis sp. PCC 6803. Single molecule real-time (SMRT) sequencing revealed four DNA methylation recognition sequences in addition to the previously known motif m5CGATCG, which is recognized by M.Ssp6803I. For three of the new recognition sequences, we identified the responsible methyltransferases. M.Ssp6803II, encoded by the sll0729 gene, modifies GGm4CC, M.Ssp6803III, encoded by slr1803, represents the cyanobacterial dam-like methyltransferase modifying Gm6ATC, and M.Ssp6803V, encoded by slr6095 on plasmid pSYSX, transfers methyl groups to the bipartite motif GGm6AN7TTGG/CCAm6AN7TCC. The remaining methylation recognition sequence GAm6AGGC is probably recognized by methyltransferase M.Ssp6803IV encoded by slr6050. M.Ssp6803III and M.Ssp6803IV were essential for the viability of Synechocystis, while the strains lacking M.Ssp6803I and M.Ssp6803V showed growth similar to the wild type. In contrast, growth was strongly diminished of the Δsll0729 mutant lacking M.Ssp6803II. These data provide the basis for systematic studies on the molecular mechanisms impacted by these methyltransferases.
Collapse
Affiliation(s)
- Martin Hagemann
- Institute of Biosciences, Plant Physiology, University of Rostock, Rostock, Germany
| | - Katrin Gärtner
- Institute of Biosciences, Plant Physiology, University of Rostock, Rostock, Germany
| | - Matthias Scharnagl
- Institute of Biosciences, Plant Physiology, University of Rostock, Rostock, Germany
| | - Paul Bolay
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Steffen C Lott
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Janina Fuss
- Max Planck-Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Bruno Huettel
- Max Planck-Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Richard Reinhardt
- Max Planck-Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Stephan Klähn
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Wolfgang R Hess
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Freiburg Institute for Advanced Studies, University of Freiburg, Germany
| |
Collapse
|
4
|
Walworth NG, Hutchins DA, Dolzhenko E, Lee MD, Fu F, Smith AD, Webb EA. Biogeographic conservation of the cytosine epigenome in the globally important marine, nitrogen-fixing cyanobacterium Trichodesmium. Environ Microbiol 2017; 19:4700-4713. [PMID: 28925547 DOI: 10.1111/1462-2920.13934] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/07/2017] [Accepted: 08/30/2017] [Indexed: 01/31/2023]
Abstract
Cytosine methylation has been shown to regulate essential cellular processes and impact biological adaptation. Despite its evolutionary importance, only a handful of bacterial, genome-wide cytosine studies have been conducted, with none for marine bacteria. Here, we examine the genome-wide, C5 -Methyl-cytosine (m5C) methylome and its correlation to global transcription in the marine nitrogen-fixing cyanobacterium Trichodesmium. We characterize genome-wide methylation and highlight conserved motifs across three Trichodesmium isolates and two Trichodesmium metagenomes, thereby identifying highly conserved, novel genomic signatures of potential gene regulation in Trichodesmium. Certain gene bodies with the highest methylation levels correlate with lower expression levels. Several methylated motifs were highly conserved across spatiotemporally separated Trichodesmium isolates, thereby elucidating biogeographically conserved methylation potential. These motifs were also highly conserved in Trichodesmium metagenomic samples from natural populations suggesting them to be potential in situ markers of m5C methylation. Using these data, we highlight predicted roles of cytosine methylation in global cellular metabolism providing evidence for a 'core' m5C methylome spanning different ocean regions. These results provide important insights into the m5C methylation landscape and its biogeochemical implications in an important marine N2 -fixer, as well as advancing evolutionary theory examining methylation influences on adaptation.
Collapse
Affiliation(s)
- Nathan G Walworth
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - David A Hutchins
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Egor Dolzhenko
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Michael D Lee
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Feixue Fu
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Andrew D Smith
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Eric A Webb
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| |
Collapse
|
5
|
Wilson WH, Joint IR, Carr NG, Mann NH. Isolation and Molecular Characterization of Five Marine Cyanophages Propagated on Synechococcus sp. Strain WH7803. Appl Environ Microbiol 2010; 59:3736-43. [PMID: 16349088 PMCID: PMC182525 DOI: 10.1128/aem.59.11.3736-3743.1993] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Five marine cyanophages propagated on Synechococcus sp. strain WH7803 were isolated from three different oceanographic provinces during the months of August and September 1992: coastal water from the Sargasso Sea, Bermuda; Woods Hole harbor, Woods Hole, Mass.; and coastal water from the English Channel, off Plymouth Sound, United Kingdom. The five cyanophage isolates were found to belong to two families, Myoviridae and Styloviridae, on the basis of their morphology observed in the transmission electron microscope. DNA purified from each of the cyanophage isolates was restricted with a selection of restriction endonucleases, and three distinguishably different patterns were observed. DNA isolated from Myoviridae isolates from Bermuda and the English Channel had highly related restriction patterns, as did DNA isolated from Styloviridae isolates from Bermuda and the English Channel. DNA isolated from the Myoviridae isolate from Woods Hole had a unique restriction pattern. The genome size for each of the Myoviridae isolates was ca. 80 to 85 kb, and it was ca. 90 to 100 kb for each of the Styloviridae isolates. Southern blotting analysis revealed that there was a limited degree of homology among all cyanophage DNAs probed, but clear differences were observed between cyanophage DNA from the Myoviridae and that from the Styloviridae isolates. Polypeptide analysis revealed a clear difference between Myoviridae and Styloviridae polypeptide profiles, although the major, presumably structural, protein in each case was ca. 53 to 54 kDa.
Collapse
Affiliation(s)
- W H Wilson
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, and Plymouth Marine Laboratory, Plymouth PL1 3DH, United Kingdom
| | | | | | | |
Collapse
|
6
|
Microbial community gene expression within colonies of the diazotroph, Trichodesmium, from the Southwest Pacific Ocean. ISME JOURNAL 2009; 3:1286-300. [PMID: 19571897 DOI: 10.1038/ismej.2009.75] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Trichodesmium are responsible for a large fraction of open ocean nitrogen fixation, and are often found in complex consortia of other microorganisms, including viruses, prokaryotes, microbial eukaryotes and metazoa. We applied a community gene expression (metatranscriptomic) approach to study the patterns of microbial gene utilization within colonies of Trichodesmium collected during a bloom in the Southwest Pacific Ocean in April 2007. The survey generated 5711-day and 5385-night putative mRNA reads. The majority of mRNAs were from the co-occurring microorganisms and not Trichodesmium, including other cyanobacteria, heterotrophic bacteria, eukaryotes and phage. Most transcripts did not share homology with proteins from cultivated microorganisms, but were similar to shotgun sequences and unannotated proteins from open ocean metagenomic surveys. Trichodesmium transcripts were mostly expressed photosynthesis, N(2) fixation and S-metabolism genes, whereas those in the co-occurring microorganisms were mostly involved in genetic information storage and processing. Detection of Trichodesmium genes involved in P uptake and As detoxification suggest that local enrichment of N through N(2) fixation may lead to a P-stress response. Although containing similar dominant transcripts to open ocean metatranscriptomes, the overall pattern of gene expression in Trichodesmium colonies was distinct from free-living pelagic assemblages. The identifiable genes expressed by Trichodesmium and closely associated microorganisms reflect the constraints of life in well-lit and nutrient-poor waters, with biosynthetic investment in nutrient acquisition and cell maintenance, which is in contrast to gene transcription by soil and coastal seawater microbial assemblages. The results provide insight into aggregate microbial communities in contrast to planktonic free-living assemblages that are the focus of other studies.
Collapse
|
7
|
Schyns G, Rippka R, Namane A, Campbell D, Herdman M, Houmard J. Prochlorothrix hollandica PCC 9006: genomic properties of an axenic representative of the chlorophyll a/b-containing oxyphotobacteria. Res Microbiol 1997; 148:345-54. [PMID: 9765813 DOI: 10.1016/s0923-2508(97)81590-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Prochlorothrix hollandica is an oxygenic photosynthetic prokaryote that differs from the cyanobacteria in having chlorophyll a/b-protein complexes instead of phycobilisomes as major light-harvesting antennae. We report the isolation and culturing of an axenic strain of P. hollandica, available from the Pasteur Culture Collection of Cyanobacteria as strain PCC 9006. The strain has a mean DNA base composition of 51.6 +/- 0.1 mol% G+C and a genomic complexity of 3.37 +/- 0.17 x 10(9) daltons (5,505 kb). A reiterated DNA sequence represents approximately 4.4% of the genome. Restriction enzyme isoschizomers with different sensitivities to base methylation were used to demonstrate that most A residues in the sequence GATC are methylated in P. hollandica DNA and that this methylation increases with culture age. Furthermore, some C residues are methylated, although the specificity of the C methylation system does not match that of well-characterized C methylases. Nucleotide analysis showed that up to approximately 3.5% of both dA and dC residues are methylated in P. hollandica DNA.
Collapse
Affiliation(s)
- G Schyns
- Unité de Physiologie microbienne (CNRS URA 1129), Institut Pasteur, Paris
| | | | | | | | | | | |
Collapse
|
8
|
Sroga GE, Landegren U, Bergman B, Lagerström-Fermér M. Isolation of nifH and part of nifD by modified capture polymerase chain reaction from a natural population of the marine cyanobacterium Trichodesmium sp. FEMS Microbiol Lett 1996; 136:137-45. [PMID: 8869497 DOI: 10.1111/j.1574-6968.1996.tb08039.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A modified capture polymerase chain reaction (CPCR) technique was used to isolate the entire sequence of the nifH gene and its flanking regions from a natural population of Trichodesmium sp. A set of specific CPCR primers derived from a known 72-bp DNA segment of the nifH sequence permitted isolation of both the upstream and the downstream region of Trichodesmium sp. nifH. The 882-bp nifH gene presented here is the first full-length gene isolated from Trichodesmium sp. A sequence similar to a nif-like promoter was found in front of nifH. The nifH open reading frame of Trichodesmium sp. encoded 294 amino acids. Comparative analysis of the Trichodesmium sp. NifH sequence revealed strong similarity with 23 known NifH proteins. Amino acids postulated to be involved in binding of the 4Fe:4S cluster and those subjected to ADP-ribosylation were present. An open reading frame for the nifD gene was identified 189 bp downstream of nifH. A sequence similar to the consensus of the nif-like promoter was also found in front of nifD.
Collapse
Affiliation(s)
- G E Sroga
- Department of Biochemistry, Uppsala Biomedical Center, Sweden
| | | | | | | |
Collapse
|
9
|
Soper BW, Reddy KJ. Identification of a nuclease and host restriction-modification in the unicellular, aerobic nitrogen-fixing cyanobacterium Cyanothece sp. J Bacteriol 1994; 176:5565-70. [PMID: 8071241 PMCID: PMC196751 DOI: 10.1128/jb.176.17.5565-5570.1994] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In the process of developing a gene transfer system for the marine, unicellular, nitrogen-fixing cyanobacterium Cyanothece sp. strain BH68K, two major restriction barriers have been identified. A cell wall-associated nuclease exhibited non-site-specific degradation of covalently closed circular and linear double-stranded DNA molecules, including Cyanothece sp. strain BH68K chromosomal DNA. The nuclease is easily released from intact cells by using water or buffer containing Triton X-100. Nuclease activity was undetectable in cell extracts prepared from water-washed cells. Comparison of the restriction endonuclease susceptibility of Cyanothece sp. strain BH68K DNA to that of Anabaena sp. strain PCC 7120 revealed that these organisms have a nearly identical pattern of restriction and therefore may contain similar systems for DNA methylation. Restriction by DpnI, MboI, and Sau3AI indicated the presence of adenine methylation. Cyanothece sp. strain BH68K cell extracts contain a type II restriction endonuclease, Csp68KI. The activity of Csp68KI was easily detected in cell extracts without extensive purification. Csp68KI is an isoschizomer of AvaII and recognizes the nucleotide sequence 5'-GG(A/T)CC-3'. Cleavage occurs between the guanosine nucleotides producing 3-bp 5' overhang ends.
Collapse
Affiliation(s)
- B W Soper
- Department of Biological Sciences, State University of New York-Binghamton 13902
| | | |
Collapse
|