1
|
Sleytr UB, Pum D. S-layers: from a serendipitous discovery to a toolkit for nanobiotechnology. Q Rev Biophys 2025; 58:e4. [PMID: 39819733 DOI: 10.1017/s0033583524000106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Prokaryotic microorganisms, comprising Bacteria and Archaea, exhibit a fascinating diversity of cell envelope structures reflecting their adaptations that contribute to their resilience and survival in diverse environments. Among these adaptations, surface layers (S-layers) composed of monomolecular protein or glycoprotein lattices are one of the most observed envelope components. They are the most abundant cellular proteins and represent the simplest biological membranes that have developed during evolution. S-layers provide organisms with a great variety of selective advantages, including acting as an antifouling layer, protective coating, molecular sieve, ion trap, structure involved in cell and molecular adhesion, surface recognition and virulence factor for pathogens. In Archaea that possess S-layers as the exclusive cell wall component, the (glyco)protein lattices function as a cell shape-determining/maintaining scaffold. The wealth of information available on the structure, chemistry, genetics and in vivo and in vitro morphogenesis has revealed a broad application potential for S-layers as patterning elements in a molecular construction kit for bio- and nanotechnology, synthetic biology, biomimetics, biomedicine and diagnostics. In this review, we try to describe the scientifically exciting early days of S-layer research with a special focus on the 'Vienna-S-Layer-Group'. Our presentation is intended to illustrate how our curiosity and joy of discovery motivated us to explore this new structure and to make the scientific community aware of its relevance in the realm of prokaryotes, and moreover, how we developed concepts for exploiting this unique self-assembly structure. We hope that our presentation, with its many personal notes, is also of interest from the perspective of the history of S-layer research.
Collapse
Affiliation(s)
- Uwe B Sleytr
- Institute of Synthetic Bioarchitectures, Department of Bionanosciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Dietmar Pum
- Institute of Synthetic Bioarchitectures, Department of Bionanosciences, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
2
|
Schäffer C, Messner P. Emerging facets of prokaryotic glycosylation. FEMS Microbiol Rev 2016; 41:49-91. [PMID: 27566466 DOI: 10.1093/femsre/fuw036] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/17/2016] [Accepted: 08/01/2016] [Indexed: 12/16/2022] Open
Abstract
Glycosylation of proteins is one of the most prevalent post-translational modifications occurring in nature, with a wide repertoire of biological implications. Pathways for the main types of this modification, the N- and O-glycosylation, can be found in all three domains of life-the Eukarya, Bacteria and Archaea-thereby following common principles, which are valid also for lipopolysaccharides, lipooligosaccharides and glycopolymers. Thus, studies on any glycoconjugate can unravel novel facets of the still incompletely understood fundamentals of protein N- and O-glycosylation. While it is estimated that more than two-thirds of all eukaryotic proteins would be glycosylated, no such estimate is available for prokaryotic glycoproteins, whose understanding is lagging behind, mainly due to the enormous variability of their glycan structures and variations in the underlying glycosylation processes. Combining glycan structural information with bioinformatic, genetic, biochemical and enzymatic data has opened up an avenue for in-depth analyses of glycosylation processes as a basis for glycoengineering endeavours. Here, the common themes of glycosylation are conceptualised for the major classes of prokaryotic (i.e. bacterial and archaeal) glycoconjugates, with a special focus on glycosylated cell-surface proteins. We describe the current knowledge of biosynthesis and importance of these glycoconjugates in selected pathogenic and beneficial microbes.
Collapse
Affiliation(s)
- Christina Schäffer
- Department of NanoBiotechnology, Institute of Biologically Inspired Materials, NanoGlycobiology unit, Universität für Bodenkultur Wien, A-1180 Vienna, Austria
| | - Paul Messner
- Department of NanoBiotechnology, Institute of Biologically Inspired Materials, NanoGlycobiology unit, Universität für Bodenkultur Wien, A-1180 Vienna, Austria
| |
Collapse
|
3
|
Abstract
Prokaryotic glycosylation fulfills an important role in maintaining and protecting the structural integrity and function of the bacterial cell wall, as well as serving as a flexible adaption mechanism to evade environmental and host-induced pressure. The scope of bacterial and archaeal protein glycosylation has considerably expanded over the past decade(s), with numerous examples covering the glycosylation of flagella, pili, glycosylated enzymes, as well as surface-layer proteins. This article addresses structure, analysis, function, genetic basis, biosynthesis, and biomedical and biotechnological applications of cell-envelope glycoconjugates, S-layer glycoprotein glycans, and "nonclassical" secondary-cell wall polysaccharides. The latter group of polymers mediates the important attachment and regular orientation of the S-layer to the cell wall. The structures of these glycopolymers reveal an enormous diversity, resembling the structural variability of bacterial lipopolysaccharides and capsular polysaccharides. While most examples are presented for Gram-positive bacteria, the S-layer glycan of the Gram-negative pathogen Tannerella forsythia is also discussed. In addition, archaeal S-layer glycoproteins are briefly summarized.
Collapse
Affiliation(s)
- Paul Messner
- Department of NanoBiotechnology, NanoGlycobiology Unit, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | |
Collapse
|
4
|
The s-layer glycome-adding to the sugar coat of bacteria. Int J Microbiol 2010; 2011. [PMID: 20871840 PMCID: PMC2943079 DOI: 10.1155/2011/127870] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 06/29/2010] [Indexed: 11/29/2022] Open
Abstract
The amazing repertoire of glycoconjugates present on bacterial cell surfaces includes lipopolysaccharides, capsular polysaccharides, lipooligosaccharides, exopolysaccharides, and glycoproteins. While the former are constituents of Gram-negative cells, we review here the cell surface S-layer glycoproteins of Gram-positive bacteria. S-layer glycoproteins have the unique feature of self-assembling into 2D lattices providing a display matrix for glycans with periodicity at the nanometer scale. Typically, bacterial S-layer glycans are O-glycosidically linked to serine, threonine, or tyrosine residues, and they rely on a much wider variety of constituents, glycosidic linkage types, and structures than their eukaryotic counterparts. As the S-layer glycome of several bacteria is unravelling, a picture of how S-layer glycoproteins are biosynthesized is evolving. X-ray crystallography experiments allowed first insights into the catalysis mechanism of selected enzymes. In the future, it will be exciting to fully exploit the S-layer glycome for glycoengineering purposes and to link it to the bacterial interactome.
Collapse
|
5
|
Twine SM, Paul CJ, Vinogradov E, McNally DJ, Brisson JR, Mullen JA, McMullin DR, Jarrell HC, Austin JW, Kelly JF, Logan SM. Flagellar glycosylation in Clostridium botulinum. FEBS J 2008; 275:4428-44. [DOI: 10.1111/j.1742-4658.2008.06589.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Steiner K, Pohlentz G, Dreisewerd K, Berkenkamp S, Messner P, Peter-Katalinić J, Schäffer C. New insights into the glycosylation of the surface layer protein SgsE from Geobacillus stearothermophilus NRS 2004/3a. J Bacteriol 2006; 188:7914-21. [PMID: 16963578 PMCID: PMC1636307 DOI: 10.1128/jb.00802-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The surface of Geobacillus stearothermophilus NRS 2004/3a cells is covered by an oblique surface layer (S-layer) composed of glycoprotein subunits. To this S-layer glycoprotein, elongated glycan chains are attached that are composed of [-->2)-alpha-l-Rhap-(1-->3)-beta-l-Rhap-(1-->2)-alpha-L-Rhap-(1-->] repeating units, with a 2-O-methyl modification of the terminal trisaccharide at the nonreducing end of the glycan chain and a core saccharide as linker to the S-layer protein. On sodium dodecyl sulfate-polyacrylamide gels, four bands appear, of which three represent glycosylated S-layer proteins. In the present study, nanoelectrospray ionization time-of-flight mass spectrometry (MS) and infrared matrix-assisted laser desorption/ionization orthogonal time-of-flight mass spectrometry were adapted for analysis of this high-molecular-mass and water-insoluble S-layer glycoprotein to refine insights into its glycosylation pattern. This is a prerequisite for artificial fine-tuning of S-layer glycans for nanobiotechnological applications. Optimized MS techniques allowed (i) determination of the average masses of three glycoprotein species to be 101.66 kDa, 108.68 kDa, and 115.73 kDa, (ii) assignment of nanoheterogeneity to the S-layer glycans, with the most prevalent variation between 12 and 18 trisaccharide repeating units, and the possibility of extension of the already-known -->3)-alpha-l-Rhap-(1-->3)-alpha-l-Rhap-(1--> core by one additional rhamnose residue, and (iii) identification of a third glycosylation site on the S-layer protein, at position threonine-590, in addition to the known sites threonine-620 and serine-794. The current interpretation of the S-layer glycoprotein banding pattern is that in the 101.66-kDa glycoprotein species only one glycosylation site is occupied, in the 108.68-kDa glycoprotein species two glycosylation sites are occupied, and in the 115.73-kDa glycoprotein species three glycosylation sites are occupied, while the 94.46-kDa band represents nonglycosylated S-layer protein.
Collapse
Affiliation(s)
- Kerstin Steiner
- Zentrum für NanoBiotechnologie, Universität für Bodenkultur Wien, A-1180 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
7
|
Kählig H, Kolarich D, Zayni S, Scheberl A, Kosma P, Schäffer C, Messner P. N-acetylmuramic acid as capping element of alpha-D-fucose-containing S-layer glycoprotein glycans from Geobacillus tepidamans GS5-97T. J Biol Chem 2005; 280:20292-9. [PMID: 15781455 DOI: 10.1074/jbc.m501724200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Geobacillus tepidamans GS5-97(T) is a novel Gram-positive, moderately thermophilic bacterial species that is covered by a glycosylated surface layer (S-layer) protein. The isolated and purified S-layer glycoprotein SgtA was ultrastructurally and chemically investigated and showed several novel properties. By SDS-PAGE, SgtA was separated into four distinct bands in an apparent molecular mass range of 106-166 kDa. The three high molecular mass bands gave a positive periodic acid-Schiff staining reaction, whereas the 106-kDa band was nonglycosylated. Glycosylation of SgtA was investigated by means of chemical analyses, 600-MHz nuclear magnetic resonance spectroscopy, and electrospray ionization quadrupole time-of-fight mass spectrometry. Glycopeptides obtained after Pronase digestion revealed the glycan structure [-->2)-alpha-L-Rhap-(1-->3)-alpha-D-Fucp-(1-->](n=approximately 20), with D-fucopyranose having never been identified before as a constituent of S-layer glycans. The rhamnose residue at the nonreducing end of the terminal repeating unit of the glycan chain was di-substituted. For the first time, (R)-N-acetylmuramic acid, the key component of prokaryotic peptidoglycan, was found in an alpha-linkage to carbon 3 of the terminal rhamnose residue, serving as capping motif of an S-layer glycan. In addition, that rhamnose was substituted at position 2 with a beta-N-acetylglucosamine residue. The S-layer glycan chains were bound via the trisaccharide core -->2)-alpha-L-Rhap-(1-->3)-alpha-L-Rhap-(1-->3)-alpha-L-Rhap-(1--> to carbon 3 of beta-D-galactose, which was attached in O-glycosidic linkage to serine and threonine residues of SgtA of G. tepidamans GS5-97(T).
Collapse
|
8
|
Edge ASB. Deglycosylation of glycoproteins with trifluoromethanesulphonic acid: elucidation of molecular structure and function. Biochem J 2003; 376:339-50. [PMID: 12974674 PMCID: PMC1223790 DOI: 10.1042/bj20030673] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2003] [Revised: 07/29/2003] [Accepted: 09/15/2003] [Indexed: 11/17/2022]
Abstract
The alteration of proteins by post-translational modifications, including phosphorylation, sulphation, processing by proteolysis, lipid attachment and glycosylation, gives rise to a broad range of molecules that can have an identical underlying protein core. An understanding of glycosylation of proteins is important in clarifying the nature of the numerous variants observed and in determining the biological roles of these modifications. Deglycosylation with TFMS (trifluoromethanesulphonic acid) [Edge, Faltynek, Hof, Reichert, and Weber, (1981) Anal. Biochem. 118, 131-137] has been used extensively to remove carbohydrate from glycoproteins, while leaving the protein backbone intact. Glycosylated proteins from animals, plants, fungi and bacteria have been deglycosylated with TFMS, and the most extensively studied types of carbohydrate chains in mammals, the N-linked, O-linked and glycosaminoglycan chains, are all removed by this procedure. The method is based on the finding that linkages between sugars are sensitive to cleavage by TFMS, whereas the peptide bond is stable and is not broken, even with prolonged deglycosylation. The relative susceptibility of individual sugars in glycosidic linkage varies with the substituents at C-2 and the occurrence of amido and acetyl groups, but even the most stable sugars are removed under conditions that are sufficiently mild to prevent scission of peptide bonds. The post-translational modifications of proteins have been shown to be required for diverse biological functions, and selective procedures to remove these modifications play an important role in the elucidation of protein structure and function.
Collapse
Affiliation(s)
- Albert S B Edge
- Harvard Medical School and Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.
| |
Collapse
|
9
|
Messner P, Schäffer C. Prokaryotic glycoproteins. FORTSCHRITTE DER CHEMIE ORGANISCHER NATURSTOFFE = PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS. PROGRES DANS LA CHIMIE DES SUBSTANCES ORGANIQUES NATURELLES 2003; 85:51-124. [PMID: 12602037 DOI: 10.1007/978-3-7091-6051-0_2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- P Messner
- Zentrum für Ultrastrukturforschung, Ludwig-Boltzmann-Institut für Molekulare Nanotechnologie, Universität für Bodenkultur Wien, Austria
| | | |
Collapse
|
10
|
Abstract
Over the last two decades, a significant change of perception has taken place regarding prokaryotic glycoproteins. For many years, protein glycosylation was assumed to be limited to eukaryotes; but now, a wealth of information on structure, function, biosynthesis and molecular biology of prokaryotic glycoproteins has accumulated, with surface layer (S-layer) glycoproteins being one of the best studied examples. With the designation of Archaea as a second prokaryotic domain of life, the occurrence of glycosylated S-layer proteins had been considered a taxonomic criterion for differentiation between Bacteria and Archaea. Extensive structural investigations, however, have demonstrated that S-layer glycoproteins are present in both domains. Among Gram-positive bacteria, S-layer glycoproteins have been identified only in bacilli. In Gram-negative organisms, their presence is still not fully investigated; presently, there is no indication for their existence in this class of bacteria. Extensive biochemical studies of the S-layer glycoprotein from Halobacterium halobium have, at least in part, unravelled the glycosylation pathway in Archaea; molecular biological analyses of these pathways have not been performed, so far. Significant observations concern the occurrence of unusual linkage regions both in archaeal and bacterial S-layer glycoproteins. Regarding S-layer glycoproteins of bacteria, first genetic data have shed some light into the molecular organization of the glycosylation machinery in this domain. In addition to basic S-layer glycoprotein research, the biotechnological application potential of these molecules has been explored. With the development of straightforward molecular biological methods, fascinating possibilities for the expression of prokaryotic glycoproteins will become available. S-layer glycoprotein research has opened up opportunities for the production of recombinant glycosylation enzymes and tailor-made S-layer glycoproteins in large quantities, which are commercially not yet available. These bacterial systems may provide economic technologies for the production of biotechnologically and medically important glycan structures in the future.
Collapse
Affiliation(s)
- C Schäffer
- Zentrum für Ultrastrukturforschung, Universität für Bodenkultur Wien, Gregor-Mendel-Str. 33, 1180 Vienna, Austria
| | | |
Collapse
|
11
|
Schäffer C, Scherf T, Christian R, Kosma P, Zayni S, Messner P, Sharon N. Purification and structure elucidation of the N-acetylbacillosamine-containing polysaccharide from Bacillus licheniformis ATCC 9945. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:857-64. [PMID: 11168428 DOI: 10.1046/j.1432-1327.2001.01961.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The exopolysaccharide of Bacillus licheniformis ATCC 9945 (formerly B. subtilis ATCC 9945) contains among other glycoses 4-acetamido-2-amino-2,4,6-trideoxy-D-glucose, termed N-acetylbacillosamine (Bac2N4NAc). A similar diamino glycose, 2-acetamido-4-amino-2,4,6-trideoxy-D-glucose, was found in a surface layer (S-layer) glycoprotein preparation of Clostridium symbiosum HB25. Electron microscopic studies, however, showed that B. licheniformis ATCC 9945 is not covered with an S-layer lattice, indicating that the N-acetylbacillosamine present in that organism might be a constituent of a cell wall-associated polymer. For elucidation of the structure of the N-acetylbacillosamine-containing polysaccharide, it was purified from a trichloroacetic acid extract of B. licheniformis ATCC 9945 cells. Using different hydrolysis protocols and a hydrolysate of the S-layer glycoprotein preparation from C. symbiosum HB25 as reference, the purified polysaccharide was found to contain 2,4-diamino-2,4,6-trideoxy-glucose, 2-acetamido-2-deoxy-glucose, 2-acetamido-2-deoxy-galactose and galactose in a molar ratio of 1 : 1 : 1 : 2. One- and two-dimensional NMR spectroscopy, including 800 MHz proton magnetic resonance measurements, in combination with chemical modification and degradation experiments, revealed that the polysaccharide consists of identical pyruvylated pentasaccharide repeating units with the structure: [-->3)-[(S)Py-(3,4)-beta-D-Galp-(1-->6)]-alpha-D-GlcpNAc-(1-->3)-beta-D-Bacp2N4NAc-(1-->3)-[(S)Py-(3,4)-beta-D-Galp-(1-->6)]-beta-D-GalpNAc-(1-->](n)
Collapse
Affiliation(s)
- C Schäffer
- Zentrum für Ultrastrukturforschung und Ludwig Boltzmann-Institut für Molekulare Nanotechnologie, Universität für Bodenkultur Wien, Austria
| | | | | | | | | | | | | |
Collapse
|
12
|
Sleytr UB, Messner P, Pum D, Sára M. Kristalline Zelloberflächen-Schichten prokaryotischer Organismen (S-Schichten): von der supramolekularen Zellstruktur zur Biomimetik und Nanotechnologie. Angew Chem Int Ed Engl 1999. [DOI: 10.1002/(sici)1521-3757(19990419)111:8<1098::aid-ange1098>3.0.co;2-f] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Schäffer C, Müller N, Christian R, Graninger M, Wugeditsch T, Scheberl A, Messner P. Complete glycan structure of the S-layer glycoprotein of Aneurinibacillus thermoaerophilus GS4-97. Glycobiology 1999; 9:407-14. [PMID: 10089215 DOI: 10.1093/glycob/9.4.407] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Isolate GS4-97 was purified from an extraction juice sample of an Austrian beet sugar factory and affiliated to the newly described species Aneurinibacillus thermoaerophilus. It is closely related to the type strain of this species, A.thermoaerophilus L420-91(T), and possesses a square surface layer (S-layer) array composed of identical glycoprotein monomers as its outermost cell envelope component. By sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the purified S-layer showed an apparent molecular mass of approximately 109,000. After thorough proteolytic degradation of this material by pronase E and purification of the reaction mixture by gel permeation, chromatofocusing, and reversed-phase chromatography, a homogeneous glycopeptide fraction was obtained which was subjected to one- and two-dimensional nuclear magnetic resonance spectroscopy. The combined chemical and spectroscopic evidence, together with N-terminal sequencing, suggest the following structure of the O-glycosidically linked S-layer glycan chain of the glycopeptide: This is the first description of a beta-d-GalNAc-Thr linkage in glycoproteins.
Collapse
Affiliation(s)
- C Schäffer
- Zentrum für Ultrastrukturforschung und Ludwig Boltzmann-Institut für Molekulare Nanotechnologie, Universität für Bodenkultur, A-1180 Wien, Austria
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
There are a number of different glycoproteins that have been identified relatively recently which contain oligosaccharides linked to serine or threonine in a peptide backbone via phosphodiesters. It is possible that these glycoproteins may form an alternative structural class of glycosylation. This modification has been referred to as phosphoglycosylation (Mehta et al., 1996; J. Biol. Chem., 271, 10897-10903), and has been reported in slime molds and several unicellular parasites. In this review, examples of phosphoglycosylation from different biological sources are discussed. Those which are well characterized have been found to be highly variable with respect to the glycan moiety, while sharing some common features. An experimental approach detailing how to determine whether a protein is phosphoglycosylated is also presented.
Collapse
Affiliation(s)
- P A Haynes
- Department of Molecular Biotechnology, Box 357730, University of Washington, Seattle, WA 98195-7730, USA
| |
Collapse
|
15
|
Messner P, Allmaier G, Schäffer C, Wugeditsch T, Lortal S, König H, Niemetz R, Dorner M. Biochemistry of S-layers. FEMS Microbiol Rev 1997; 20:25-46. [PMID: 9276927 DOI: 10.1111/j.1574-6976.1997.tb00303.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
During evolution prokaryotes have developed different envelope structures exterior to the cell wall proper. Among these surface components are regularly arranged S-layers and capsules. The structural characterization and the detailed chemical analysis of these surface molecules is a prerequisite to understand their biosynthesis and functional role(s) at the molecular level. Of particular interest are the glycosylated S-layer proteins which belong to the first prokaryotic glycoproteins ever described. Their characterization was performed on strains belonging to the thermophilic Bacillaceae and included structural studies and experiments to learn about the pathways for the glycan biosynthesis of S-layer glycoproteins. As an example for non-glycosylated S-layer proteins those of Lactobacillus helveticus strains are described in detail. Recently, a novel type of bacterial glycoconjugate was observed in the cell envelope of the extremely halophilic archaeon Natronococcus occultus which consists of a glycosylated polyglutamyl polymer. Beside the conventional biochemical techniques for the analysis new sophisticated instrumental methods such as X-ray photoelectron spectroscopy and matrix-assisted laser desorption ionization or electrospray ionization mass spectrometry have been introduced for the analysis of the protein and glycan portions of these cell surface macromolecules.
Collapse
Affiliation(s)
- P Messner
- Zentrum für Ultrastrukturforschung, Universität für Bodenkultur, Wien, Austria
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Köplin R, Brisson JR, Whitfield C. UDP-galactofuranose precursor required for formation of the lipopolysaccharide O antigen of Klebsiella pneumoniae serotype O1 is synthesized by the product of the rfbDKPO1 gene. J Biol Chem 1997; 272:4121-8. [PMID: 9020123 DOI: 10.1074/jbc.272.7.4121] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The O-side-chain polysaccharide in the lipopolysaccharide of Klebsiella pneumoniae O1 is based on a backbone structure of repeat units of [-->3)-beta-D-Galf-(1-->3)-alpha-D-Galp-(1-->]; this structure is termed D-galactan I. The rfb (O-antigen biosynthesis) gene cluster directs the synthesis of D-galactan I and consists of six genes termed rfbA-FKPO1. In this paper we show that rfbDKPO1 encodes a UDP-galactopyranose mutase (NAD(P)H-requiring) (EC 5.4.99. 9), which forms uridine 5'-(trihydrogen diphosphate) P'-alpha-D-galactofuranosyl ester (UDP-Galf), the biosynthetic precursor of galactofuranosyl residues. The deduced amino acid sequence of rfbDKPO1 shows 85% and 37.5% identity to the rfbDKPO8 gene of K. pneumoniae serotype O8 and the glf gene of Escherichia coli, respectively. The molecular mass of the purified RfbDKPO1 enzyme is 45 kDa as determined by SDS-polyacrylamide gel electrophoresis, while gel filtration revealed a molecular mass of 92 kDa, suggesting a dimeric structure for the native protein. The rfbDKPO1 gene product interconverts uridine 5'-(trihydrogen diphosphate) P'-alpha-D-galactopyranosyl ester (UDP-Galp) and UDP-Galf. Unlike Glf, RfbDKPO1 showed a requirement for NADH or NADPH, which could not be replaced by NAD or NADP. RfbDKPO1 was used to synthesize milligram quantities of UDP-Galf, allowing this compound to be purified and fully characterized in an intact form for the first time. The structure of UDP-Galf was proven by NMR spectroscopy.
Collapse
Affiliation(s)
- R Köplin
- Canadian Bacterial Diseases Network, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | | | | |
Collapse
|
17
|
Altman E, Schäffer C, Brisson JR, Messner P. Isolation and characterization of an amino sugar-rich glycopeptide from the surface layer glycoprotein of Thermoanaerobacterium thermosaccharolyticum E207-71. Carbohydr Res 1996; 295:245-53. [PMID: 9002194 DOI: 10.1016/s0008-6215(96)90150-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- E Altman
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ont., Canada
| | | | | | | |
Collapse
|
18
|
Sára M, Sleytr UB. Crystalline bacterial cell surface layers (S-layers): from cell structure to biomimetics. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1996; 65:83-111. [PMID: 9029942 DOI: 10.1016/s0079-6107(96)00007-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- M Sára
- Center for Ultrastructure Research, Universität für Bodenkultur, Vienna, Austria
| | | |
Collapse
|
19
|
Gehin A, Petitdemange H. The effects of tunicamycin on secretion, adhesion and activities of the cellulase complex of Clostridium cellulolyticum, ATCC 35319. Res Microbiol 1995; 146:251-62. [PMID: 7569320 DOI: 10.1016/0923-2508(96)80281-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The effects of tunicamycin, an inhibitor of N-asparagine-linked glycosylation, on the secretion, adhesion and activities of the cellulase complex produced by Clostridium cellulolyticum have been studied. Tunicamycin at 0.1 micrograms/ml slightly inhibited growth on cellobiose. Endoglucanase, p-nitrophenylcellobiosidase and avicelase activities of the "Avicel"-adsorbed fraction from a culture grown with this drug were decreased 4.4-, 1.4- and 12.2-fold, respectively. During growth on cellulose, tunicamycin considerably inhibited growth and adhesion of cells on their substrate (only 28% of the cells were bound to cellulose). SDS-PAGE mobilities of some proteins excreted during growth with the drug were different from those of proteins from control cultures; the native Avicel-adsorbed fraction (PH2O) consisted of three major components of molecular weights about 135, 90 and 68 kDa, whereas in the presence of tunicamycin (0.1 micrograms/ml), the Avicel-adsorbed fraction (PH2OT) contained only a major band of 105 kDa, and the proteins of 135 and 68 kDa appeared weakly. By using the "Dig Glycan Detection" kit, some proteins appeared to be glycosylated, such as the 135-, 95-, 47- and 40-kDa proteins. Moreover, the affinity for Avicel and the avicelase activity decreased dramatically for the Avicel-adsorbed fraction from a culture grown with the drug. The remaining avicelase activity of the PH2O fraction in the presence of specific P135 antiserum was 50% of the initial activity, whereas CMCase and pNPCbase were not affected. The glycosylated protein of 135 kDa played a prominent role in the adhesion and avicelase activity of C. cellulolyticum. Moreover, the endoglucanase activity in a culture broth from tunicamycin-grown cells was more thermolabile and protease-sensitive than that from control cultures.
Collapse
Affiliation(s)
- A Gehin
- Université de Nancy I, Laboratoire de Chimie biologique I, Vandoeuvre-lès-Nancy, France
| | | |
Collapse
|
20
|
Abstract
Glycoproteins are proving to be quite common in prokaryotes. Those in S-layers are the best understood in terms of structure. Numerous eubacteria produce non-S-layer glycoproteins about which relatively little is known. The glycans on such proteins and the nature and sites of their linkages to proteins are novel in those glycoproteins which have been examined in any detail. The possible functions of the glycans are mostly not understood. Eubacterial non-S-layer glycoproteins and the glycosylation systems producing them deserve more attention.
Collapse
Affiliation(s)
- L E Sandercock
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
21
|
Bock K, Schuster-Kolbe J, Altman E, Allmaier G, Stahl B, Christian R, Sleytr U, Messner P. Primary structure of the O-glycosidically linked glycan chain of the crystalline surface layer glycoprotein of Thermoanaerobacter thermohydrosulfuricus L111-69. Galactosyl tyrosine as a novel linkage unit. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37258-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
22
|
Ong E, Kilburn DG, Miller RC, Warren RA. Streptomyces lividans glycosylates the linker region of a beta-1,4-glycanase from Cellulomonas fimi. J Bacteriol 1994; 176:999-1008. [PMID: 8106343 PMCID: PMC205150 DOI: 10.1128/jb.176.4.999-1008.1994] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The beta-1,4-glycanase Cex of the gram-positive bacterium Cellulomonas fimi is a glycoprotein comprising a C-terminal cellulose-binding domain connected to an N-terminal catalytic domain by a linker containing only prolyl and threonyl (PT) residues. Cex is also glycosylated by Streptomyces lividans. The glycosylation of Cex produced in both C. fimi and S. lividans protects the enzyme from proteolysis. When the gene fragments encoding the cellulose-binding domain of Cex (CBDCex), the PT linker plus CBDCex (PT-CBDCex), and the catalytic domain plus CBDCex of Cex were expressed in S. lividans, only PT-CBDCex was glycosylated. Therefore, all the glycans must be O linked because only the PT linker was glycosylated. A glycosylated form and a nonglycosylated form of PT-CBDCex were produced by S. lividans. The glycosylated form of PT-CBDCex was heterogeneous; its average carbohydrate content was approximately 10 mol of D-mannose equivalents per mol of protein, but the glycans contained from 4 to 12 alpha-D-mannosyl and alpha-D-galactosyl residues. Glycosylated Cex from S. lividans was also heterogeneous. The presence of glycans on PT-CBDCex increased its affinity for bacterial microcrystalline cellulose. The location of glycosylation only on the linker region of Cex correlates with the properties conferred on the enzyme by the glycans.
Collapse
Affiliation(s)
- E Ong
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
23
|
Munro GH, Evans P, Todryk S, Buckett P, Kelly CG, Lehner T. A protein fragment of streptococcal cell surface antigen I/II which prevents adhesion of Streptococcus mutans. Infect Immun 1993; 61:4590-8. [PMID: 7691754 PMCID: PMC281209 DOI: 10.1128/iai.61.11.4590-4598.1993] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Attachment of Streptococcus mutans to the tooth surface involves a cell surface protein with an M(r) of 185,000, termed streptococcal antigen (SA) I/II. Four overlapping fragments of the gene encoding SA I/II were amplified by polymerase chain reaction, cloned, and expressed in Escherichia coli. The recombinant polypeptides were assayed for adhesion-binding activity to salivary receptors and for recognition by a panel of monoclonal antibodies (MAbs) raised against SA I/II. Two of the MAbs which are known to prevent colonization of S. mutans in vivo bound the recombinant polypeptide comprising residues 816 to 1161. In vitro adhesion of S. mutans to saliva-coated hydroxyapatite beads was also inhibited specifically by a polypeptide (residues 816 to 1213) encompassing the same region. The evidence from the MAbs preventing colonization of S. mutans and the adherence inhibition assay suggests that an adhesion-binding activity resides within the portion of SA I/II comprising residues 816 to 1213, which is highly conserved among oral streptococcal species.
Collapse
Affiliation(s)
- G H Munro
- Department of Immunology, United Medical School, Guy's Hospital, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
24
|
|