1
|
Shi J, Feng Z, Song Q, Wang F, Zhang Z, Liu J, Li F, Wen A, Liu T, Ye Z, Zhang C, Das K, Wang S, Feng Y, Lin W. Structural and functional insights into transcription activation of the essential LysR-type transcriptional regulators. Protein Sci 2024; 33:e5012. [PMID: 38723180 PMCID: PMC11081524 DOI: 10.1002/pro.5012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
The enormous LysR-type transcriptional regulators (LTTRs), which are diversely distributed amongst prokaryotes, play crucial roles in transcription regulation of genes involved in basic metabolic pathways, virulence and stress resistance. However, the precise transcription activation mechanism of these genes by LTTRs remains to be explored. Here, we determine the cryo-EM structure of a LTTR-dependent transcription activation complex comprising of Escherichia coli RNA polymerase (RNAP), an essential LTTR protein GcvA and its cognate promoter DNA. Structural analysis shows two N-terminal DNA binding domains of GcvA (GcvA_DBD) dimerize and engage the GcvA activation binding sites, presenting the -35 element for specific recognition with the conserved σ70R4. In particular, the versatile C-terminal domain of α subunit of RNAP directly interconnects with GcvA_DBD, σ70R4 and promoter DNA, providing more interfaces for stabilizing the complex. Moreover, molecular docking supports glycine as one potential inducer of GcvA, and single molecule photobleaching experiments kinetically visualize the occurrence of tetrameric GcvA-engaged transcription activation complex as suggested for the other LTTR homologs. Thus, a general model for tetrameric LTTR-dependent transcription activation is proposed. These findings will provide new structural and functional insights into transcription activation of the essential LTTRs.
Collapse
Affiliation(s)
- Jing Shi
- Department of Pathogen BiologySchool of Medicine, Nanjing University of Chinese MedicineNanjingChina
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Zhenzhen Feng
- Department of Pathogen BiologySchool of Medicine, Nanjing University of Chinese MedicineNanjingChina
| | - Qian Song
- Department of Pathogen BiologySchool of Medicine, Nanjing University of Chinese MedicineNanjingChina
| | - Fulin Wang
- Department of Pathogen BiologySchool of Medicine, Nanjing University of Chinese MedicineNanjingChina
| | - Zhipeng Zhang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal UniversityGuangzhouGuangdongChina
- Guangdong Key Laboratory of Laser Life ScienceCollege of Biophotonics, South China Normal UniversityGuangzhouGuangdongChina
- Songshan Lake Materials LaboratoryDongguanGuangdongChina
| | - Jian Liu
- Department of Pathogen BiologySchool of Medicine, Nanjing University of Chinese MedicineNanjingChina
| | - Fangfang Li
- Department of Pathogen BiologySchool of Medicine, Nanjing University of Chinese MedicineNanjingChina
| | - Aijia Wen
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Tianyu Liu
- Department of Pathogen BiologySchool of Medicine, Nanjing University of Chinese MedicineNanjingChina
| | - Zonghang Ye
- Department of Pathogen BiologySchool of Medicine, Nanjing University of Chinese MedicineNanjingChina
| | - Chao Zhang
- Department of Pathogen BiologySchool of Medicine, Nanjing University of Chinese MedicineNanjingChina
| | - Kalyan Das
- Rega Institute for Medical Research, Department of MicrobiologyImmunology and Transplantation, KU LeuvenLeuvenBelgium
| | - Shuang Wang
- Songshan Lake Materials LaboratoryDongguanGuangdongChina
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of Physics, Chinese Academy of SciencesBeijingChina
| | - Yu Feng
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - Wei Lin
- Department of Pathogen BiologySchool of Medicine, Nanjing University of Chinese MedicineNanjingChina
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiChina
- Nanjing Drum Tower Hospital Clinical College, Nanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
2
|
Favate JS, Liang S, Cope AL, Yadavalli SS, Shah P. The landscape of transcriptional and translational changes over 22 years of bacterial adaptation. eLife 2022; 11:e81979. [PMID: 36214449 PMCID: PMC9645810 DOI: 10.7554/elife.81979] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/07/2022] [Indexed: 12/31/2022] Open
Abstract
Organisms can adapt to an environment by taking multiple mutational paths. This redundancy at the genetic level, where many mutations have similar phenotypic and fitness effects, can make untangling the molecular mechanisms of complex adaptations difficult. Here, we use the Escherichia coli long-term evolution experiment (LTEE) as a model to address this challenge. To understand how different genomic changes could lead to parallel fitness gains, we characterize the landscape of transcriptional and translational changes across 12 replicate populations evolving in parallel for 50,000 generations. By quantifying absolute changes in mRNA abundances, we show that not only do all evolved lines have more mRNAs but that this increase in mRNA abundance scales with cell size. We also find that despite few shared mutations at the genetic level, clones from replicate populations in the LTEE are remarkably similar in their gene expression patterns at both the transcriptional and translational levels. Furthermore, we show that the majority of the expression changes are due to changes at the transcriptional level with very few translational changes. Finally, we show how mutations in transcriptional regulators lead to consistent and parallel changes in the expression levels of downstream genes. These results deepen our understanding of the molecular mechanisms underlying complex adaptations and provide insights into the repeatability of evolution.
Collapse
Affiliation(s)
- John S Favate
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
| | - Shun Liang
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
| | - Alexander L Cope
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
- Robert Wood Johnson Medical School, Rutgers UniversityNew BrunswickUnited States
| | - Srujana S Yadavalli
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
- Waksman Institute, Rutgers UniversityPiscatawayUnited States
| | - Premal Shah
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
- Human Genetics Institute of New Jersey, Rutgers UniversityPiscatawayUnited States
| |
Collapse
|
3
|
Yadav U, Sundd M. Backbone chemical shift assignments of the glycine cleavage complex H protein of Escherichia coli. BIOMOLECULAR NMR ASSIGNMENTS 2018; 12:163-165. [PMID: 29335837 DOI: 10.1007/s12104-018-9801-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/05/2018] [Indexed: 06/07/2023]
Abstract
Glycine cleavage complex H protein (GcvH) is one of the four components that form the glycine cleavage complex (GCS), essential for the synthesis of C1 (one-carbon units) for cell metabolism, by the oxidative cleavage of glycine. The activity of this complex is induced in the presence of exogenous glycine, and is repressed by purines. GCS, in cooperation with GCA (serine hydroxymethyltransferase) regulates the endogenous levels of glycine and C1 units in the cell. GcvH, the lipoamide containing component of the complex, plays an indispensable role in this reaction, as its prosthetic group shuttles between the active site of the three other components of the GCS complex sequentially. In environments rich in exogenous lipoic acid, GcvH is converted to lipoyl-GcvH by Lipoate protein ligase (LplA), by the salvage pathway. When exogenous lipoic acid is deficient, it is post-translationally modified to lipoyl-GcvH by the consecutive action of two enzymes, (a) Lipoate protein ligase B (LipB) and (b) Lipoyl synthase (LipA). Although, the crystal structure has been determined for Escherichia coli GcvH, no information exists for its interaction with LipB or LipA. Therefore, we plan to study its interactions with the aforementioned enzymes. As a first step, we have carried out the complete backbone chemical shift assignments of the E. coli glycine cleavage complex H protein in its apo-form, as well as its C8- intermediate.
Collapse
Affiliation(s)
- Usha Yadav
- National Institute of Immunology, Aruna Asaf Ali Marg, JNU Campus, New Delhi, 110 067, India
| | - Monica Sundd
- National Institute of Immunology, Aruna Asaf Ali Marg, JNU Campus, New Delhi, 110 067, India.
| |
Collapse
|
4
|
Cao X, Hong Y, Zhu L, Hu Y, Cronan JE. Development and retention of a primordial moonlighting pathway of protein modification in the absence of selection presents a puzzle. Proc Natl Acad Sci U S A 2018; 115:647-655. [PMID: 29339506 PMCID: PMC5789953 DOI: 10.1073/pnas.1718653115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Lipoic acid is synthesized by a remarkably atypical pathway in which the cofactor is assembled on its cognate proteins. An octanoyl moiety diverted from fatty acid synthesis is covalently attached to the acceptor protein, and sulfur insertion at carbons 6 and 8 of the octanoyl moiety form the lipoyl cofactor. Covalent attachment of this cofactor is required for function of several central metabolism enzymes, including the glycine cleavage H protein (GcvH). In Bacillus subtilis, GcvH is the sole substrate for lipoate assembly. Hence lipoic acid-requiring 2-oxoacid dehydrogenase (OADH) proteins acquire the cofactor only by transfer from lipoylated GcvH. Lipoyl transfer has been argued to be the primordial pathway of OADH lipoylation. The Escherichia coli pathway where lipoate is directly assembled on both its GcvH and OADH proteins, is proposed to have arisen later. Because roughly 3 billion years separate the divergence of these bacteria, it is surprising that E. coli GcvH functionally substitutes for the B. subtilis protein in lipoyl transfer. Known and putative GcvHs from other bacteria and eukaryotes also substitute for B. subtilis GcvH in OADH modification. Because glycine cleavage is the primary GcvH role in ancestral bacteria that lack OADH enzymes, lipoyl transfer is a "moonlighting" function: that is, development of a new function while retaining the original function. This moonlighting has been conserved in the absence of selection by some, but not all, GcvH proteins. Moreover, Aquifex aeolicus encodes five putative GcvHs, two of which have the moonlighting function, whereas others function only in glycine cleavage.
Collapse
Affiliation(s)
- Xinyun Cao
- Department of Biochemistry, University of Illinois at Urbana-Champagne, Urbana, IL 61801
| | - Yaoqin Hong
- Department of Microbiology, University of Illinois at Urbana-Champagne, Urbana, IL 61801
| | - Lei Zhu
- Department of Microbiology, University of Illinois at Urbana-Champagne, Urbana, IL 61801
| | - Yuanyuan Hu
- Department of Biochemistry, University of Illinois at Urbana-Champagne, Urbana, IL 61801
| | - John E Cronan
- Department of Biochemistry, University of Illinois at Urbana-Champagne, Urbana, IL 61801;
- Department of Microbiology, University of Illinois at Urbana-Champagne, Urbana, IL 61801
| |
Collapse
|
5
|
Oliver P, Peralta-Gil M, Tabche ML, Merino E. Molecular and structural considerations of TF-DNA binding for the generation of biologically meaningful and accurate phylogenetic footprinting analysis: the LysR-type transcriptional regulator family as a study model. BMC Genomics 2016; 17:686. [PMID: 27567672 PMCID: PMC5002191 DOI: 10.1186/s12864-016-3025-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/18/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The goal of most programs developed to find transcription factor binding sites (TFBSs) is the identification of discrete sequence motifs that are significantly over-represented in a given set of sequences where a transcription factor (TF) is expected to bind. These programs assume that the nucleotide conservation of a specific motif is indicative of a selective pressure required for the recognition of a TF for its corresponding TFBS. Despite their extensive use, the accuracies reached with these programs remain low. In many cases, true TFBSs are excluded from the identification process, especially when they correspond to low-affinity but important binding sites of regulatory systems. RESULTS We developed a computational protocol based on molecular and structural criteria to perform biologically meaningful and accurate phylogenetic footprinting analyses. Our protocol considers fundamental aspects of the TF-DNA binding process, such as: i) the active homodimeric conformations of TFs that impose symmetric structures on the TFBSs, ii) the cooperative binding of TFs, iii) the effects of the presence or absence of co-inducers, iv) the proximity between two TFBSs or one TFBS and a promoter that leads to very long spurious motifs, v) the presence of AT-rich sequences not recognized by the TF but that are required for DNA flexibility, and vi) the dynamic order in which the different binding events take place to determine a regulatory response (i.e., activation or repression). In our protocol, the abovementioned criteria were used to analyze a profile of consensus motifs generated from canonical Phylogenetic Footprinting Analyses using a set of analysis windows of incremental sizes. To evaluate the performance of our protocol, we analyzed six members of the LysR-type TF family in Gammaproteobacteria. CONCLUSIONS The identification of TFBSs based exclusively on the significance of the over-representation of motifs in a set of sequences might lead to inaccurate results. The consideration of different molecular and structural properties of the regulatory systems benefits the identification of TFBSs and enables the development of elaborate, biologically meaningful and precise regulatory models that offer a more integrated view of the dynamics of the regulatory process of transcription.
Collapse
Affiliation(s)
- Patricia Oliver
- Departmento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Martín Peralta-Gil
- Escuela Superior de Apan de la Universidad Autónoma del Estado de Hidalgo, Carretera Apan-Calpulalpan, Km 8, Chimalpa Tlalayote s/n, Colonia Chimalpa, Apan, Hidalgo, México
| | - María-Luisa Tabche
- Departmento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Enrique Merino
- Departmento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.
| |
Collapse
|
6
|
Waditee-Sirisattha R, Kageyama H, Tanaka Y, Fukaya M, Takabe T. Overexpression of halophilic serine hydroxymethyltransferase in fresh water cyanobacterium Synechococcus elongatus PCC7942 results in increased enzyme activities of serine biosynthetic pathways and enhanced salinity tolerance. Arch Microbiol 2016; 199:29-35. [PMID: 27443667 DOI: 10.1007/s00203-016-1271-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/01/2016] [Accepted: 07/14/2016] [Indexed: 11/30/2022]
Abstract
Serine hydroxymethyltransferase (SHMT) catalyzes the conversion of serine to glycine and provides activated one-carbon units required for synthesis of nucleic acids, proteins and numerous biological compounds. SHMT is involved in photorespiratory pathway of oxygenic photosynthetic organisms. Accumulating evidence revealed that SHMT plays vital role for abiotic stresses such as low CO2 and high salinity in plants, but its role in cyanobacteria remains to be clarified. In this study, we examined to overexpress the SHMT from halotolerant cyanobacterium Aphanothece halophytica in freshwater cyanobacterium, Synechococcus elongatus PCC7942. The transformed cells did not show an obvious phenotype under non-stress condition, but exhibited more tolerance to salinity than the control cells harboring vector only under high salinity. Elevated levels of enzymes in phosphorylated serine biosynthetic pathway and photorespiration pathway were observed in the transformed cells. Glycine level was also increased in the transformed cells. Physiological roles of SHMT for salt tolerance were discussed.
Collapse
Affiliation(s)
- Rungaroon Waditee-Sirisattha
- Research Institute of Meijo University, Nagoya, 468-8502, Japan
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok, 10330, Thailand
| | - Hakuto Kageyama
- Graduate School of Environmental and Human Sciences, Meijo University, Nagoya, 468-8502, Japan
| | - Yoshito Tanaka
- Graduate School of Environmental and Human Sciences, Meijo University, Nagoya, 468-8502, Japan
| | - Minoru Fukaya
- Faculty of Science and Technology, Meijo University, Nagoya, 468-8502, Japan
| | - Teruhiro Takabe
- Research Institute of Meijo University, Nagoya, 468-8502, Japan.
- Graduate School of Environmental and Human Sciences, Meijo University, Nagoya, 468-8502, Japan.
| |
Collapse
|
7
|
Abstract
Two vitamins, biotin and lipoic acid, are essential in all three domains of life. Both coenzymes function only when covalently attached to key metabolic enzymes. There they act as "swinging arms" that shuttle intermediates between two active sites (= covalent substrate channeling) of key metabolic enzymes. Although biotin was discovered over 100 years ago and lipoic acid 60 years ago, it was not known how either coenzyme is made until recently. In Escherichia coli the synthetic pathways for both coenzymes have now been worked out for the first time. The late steps of biotin synthesis, those involved in assembling the fused rings, were well described biochemically years ago, although recent progress has been made on the BioB reaction, the last step of the pathway in which the biotin sulfur moiety is inserted. In contrast, the early steps of biotin synthesis, assembly of the fatty acid-like "arm" of biotin were unknown. It has now been demonstrated that the arm is made by using disguised substrates to gain entry into the fatty acid synthesis pathway followed by removal of the disguise when the proper chain length is attained. The BioC methyltransferase is responsible for introducing the disguise, and the BioH esterase is responsible for its removal. In contrast to biotin, which is attached to its cognate proteins as a finished molecule, lipoic acid is assembled on its cognate proteins. An octanoyl moiety is transferred from the octanoyl acyl carrier protein of fatty acid synthesis to a specific lysine residue of a cognate protein by the LipB octanoyltransferase followed by sulfur insertion at carbons C-6 and C-8 by the LipA lipoyl synthetase. Assembly on the cognate proteins regulates the amount of lipoic acid synthesized, and, thus, there is no transcriptional control of the synthetic genes. In contrast, transcriptional control of the biotin synthetic genes is wielded by a remarkably sophisticated, yet simple, system, exerted through BirA, a dual-function protein that both represses biotin operon transcription and ligates biotin to its cognate proteins.
Collapse
|
8
|
Abstract
Two vitamins, biotin and lipoic acid, are essential in all three domains of life. Both coenzymes function only when covalently attached to key metabolic enzymes. There they act as "swinging arms" that shuttle intermediates between two active sites (= covalent substrate channeling) of key metabolic enzymes. Although biotin was discovered over 100 years ago and lipoic acid was discovered 60 years ago, it was not known how either coenzyme is made until recently. In Escherichia coli the synthetic pathways for both coenzymes have now been worked out for the first time. The late steps of biotin synthesis, those involved in assembling the fused rings, were well described biochemically years ago, although recent progress has been made on the BioB reaction, the last step of the pathway, in which the biotin sulfur moiety is inserted. In contrast, the early steps of biotin synthesis, assembly of the fatty acid-like "arm" of biotin, were unknown. It has now been demonstrated that the arm is made by using disguised substrates to gain entry into the fatty acid synthesis pathway followed by removal of the disguise when the proper chain length is attained. The BioC methyltransferase is responsible for introducing the disguise and the BioH esterase for its removal. In contrast to biotin, which is attached to its cognate proteins as a finished molecule, lipoic acid is assembled on its cognate proteins. An octanoyl moiety is transferred from the octanoyl-ACP of fatty acid synthesis to a specific lysine residue of a cognate protein by the LipB octanoyl transferase, followed by sulfur insertion at carbons C6 and C8 by the LipA lipoyl synthetase. Assembly on the cognate proteins regulates the amount of lipoic acid synthesized, and thus there is no transcriptional control of the synthetic genes. In contrast, transcriptional control of the biotin synthetic genes is wielded by a remarkably sophisticated, yet simple, system exerted through BirA, a dual-function protein that both represses biotin operon transcription and ligates biotin to its cognate protein.
Collapse
|
9
|
Abstract
The biosynthesis of serine, glycine, and one-carbon (C1) units constitutes a major metabolic pathway in Escherichia coli and Salmonella enterica serovar Typhimurium. C1 units derived from serine and glycine are used in the synthesis of purines, histidine, thymine, pantothenate, and methionine and in the formylation of the aminoacylated initiator fMet-TRNAfMet used to start translation in E. coli and serovar Typhimurium. The need for serine, glycine, and C1 units in many cellular functions makes it necessary for the genes encoding enzymes for their synthesis to be carefully regulated to meet the changing demands of the cell for these intermediates. This review discusses the regulation of the following genes: serA, serB, and serC; gly gene; gcvTHP operon; lpdA; gcvA and gcvR; and gcvB genes. Threonine utilization (the Tut cycle) constitutes a secondary pathway for serine and glycine biosynthesis. L-Serine inhibits the growth of E. coli cells in GM medium, and isoleucine releases this growth inhibition. The E. coli glycine transport system (Cyc) has been shown to transport glycine, D-alanine, D-serine, and the antibiotic D-cycloserine. Transport systems often play roles in the regulation of gene expression, by transporting effector molecules into the cell, where they are sensed by soluble or membrane-bound regulatory proteins.
Collapse
|
10
|
Tereshina EV, Laskavy VN, Ivanenko SI. Four components of the conjugated redox system in organisms: Carbon, nitrogen, sulfur, oxygen. BIOCHEMISTRY (MOSCOW) 2015; 80:1186-200. [DOI: 10.1134/s0006297915090096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
11
|
Genetic manipulations restored the growth fitness of reduced-genome Escherichia coli. J Biosci Bioeng 2013; 116:52-8. [DOI: 10.1016/j.jbiosc.2013.01.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 01/16/2013] [Accepted: 01/20/2013] [Indexed: 11/18/2022]
|
12
|
Waditee-Sirisattha R, Sittipol D, Tanaka Y, Takabe T. Overexpression of serine hydroxymethyltransferase from halotolerant cyanobacterium in Escherichia coli results in increased accumulation of choline precursors and enhanced salinity tolerance. FEMS Microbiol Lett 2012; 333:46-53. [PMID: 22587350 DOI: 10.1111/j.1574-6968.2012.02597.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 05/09/2012] [Accepted: 05/11/2012] [Indexed: 11/29/2022] Open
Abstract
Serine hydroxymethyltransferase (SHMT) is a key enzyme in cellular one-carbon pathway and has been studied in many living organisms from bacteria to higher plants and mammals. However, biochemical and molecular characterization of SHMT from photoautotrophic microorganisms remains a challenge. Here, we isolated the SHMT gene from a halotolerant cyanobacterium Aphanothece halophytica (ApSHMT) and expressed it in Escherichia coli. Purified recombinant ApSHMT protein exhibited catalytic reactions for dl-threo-3-phenylserine as well as for l-serine. Catalytic reaction for l-serine was strongly inhibited by NaCl, but not to that level with glycine betaine. Overexpression of ApSHMT in E. coli resulted in the increased accumulation of glycine and serine. Choline and glycine betaine levels were also significantly increased. Under high salinity, the growth rate of ApSHMT-expressing cells was faster compared to its respective control. High salinity also strongly induced the transcript level of ApSHMT in A. halophytica. Our results indicate the importance of a novel pathway; salt-induced ApSHMT increased the level of glycine betaine via serine and choline and conferred the tolerance to salinity stress.
Collapse
|
13
|
Stauffer LT, Stauffer GV. Antagonistic Roles for GcvA and GcvB in hdeAB Expression in Escherichia coli. ISRN MICROBIOLOGY 2012; 2012:697308. [PMID: 23762759 PMCID: PMC3658693 DOI: 10.5402/2012/697308] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 03/14/2012] [Indexed: 11/23/2022]
Abstract
In E. coli, the periplasmic proteins HdeA and HdeB have chaperone-like functions, suppressing aggregation of periplasmic proteins under acidic conditions. A microarray analysis of RNA isolated from an E. coli wild type and a ΔgcvB strain grown to mid-log phase in Luria-Bertani broth indicated the hdeAB operon, encoding the HdeA and HdeB proteins, is regulated by the sRNA GcvB. We wanted to verify that GcvB and its coregulator Hfq play a role in regulation of the hdeAB operon. In this study, we show that GcvB positively regulates hdeA::lacZ and hdeB::lacZ translational fusions in cells grown in Luria-Bertani broth and in glucose minimal media + glycine. Activation also requires the Hfq protein. Although many sRNAs dependent on Hfq regulate by an antisense mechanism, GcvB regulates hdeAB either directly or indirectly at the level of transcription. GcvA, the activator of gcvB, negatively regulates hdeAB at the level of transcription. Although expression of gcvB is dependent on GcvA, activation of hdeAB by GcvB occurs independently of GcvA's ability to repress the operon. Cell survival and growth at low pH are consistent with GcvA negatively regulating and GcvB positively regulating the hdeAB operon.
Collapse
|
14
|
Kawaguchi H, Okamoto S, Sikdar D, Kume A, Li F, Mohafez OMM, Shehata MH, Hiraga K. Genomic organization of regions that regulate chicken glycine decarboxylase gene transcription: Physiological and pathological implications. Gene 2009; 432:7-18. [DOI: 10.1016/j.gene.2008.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 11/05/2008] [Accepted: 11/07/2008] [Indexed: 11/28/2022]
|
15
|
Identification and characterization of two gcvA genes in Sinorhizobium meliloti. Sci Bull (Beijing) 2009. [DOI: 10.1007/s11434-008-0516-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Stauffer LT, Stauffer GV. GcvA interacts with both the alpha and sigma subunits of RNA polymerase to activate the Escherichia coli gcvB gene and the gcvTHP operon. FEMS Microbiol Lett 2005; 242:333-8. [PMID: 15621456 DOI: 10.1016/j.femsle.2004.11.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Revised: 10/12/2004] [Accepted: 11/15/2004] [Indexed: 11/18/2022] Open
Abstract
The glycine cleavage enzyme system in Escherichia coli provides one-carbon units for cellular methylation reactions. The gcvB gene encodes two small RNAs that in turn regulate other genes. The GcvA protein is required for expression of both the gcvTHP (P(gcvT)) and gcvB (P(gcvB)) promoters. However, the architectures of the two promoters are different, with the P(gcvT) promoter representing a class III activator-dependent promoter and the P(gcvB) promoter representing a class II activator-dependent promoter. The RNA polymerase holoenzyme was examined for its role in transcription activation of the gcvTHP operon and the gcvB gene by the GcvA protein. The results suggest that GcvA interacts with the RNA polymerase alpha subunit for activation of the gcvTHP operon and interacts with the RNA polymerase sigma subunit for activation of the gcvB gene.
Collapse
|
17
|
Heil G, Stauffer LT, Stauffer GV. Glycine binds the transcriptional accessory protein GcvR to disrupt a GcvA/GcvR interaction and allow GcvA-mediated activation of the Escherichia coli gcvTHP operon. MICROBIOLOGY (READING, ENGLAND) 2002; 148:2203-2214. [PMID: 12101307 DOI: 10.1099/00221287-148-7-2203] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Escherichia coli gcvTHP operon is under control of the LysR-type transcriptional regulator GcvA. GcvA activates the operon in the presence of glycine and represses the operon in its absence. Repression by GcvA is dependent on a second regulatory protein, GcvR. Generally, LysR-type transcriptional regulators bind to specific small co-effector molecules which results in either their altered affinity for specific binding sites on the DNA or altered ability to bend the DNA, resulting in either activation or repression of their respective operons. This study shows that glycine, the co-activator for the gcv operon, does not alter either GcvA's ability to bind DNA nor its ability to bend DNA. Rather, glycine binds to GcvR, disrupting a GcvA/GcvR interaction required for repression and allowing GcvA activation of the gcvTHP operon. Amino acid changes in GcvR that reduce glycine binding result in a loss of glycine-mediated activation in vivo.
Collapse
Affiliation(s)
- Gary Heil
- Department of Microbiology, The University of Iowa, Iowa City, IA 52242, USA1
| | - Lorraine T Stauffer
- Department of Microbiology, The University of Iowa, Iowa City, IA 52242, USA1
| | - George V Stauffer
- Department of Microbiology, The University of Iowa, Iowa City, IA 52242, USA1
| |
Collapse
|
18
|
Ghrist AC, Heil G, Stauffer GV. GcvR interacts with GcvA to inhibit activation of the Escherichia coli glycine cleavage operon. MICROBIOLOGY (READING, ENGLAND) 2001; 147:2215-2221. [PMID: 11495998 DOI: 10.1099/00221287-147-8-2215] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Escherichia coli glycine cleavage enzyme system, encoded by the gcvTHP operon, catalyses the oxidative cleavage of glycine to CO(2), NH(3) and a one-carbon methylene group. Transcription of the gcv operon is positively regulated by GcvA and negatively regulated by GcvA and GcvR. Using a LexA-based system for analysing protein heterodimerization, it is shown that GcvR interacts directly with GcvA in vivo to repress gcvTHP expression. Several mutations in either gcvA or gcvR that result in a loss of gcv repression also result in a loss of GcvA/GcvR heterodimerization. Finally, it is shown that the C-terminal half of GcvA is involved in its interaction with GcvR, whilst the entire GcvR protein appears to be necessary for heterodimerization.
Collapse
Affiliation(s)
- Angela C Ghrist
- Department of Microbiology, The University of Iowa, Iowa City, IA 52242, USA1
| | - Gary Heil
- Department of Microbiology, The University of Iowa, Iowa City, IA 52242, USA1
| | - George V Stauffer
- Department of Microbiology, The University of Iowa, Iowa City, IA 52242, USA1
| |
Collapse
|
19
|
Wonderling LD, Urbanowski ML, Stauffer GV. GcvA binding site 1 in the gcvTHP promoter of Escherichia coli is required for GcvA-mediated repression but not for GcvA-mediated activation. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 11):2909-2918. [PMID: 11065369 DOI: 10.1099/00221287-146-11-2909] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
GcvA binds to three sites in the gcvTHP control region, from base -34 to -69 (site 1), from base -214 to -241 (site 2) and from base -242 to -271 (site 3). Previous results suggested that sites 3 and 2 are required for both GcvA-dependent activation and repression of a gcvT::lacZ fusion. However, the results were less clear as to the role of site 1. To determine the role of site 1 in regulation, single and multiple base changes were made in site 1 and tested for their ability to alter GcvA-mediated activation and GcvA/GcvR-mediated repression. Several of the mutants were also tested for effects on GcvA binding to site 1 and the ability of GcvA to bend DNA at site 1. The results are consistent with site 1 playing primarily a role in negative regulation of the gcvTHP operon.
Collapse
Affiliation(s)
- Laura D Wonderling
- Department of Microbiology, The University of Iowa, Iowa City, IA 52242, USA1
| | - Mark L Urbanowski
- Department of Microbiology, The University of Iowa, Iowa City, IA 52242, USA1
| | - George V Stauffer
- Department of Microbiology, The University of Iowa, Iowa City, IA 52242, USA1
| |
Collapse
|
20
|
Urbanowski ML, Stauffer LT, Stauffer GV. The gcvB gene encodes a small untranslated RNA involved in expression of the dipeptide and oligopeptide transport systems in Escherichia coli. Mol Microbiol 2000; 37:856-68. [PMID: 10972807 DOI: 10.1046/j.1365-2958.2000.02051.x] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Escherichia coli gcvB gene encodes a small RNA transcript that is not translated in vivo. Transcription from the gcvB promoter is activated by the GcvA protein and repressed by the GcvR protein, the transcriptional regulators of the gcvTHP operon encoding the enzymes of the glycine cleavage system. A strain carrying a chromosomal deletion of gcvB exhibits normal regulation of gcvTHP expression and glycine cleavage enzyme activity. However, this mutant has high constitutive synthesis of OppA and DppA, the periplasmic-binding protein components of the two major peptide transport systems normally repressed in cells growing in rich medium. The altered regulation of oppA and dppA was also demonstrated using oppA-phoA and dppA-lacZ gene fusions. Although the mechanism(s) involving gcvB in the repression of these two genes is not known, oppA regulation appears to be at the translational level, whereas dppA regulation occurs at the mRNA level.
Collapse
Affiliation(s)
- M L Urbanowski
- Department of Microbiology, University of Iowa, Iowa City 52242, USA
| | | | | |
Collapse
|
21
|
Jourdan AD, Stauffer GV. GcvA-mediated activation of gcvT-lacZ expression involves the carboxy-terminal domain of the alpha subunit of RNA polymerase. FEMS Microbiol Lett 1999; 181:307-12. [PMID: 10585554 DOI: 10.1111/j.1574-6968.1999.tb08860.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Several LysR-type transcriptional regulators have been shown to require the carboxy-terminal domain of the alpha subunit (alphaCTD) of RNA polymerase to activate their target genes. We show here that GcvA, a LysR-type protein, also uses the alphaCTD to activate the Escherichia coli gcvTHP operon. Amino acid residues in the alphaCTD important for GcvA-dependent activation, however, have no effect on GcvA-mediated repression of the operon.
Collapse
Affiliation(s)
- A D Jourdan
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
22
|
Wonderling LD, Stauffer GV. The cyclic AMP receptor protein is dependent on GcvA for regulation of the gcv operon. J Bacteriol 1999; 181:1912-9. [PMID: 10074087 PMCID: PMC93593 DOI: 10.1128/jb.181.6.1912-1919.1999] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli gcv operon is transcriptionally regulated by the GcvA, GcvR, Lrp, and PurR proteins. In this study, the cyclic AMP (cAMP) receptor protein (CRP) is shown to be involved in positive regulation of the gcv operon. A crp deletion reduced expression of a gcvT-lacZ fusion almost fourfold in glucose minimal (GM) medium. The phenotype was complemented by both the wild-type crp gene and four crp alleles that encode proteins with amino acid substitutions in known activating regions of CRP. A cyaA deletion also resulted in a fourfold decrease in gcvT-lacZ expression, and wild-type expression was restored by the addition of cAMP to the growth medium. A cyaA crp double deletion resulted in levels of gcvT-lacZ expression identical to those observed with either single mutation, showing that CRP and cAMP regulate through the same mechanism. Growth in GM medium plus cAMP or glycerol minimal medium did not result in a significant increase in gcvT-lacZ expression. Thus, the level of cAMP present in GM medium appears to be sufficient for regulation by CRP. DNase I footprint analysis showed that CRP binds and protects two sites centered at bp -313 (site 1) and bp -140 (site 2) relative to the transcription initiation site, but a mutational analysis demonstrated that only site 1 is required for CRP-mediated regulation of gcvT-lacZ expression. Expression of the gcvT-lacZ fusion in a crp gcvA double mutant suggested that CRP's role is dependent on the GcvA protein.
Collapse
Affiliation(s)
- L D Wonderling
- Department of Microbiology, The University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
23
|
Stauffer LT, Stauffer GV. Roles for GcvA-binding sites 3 and 2 and the Lrp-binding region in gcvT::lacZ expression in Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 10):2865-2872. [PMID: 9802028 DOI: 10.1099/00221287-144-10-2865] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
GcvA and Lrp are both necessary for activation of the gcv operon. The upstream GcvA-binding sites 3 and 2 were separated from the Lrp-binding region and the rest of the gcv control region. Moving these sites by 1 or 2 helical turns of DNA further from the gcv promoter reduces, but does not eliminate, either GcvA-mediated activation or repression of a gcvT::lacZ gene fusion. However, moving these sites by 1.5 or 2.5 helical turns of DNA results in a GcvA-mediated super-repression of the operon. This repression is dependent on Lrp and is partially dependent on GcvR. Lrp bound to the gcv control region induces a bend in the DNA. Based on these results, a model for gcv regulation is presented in which Lrp plays a primarily structural role, by bending the DNA and GcvA functions as the activator protein.
Collapse
|
24
|
Jourdan AD, Stauffer GV. Mutational analysis of the transcriptional regulator GcvA: amino acids important for activation, repression, and DNA binding. J Bacteriol 1998; 180:4865-71. [PMID: 9733689 PMCID: PMC107511 DOI: 10.1128/jb.180.18.4865-4871.1998] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The GcvA protein is required for both glycine-mediated activation and purine-mediated repression of the gcvTHP operon. Random and site-directed PCR mutagenesis was used to create nucleotide changes in gcvA to identify residues of the protein involved in activation, repression, and DNA binding. Single amino acid substitutions at L30 and F31 cause a defect in activation of a gcvT-lacZ fusion but have no effect on repression or DNA binding. Single amino acid substitutions at V32 and S38 cause the loss of binding of GcvA to DNA. A deletion of the carboxy-terminal 14 amino acids of GcvA results in the loss of purine-mediated repression and, consequently, a constitutive activation of a gcvT-lacZ fusion. The results of this study partially define regions of GcvA involved in activation, repression, and DNA binding and demonstrate that these functions of GcvA are genetically separable.
Collapse
Affiliation(s)
- A D Jourdan
- Department of Microbiology, The University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
25
|
Stauffer LT, Stauffer GV. Spacing and orientation requirements of GcvA-binding sites 3 and 2 and the Lrp-binding region for gcvT::lacZ expression in Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 5):1417-1422. [PMID: 9611815 DOI: 10.1099/00221287-144-5-1417] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Both GcvA and Lrp are required for normal regulation of the gcv operon. Moving the GcvA-binding sites 3 and 2 and the Lrp-binding region either closer to, or further away from, the gcv promoter by approximately one helical turn of DNA resulted in a less than twofold decrease in glycine-mediated activation or inosine-mediated repression of a gcvT::IacZ fusion. Moving these sites approximately two helical turns of DNA away from the gcv promoter resulted in a further loss of both activation and repression; moving these sites approximately three helical turns of DNA from the gcv promoter resulted in an essentially complete loss of both glycine-mediated activation and inosine-mediated repression. However, when these sites were moved by approximately 1.5 and 2.5 helical turns of DNA away from the gcv promoter, there was a complete loss of both glycine-mediated activation and inosine-mediated repression of the gcvT::IacZ fusion. The flexibility in the absolute distance of the GcvA- and Lrp-binding sites relative to the gcv promoter, but strict orientation dependence of these sites is consistent with a possible protein-protein interaction of either GcvA, Lrp, or both of these proteins with RNA polymerase. Because of the location of these target sites relative to the gcv promoter, it is also likely that DNA looping is required for this mechanism of regulation.
Collapse
Affiliation(s)
| | - George V Stauffer
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
26
|
Ghrist AC, Stauffer GV. Promoter characterization and constitutive expression of the Escherichia coli gcvR gene. J Bacteriol 1998; 180:1803-7. [PMID: 9537378 PMCID: PMC107093 DOI: 10.1128/jb.180.7.1803-1807.1998] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Escherichia coli glycine cleavage repressor protein (GcvR) negatively regulates expression of the glycine cleavage operon (gcv). In this study, the gcvR translational start site was determined by N-terminal amino acid sequence analysis of a GcvR-LacZ fusion protein. Primer extension analysis of the gcvR promoter region identified a primary transcription start site 27 bp upstream of the UUG translation start site and a minor transcription start site approximately 100 bp upstream of the translation start codon. The -10 and -35 promoter regions upstream of the primary transcription start site were defined by mutational analysis. Expression of a gcvR-lacZ fusion was unaltered in the presence of glycine or inosine, molecules known to induce or repress expression of gcv, respectively. In addition, it was shown that gcvR-lacZ expression is neither regulated by the glycine cleavage activator protein (GcvA) nor autogenously regulated by GcvR. From DNA sequence analysis, it was predicted that the translation start codon of the downstream bcp gene overlaps the gcvR stop codon, suggesting that these genes may form an operon. However, a down mutation in the -10 promoter region of gcvR had no effect on the expression of a downstream bcp-lacZ fusion, and primer extension analysis of the bcp promoter region demonstrated that bcp has its own promoter within the gcvR coding sequence. These results show that gcvR and bcp do not form an operon. Furthermore, the deletion of bcp from the chromosome had no effect on gcv-lacZ expression.
Collapse
Affiliation(s)
- A C Ghrist
- Department of Microbiology, The University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|
27
|
McNeil JB, Zhang F, Taylor BV, Sinclair DA, Pearlman RE, Bognar AL. Cloning, and molecular characterization of the GCV1 gene encoding the glycine cleavage T-protein from Saccharomyces cerevisiae. Gene 1997; 186:13-20. [PMID: 9047339 DOI: 10.1016/s0378-1119(96)00670-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have isolated the gene encoding the glycine cleavage T-protein (GCV1) of the yeast Saccharomyces cerevisiae and shown through gene disruption and enzyme assays that inactivation of GCV1 destroys glycine cleavage function. A DNA fragment encoding the GCV1 gene was cloned by PCR amplification using degenerate oligodeoxyribonucleotides, and the cloned fragment was used as a probe to isolate the complete gene from a yeast genomic library. Growth with glycine stimulated expression of the GCV1 gene as determined by Northern analysis and increased the beta-galactosidase activity of a GCV1-lacZ fusion 30-fold. The URA3 gene was inserted into the coding sequence of GCV1 and the resulting construct was used to disrupt the chromosomal GCV1 gene in a diploid strain of yeast. gcv1::URA3 haploid derivatives grew normally or only slightly more slowly than the isogenic wild-type haploids. All gcv1 strains studied were unable to grow on glycine as a sole nitrogen source and lacked glycine cleavage enzyme activity. Growth of shm1 shm2 mutants was stimulated by glycine, whereas glycine could not supplement the growth of the isogenic gcv1 strain.
Collapse
Affiliation(s)
- J B McNeil
- Department of Medical Genetics and Microbiology, University of Toronto, Ont. Canada
| | | | | | | | | | | |
Collapse
|
28
|
Jin T, Inouye M. Identification of the genes in multicopy plasmids affecting ompC and ompF expression in Escherichia coli. FEMS Microbiol Lett 1995; 133:225-31. [PMID: 8522138 DOI: 10.1111/j.1574-6968.1995.tb07889.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Osmoregulation of the porin genes, ompF and ompC of Escherichia coli, occurs at the level of transcription through the action of EnvZ and OmpR proteins as well as at the level of translation through micF antisense RNA. In this study, we used a genetic screening approach to identify new genes which interfere with the expression of ompC or ompF. Using an E. coli genomic library in pUC19, we identified three clones whose products altered expression of ompC and ompF in response to medium osmolarity. One clone carrying the secB gene was found to block ompC and inhibit ompF expression. One clone carrying gcvA, a transcriptional regulator for the gvcA operon, was found to block ompF expression at high osmolarity and elevate ompC expression at low osmolarity. One clone carrying rbsR, a repressor for the rbs operon, was found to block ompF expression at both low and high osmolarities and elevate ompC expression at low osmolarity. These results suggest that ompF and ompC expression is associated with other physiological regulating systems in addition to osmoregulation.
Collapse
Affiliation(s)
- T Jin
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854-5635, USA
| | | |
Collapse
|
29
|
Wilson RL, Urbanowski ML, Stauffer GV. DNA binding sites of the LysR-type regulator GcvA in the gcv and gcvA control regions of Escherichia coli. J Bacteriol 1995; 177:4940-6. [PMID: 7665470 PMCID: PMC177269 DOI: 10.1128/jb.177.17.4940-4946.1995] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The GcvA protein is a LysR family regulatory protein necessary for both activation and repression of the Escherichia coli glycine cleavage enzyme operon (gcv) and negative regulation of gcvA. Gel shift assays indicated that overexpressed GcvA in crude extracts is capable of binding specifically to DNA containing the gcv and gcvA control regions. DNase I footprint analysis of the gcvA control region revealed one region of GcvA-mediated protection overlapping the transcription initiation site and extending from -28 to +20. Three separate GcvA binding sites in gcv were identified by DNase I footprint analysis: a 29-bp region extending from positions -271 to -242, a 28-bp region extending from -242 to -214, and a 35-bp region covering positions -69 to -34 relative to the transcription initiation site. PCR-generated mutations in any of the three GcvA binding sites in gcv decreased GcvA-mediated activation and repression of gcv.
Collapse
Affiliation(s)
- R L Wilson
- Department of Microbiology, University of Iowa, Iowa City 52242, USA
| | | | | |
Collapse
|
30
|
Ghrist AC, Stauffer GV. Characterization of the Escherichia coli gcvR gene encoding a negative regulator of gcv expression. J Bacteriol 1995; 177:4980-4. [PMID: 7665475 PMCID: PMC177274 DOI: 10.1128/jb.177.17.4980-4984.1995] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The Escherichia coli glycine cleavage enzyme system catalyzes the cleavage of glycine, generating CO2, NH3, and a one-carbon unit. Expression of the operon encoding this enzyme system (gcv) is induced in the presence of glycine and repressed in the presence of purines. In this study, a mutant with high-level constitutive expression of a gcvT-lacZ gene fusion was isolated. The mutation in this strain was designated gcvR1 and was mapped to min 53.3 on the E. coli chromosome. A single-copy plasmid carrying the wild-type gcvR gene complemented the mutation, restoring normal regulation of a gcvT-lacZ fusion, while a multicopy plasmid carrying gcvR led to superrepression under all growth conditions. Negative regulation of a gcvT-lacZ fusion by GcvR was shown to require GcvA, a LysR family protein known to both activate gcv in the presence of glycine and repress gcv in the presence of purines. Models explaining how GcvR and GcvA might interact to regulate gcv expression are proposed.
Collapse
Affiliation(s)
- A C Ghrist
- Department of Microbiology, University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|
31
|
Abstract
We constructed a set of deletions upstream of the gcv promoter and analyzed the effects of the deletions on expression of a gcvT-lacZ gene fusion. A deletion that ends at position -313 upstream of the transcription initiation site (+1) results in reduced levels of gcvT-lacZ expression, but the fusion is still inducible by glycine and repressible by purines. A deletion that ends at position -169 results in loss of both GcvA- and Lrp-mediated activation of the gcvT-lacZ fusion. The endpoints of delta -313 and delta -169 also define a site that down-regulates gcvT-lacZ expression two- to threefold. A deletion that ends at position -89 upstream from the transcription initiation site still shows PurR-mediated repression, suggesting that PurR-mediated repression is not by direct interference with the GcvA- and Lrp-mediated regulatory mechanism(s). Gel mobility shift assays and DNase I footprinting showed that Lrp protein binds to multiple sites upstream of the gcv promoter, from about bp -92 to bp -229. The results suggest that the gcv regulatory region is complex, with numerous cis-acting sites that are required for normal gcv expression.
Collapse
Affiliation(s)
- L T Stauffer
- Department of Microbiology, University of Iowa, Iowa City 52242
| | | |
Collapse
|
32
|
Calvo JM, Matthews RG. The leucine-responsive regulatory protein, a global regulator of metabolism in Escherichia coli. Microbiol Rev 1994; 58:466-90. [PMID: 7968922 PMCID: PMC372976 DOI: 10.1128/mr.58.3.466-490.1994] [Citation(s) in RCA: 251] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The leucine-responsive regulatory protein (Lrp) regulates the expression of more than 40 genes and proteins in Escherichia coli. Among the operons that are positively regulated by Lrp are operons involved in amino acid biosynthesis (ilvIH, serA)), in the biosynthesis of pili (pap, fan, fim), and in the assimilation of ammonia (glnA, gltBD). Negatively regulated operons include operons involved in amino acid catabolism (sdaA, tdh) and peptide transport (opp) and the operon coding for Lrp itself (lrp). Detailed studies of a few members of the regulon have shown that Lrp can act directly to activate or repress transcription of target operons. A substantial fraction of operons regulated by Lrp are also regulated by leucine, and the effect of leucine on expression of these operons requires a functional Lrp protein. The patterns of regulation are surprising and interesting: in some cases activation or repression mediated by Lrp is antagonized by leucine, in other cases Lrp-mediated activation or repression is potentiated by leucine, and in still other cases leucine has no effect on Lrp-mediated regulation. Current research is just beginning to elucidate the detailed mechanisms by which Lrp can mediate such a broad spectrum of regulatory effects. Our view of the role of Lrp in metabolism may change as more members of the regulon are identified and their regulation characterized, but at this point Lrp seems to be important in regulating nitrogen metabolism and one-carbon metabolism, permitting adaptations to feast and to famine.
Collapse
Affiliation(s)
- J M Calvo
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853
| | | |
Collapse
|
33
|
Abstract
The nucleotide (nt) sequence of the Escherichia coli gcvP gene was determined. The polypeptide deduced from the DNA sequence has an M(r) of 104,375 (957 amino acids). In a minicell system, gcvP encodes a polypeptide that migrates at 93.3 kDa on sodium dodecyl sulfate-polyacrylamide gels. After the coding region, there is a 39-nt sequence followed by a T-rich sequence within which transcription appears to terminate. This region is preceded by a G/C-rich sequence that could form a stable stem-loop structure once transcribed, and is characteristic of Rho-independent transcription terminators. A Northern analysis identified an approx. 4700-nt RNA molecule, large enough to encode the T-, H-and P-proteins of the glycine cleavage enzyme complex. Analyses of gcvP::lacZ fusions with and without stop codons in gcvT, the first gene in the operon, confirmed gcvT, gcvH and gcvP lie in an operon. RNA slot blot analyses indicated that induction of gcv by glycine, and PurR-mediated repression of gcv occur at the level of transcription.
Collapse
Affiliation(s)
- L T Stauffer
- Department of Microbiology, University of Iowa, Iowa City 52242
| | | | | |
Collapse
|
34
|
Wilson RL, Stauffer GV. DNA sequence and characterization of GcvA, a LysR family regulatory protein for the Escherichia coli glycine cleavage enzyme system. J Bacteriol 1994; 176:2862-8. [PMID: 8188587 PMCID: PMC205440 DOI: 10.1128/jb.176.10.2862-2868.1994] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The gene encoding GcvA, the trans-acting regulatory protein for the Escherichia coli glycine cleavage enzyme system, has been sequenced. The gcvA locus contains an open reading frame of 930 nucleotides that could encode a protein with a molecular mass of 34.4 kDa, consistent with the results of minicell analysis indicating that GcvA is a polypeptide of approximately 33 kDa. The deduced amino acid sequence of GcvA revealed that this protein shares similarity with the LysR family of activator proteins. The transcription start site was found to be 72 bp upstream of the presumed translation start site. A chromosomal deletion of gcvA resulted in the inability of cells to activate the expression of a gcvT-lacZ gene fusion when grown in the presence of glycine and an inability to repress gcvT-lacZ expression when grown in the presence of inosine. The regulation of gcvA was examined by constructing a gcvA-lacZ gene fusion in which beta-galactosidase synthesis is under the control of the gcvA regulatory region. Although gcvA expression appears to be autogenously regulated over a two- to threefold range, it is neither induced by glycine nor repressed by inosine.
Collapse
Affiliation(s)
- R L Wilson
- Department of Microbiology, University of Iowa, Iowa City 52242
| | | |
Collapse
|
35
|
Abstract
Some strict anaerobic bacteria catalyze with glycine as substrate an internal Stickland reaction by which glycine serves as electron donor being oxidized by glycine-cleavage system or as electron acceptor being reduced by glycine reductase. In both cases, energy is conserved by substrate level phosphorylation. Except for the different substrate-activating proteins PB, reduction of sarcosine or betaine to acetyl phosphate involves in Eubacterium acidaminophilum the same set of proteins as observed for glycine, e.g. a unique thioredoxin system as electron donor and an acetyl phosphate-forming protein PC interacting with the intermediarily formed Secarboxymethylselenoether bound to protein PA.
Collapse
Affiliation(s)
- J R Andreesen
- Institute of Microbiology, University of Halle, Germany
| |
Collapse
|
36
|
Abstract
A list of currently identified gene products of Escherichia coli is given, together with a bibliography that provides pointers to the literature on each gene product. A scheme to categorize cellular functions is used to classify the gene products of E. coli so far identified. A count shows that the numbers of genes concerned with small-molecule metabolism are on the same order as the numbers concerned with macromolecule biosynthesis and degradation. One large category is the category of tRNAs and their synthetases. Another is the category of transport elements. The categories of cell structure and cellular processes other than metabolism are smaller. Other subjects discussed are the occurrence in the E. coli genome of redundant pairs and groups of genes of identical or closely similar function, as well as variation in the degree of density of genetic information in different parts of the genome.
Collapse
Affiliation(s)
- M Riley
- Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| |
Collapse
|
37
|
Wilson RL, Stauffer LT, Stauffer GV. Roles of the GcvA and PurR proteins in negative regulation of the Escherichia coli glycine cleavage enzyme system. J Bacteriol 1993; 175:5129-34. [PMID: 8349552 PMCID: PMC204979 DOI: 10.1128/jb.175.16.5129-5134.1993] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
When Escherichia coli was grown in medium containing both inosine and glycine, the PurR repressor protein was shown to be responsible for a twofold reduction from the fully induced glycine cleavage enzyme levels. This twofold repression was also seen by measuring beta-galactosidase levels in cells carrying a lambda gcvT-lacZ gene fusion. In this fusion, the synthesis of beta-galactosidase is under the control of the gcv regulatory region. A DNA fragment carrying the gcv control region was shown by gel mobility shift assay and DNase I footprinting to bind purified PurR protein, suggesting a direct involvement of the repressor in gcv regulation. A separate mechanism of purine-mediated regulation of gcv was shown to be independent of the purR gene product and resulted in an approximately 10-fold reduction of beta-galactosidase levels when cells were grown in medium containing inosine but lacking the inducer glycine. This additional repression was dependent upon a functional gcvA gene, a positive activator for the glycine cleavage enzyme system. A dual role for the GcvA protein as both an activator in the presence of glycine and a repressor in the presence of inosine is suggested.
Collapse
Affiliation(s)
- R L Wilson
- Department of Microbiology, University of Iowa, Iowa City 52242
| | | | | |
Collapse
|