1
|
Tomar V, Sidhu GK, Nogia P, Mehrotra R, Mehrotra S. Regulatory components of carbon concentrating mechanisms in aquatic unicellular photosynthetic organisms. PLANT CELL REPORTS 2017; 36:1671-1688. [PMID: 28780704 DOI: 10.1007/s00299-017-2191-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/31/2017] [Indexed: 06/07/2023]
Abstract
This review provides an insight into the regulation of the carbon concentrating mechanisms (CCMs) in lower organisms like cyanobacteria, proteobacteria, and algae. CCMs evolved as a mechanism to concentrate CO2 at the site of primary carboxylating enzyme Ribulose-1, 5-bisphosphate carboxylase oxygenase (Rubisco), so that the enzyme could overcome its affinity towards O2 which leads to wasteful processes like photorespiration. A diverse set of CCMs exist in nature, i.e., carboxysomes in cyanobacteria and proteobacteria; pyrenoids in algae and diatoms, the C4 system, and Crassulacean acid metabolism in higher plants. Prime regulators of CCM in most of the photosynthetic autotrophs belong to the LysR family of transcriptional regulators, which regulate the activity of the components of CCM depending upon the ambient CO2 concentrations. Major targets of these regulators are carbonic anhydrase and inorganic carbon uptake systems (CO2 and HCO3- transporters) whose activities are modulated either at transcriptional level or by changes in the levels of their co-regulatory metabolites. The article provides information on the localization of the CCM components as well as their function and participation in the development of an efficient CCM. Signal transduction cascades leading to activation/inactivation of inducible CCM components on perception of low/high CO2 stimuli have also been brought into picture. A detailed study of the regulatory components can aid in identifying the unraveled aspects of these mechanisms and hence provide information on key molecules that need to be explored to further provide a clear understanding of the mechanism under study.
Collapse
Affiliation(s)
- Vandana Tomar
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India
| | - Gurpreet Kaur Sidhu
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India
| | - Panchsheela Nogia
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India
| | - Rajesh Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India
| | - Sandhya Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, 333031, Rajasthan, India.
| |
Collapse
|
2
|
Ma Y, Yang M, Lin X, Liu X, Huang H, Ge F. Malonylome Analysis Reveals the Involvement of Lysine Malonylation in Metabolism and Photosynthesis in Cyanobacteria. J Proteome Res 2017; 16:2030-2043. [DOI: 10.1021/acs.jproteome.7b00017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yanyan Ma
- Key
Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingkun Yang
- Key
Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiaohuang Lin
- Key
Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Liu
- Key
Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Huang
- Key
Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Ge
- Key
Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
3
|
Saini R, Kapoor R, Kumar R, Siddiqi TO, Kumar A. CO2 utilizing microbes — A comprehensive review. Biotechnol Adv 2011; 29:949-60. [PMID: 21856405 DOI: 10.1016/j.biotechadv.2011.08.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 08/04/2011] [Accepted: 08/05/2011] [Indexed: 11/30/2022]
Affiliation(s)
- Rashmi Saini
- Department of Botany, North Campus, University of Delhi, New Delhi-110007, India
| | | | | | | | | |
Collapse
|
4
|
The Brucella abortus phosphoglycerate kinase mutant is highly attenuated and induces protection superior to that of vaccine strain 19 in immunocompromised and immunocompetent mice. Infect Immun 2010; 78:2283-91. [PMID: 20194591 DOI: 10.1128/iai.01433-09] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Brucella abortus is a facultative intracellular bacterial pathogen that causes abortion in domestic animals and undulant fever in humans. The mechanism of virulence of Brucella spp. is not yet fully understood. Therefore, it is crucial to identify new molecules that can function as virulence factors to better understand the host-pathogen interplay. Herein, we identified the gene encoding the phosphoglycerate kinase (PGK) of B. abortus strain 2308. To test the role of PGK in Brucella pathogenesis, a pgk deletion mutant was constructed. Replacement of the wild-type pgk by recombination was demonstrated by Southern and Western blot analyses. The B. abortus Delta pgk mutant strain exhibited extreme attenuation in bone marrow-derived macrophages and in vivo in BALB/c, C57BL/6, 129/Sv, and interferon regulatory factor-1 knockout (IRF-1 KO) mice. Additionally, at 24 h postinfection the Delta pgk mutant was not found within the same endoplasmic reticulum-derived compartment as the wild-type bacteria, but, instead, over 60% of Brucella-containing vacuoles (BCVs) retained the late endosomal/lysosomal marker LAMP1. Furthermore, the B. abortus Delta pgk deletion mutant was used as a live vaccine. Challenge experiments revealed that the Delta pgk mutant strain induced protective immunity in 129/Sv or IRF-1 KO mice that was superior to the protection conferred by commercial strain 19 or RB51. Finally, the results shown here demonstrated that Brucella PGK is critical for full bacterial virulence and that a Delta pgk mutant may serve as a potential vaccine candidate in future studies.
Collapse
|
5
|
van Keulen G, Ridder ANJA, Dijkhuizen L, Meijer WG. Analysis of DNA binding and transcriptional activation by the LysR-type transcriptional regulator CbbR of Xanthobacter flavus. J Bacteriol 2003; 185:1245-52. [PMID: 12562794 PMCID: PMC142840 DOI: 10.1128/jb.185.4.1245-1252.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The LysR-type transcriptional regulator CbbR controls the expression of the cbb and gap-pgk operons in Xanthobacter flavus, which encode the majority of the enzymes of the Calvin cycle required for autotrophic CO2 fixation. The cbb operon promoter of this chemoautotrophic bacterium contains three potential CbbR binding sites, two of which partially overlap. Site-directed mutagenesis and subsequent analysis of DNA binding by CbbR and cbb promoter activity were used to show that the potential CbbR binding sequences are functional. Inverted repeat IR1 is a high-affinity CbbR binding site. The main function of this repeat is to recruit CbbR to the cbb operon promoter. In addition, it is required for negative autoregulation of cbbR expression. IR3 represents the main low-affinity binding site of CbbR. Binding to IR3 occurs in a cooperative manner, since mutations preventing the binding of CbbR to IR1 also prevent binding to the low-affinity site. Although mutations in IR3 have a negative effect on the binding of CbbR to this site, they result in an increased promoter activity. This is most likely due to steric hindrance of RNA polymerase by CbbR since IR3 partially overlaps with the -35 region of the cbb operon promoter. Mutations in IR2 do not affect the DNA binding of CbbR in vitro but have a severe negative effect on the activity of the cbb operon promoter. This IR2 binding site is therefore critical for transcriptional activation by CbbR.
Collapse
Affiliation(s)
- Geertje van Keulen
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9750 AA Haren, The Netherlands
| | | | | | | |
Collapse
|
6
|
|
7
|
Novak JS, Tunick MH, Juneja VK. Heat treatment adaptations in Clostridium perfringens vegetative cells. J Food Prot 2001; 64:1527-34. [PMID: 11601701 DOI: 10.4315/0362-028x-64.10.1527] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Vegetative cells of Clostridium perfringens enterotoxigenic strains NCTC 8679, NCTC 8238. and H6 were grown at 37 degrees C followed by a 60-min exposure to 28 degrees C or 46 degrees C. D10-values, as a measure of thermal resistance at 60 degrees C, were significantly lower for 28 degrees C exposures as compared with cultures given 37 and 46 degrees C exposures. Following refrigeration at 4 degrees C for 24 h, D10-values for the 37 and 46 degrees C samples could not be differentiated from 28 degrees C samples. Western immunoblot analyses of lysates from heat-adapted cells also detected the increased expression of proteins reacting with antiserum directed against the molecular chaperonins from Escherichia coli; GroEL, DnaJ, and the small acid soluble protein from Bacillus subtilis, SspC. Differential scanning calorimetry (DSC) identified thermal transitions corresponding to ribosomal protein denaturations at 72.1 +/- 0.5 degrees C. Any cellular heat adaptations in the DSC profiles were lost following refrigeration for several days to simulate minimally processed food storage conditions. Further analyses of high-speed pellets from crude cell extract fractions using two-dimensional gel electrophoresis detected the differential gene expression of at least four major proteins in heat-adapted vegetative cells of C. perfringens. N-terminal amino acid analyses identified two of the proteins as glyceraldehyde 3-phosphate dehydrogenase and rubrerythrin. Both appear to have roles in this anaerobe under stressful conditions.
Collapse
Affiliation(s)
- J S Novak
- US Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania 19038, USA.
| | | | | |
Collapse
|
8
|
van Keulen G, Dijkhuizen L, Meijer WG. Effects of the Calvin cycle on nicotinamide adenine dinucleotide concentrations and redox balances of Xanthobacter flavus. J Bacteriol 2000; 182:4637-9. [PMID: 10913100 PMCID: PMC94638 DOI: 10.1128/jb.182.16.4637-4639.2000] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The levels of reduced and oxidized nicotinamide adenine dinucleotides were determined in Xanthobacter flavus during a transition from heterotrophic to autotrophic growth. Excess reducing equivalents are rapidly dissipated following induction of the Calvin cycle, indicating that the Calvin cycle serves as a sink for excess reducing equivalents. The physiological data support the conclusion previously derived from molecular studies in that expression of the Calvin cycle genes is controlled by the intracellular concentration of NADPH.
Collapse
Affiliation(s)
- G van Keulen
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9750 AA Haren, The Netherlands
| | | | | |
Collapse
|
9
|
Shively JM, van Keulen G, Meijer WG. Something from almost nothing: carbon dioxide fixation in chemoautotrophs. Annu Rev Microbiol 1999; 52:191-230. [PMID: 9891798 DOI: 10.1146/annurev.micro.52.1.191] [Citation(s) in RCA: 175] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The last decade has seen significant advances in our understanding of the physiology, ecology, and molecular biology of chemoautotrophic bacteria. Many ecosystems are dependent on CO2 fixation by either free-living or symbiotic chemoautotrophs. CO2 fixation in the chemoautotroph occurs via the Calvin-Benson-Bassham cycle. The cycle is characterized by three unique enzymatic activities: ribulose bisphosphate carboxylase/oxygenase, phosphoribulokinase, and sedoheptulose bisphosphatase. Ribulose bisphosphate carboxylase/oxygenase is commonly found in the cytoplasm, but a number of bacteria package much of the enzyme into polyhedral organelles, the carboxysomes. The carboxysome genes are located adjacent to cbb genes, which are often, but not always, clustered in large operons. The availability of carbon and reduced substrates control the expression of cbb genes in concert with the LysR-type transcriptional regulator, CbbR. Additional regulatory proteins may also be involved. All of these, as well as related topics, are discussed in detail in this review.
Collapse
Affiliation(s)
- J M Shively
- Department of Biological Sciences, Clemson University, South Carolina 29634, USA.
| | | | | |
Collapse
|
10
|
van Keulen G, Girbal L, van den Bergh ER, Dijkhuizen L, Meijer WG. The LysR-type transcriptional regulator CbbR controlling autotrophic CO2 fixation by Xanthobacter flavus is an NADPH sensor. J Bacteriol 1998; 180:1411-7. [PMID: 9515907 PMCID: PMC107038 DOI: 10.1128/jb.180.6.1411-1417.1998] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Autotrophic growth of Xanthobacter flavus is dependent on the fixation of carbon dioxide via the Calvin cycle and on the oxidation of simple organic and inorganic compounds to provide the cell with energy. Maximal induction of the cbb and gap-pgk operons encoding enzymes of the Calvin cycle occurs in the absence of multicarbon substrates and the presence of methanol, formate, hydrogen, or thiosulfate. The LysR-type transcriptional regulator CbbR regulates the expression of the cbb and gap-pgk operons, but it is unknown to what cellular signal CbbR responds. In order to study the effects of low-molecular-weight compounds on the DNA-binding characteristics of CbbR, the protein was expressed in Escherichia coli and subsequently purified to homogeneity. CbbR of X. flavus is a dimer of 36-kDa subunits. DNA-binding assays suggested that two CbbR molecules bind to a 51-bp DNA fragment on which two inverted repeats containing the LysR motif are located. The addition of 200 microM NADPH, but not NADH, resulted in a threefold increase in DNA binding. The apparent K(dNADPH) of CbbR was determined to be 75 microM. By using circular permutated DNA fragments, it was shown that CbbR introduces a 64 degree bend in the DNA. The presence of NADPH in the DNA-bending assay resulted in a relaxation of the DNA bend by 9 degree. From the results of these in vitro experiments, we conclude that CbbR responds to NADPH. The in vivo regulation of the cbb and gap-pgk operons may therefore be regulated by the intracellular concentration of NADPH.
Collapse
Affiliation(s)
- G van Keulen
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
| | | | | | | | | |
Collapse
|
11
|
Kusian B, Bowien B. Organization and regulation of cbb CO2 assimilation genes in autotrophic bacteria. FEMS Microbiol Rev 1997; 21:135-55. [PMID: 9348665 DOI: 10.1111/j.1574-6976.1997.tb00348.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Calvin-Benson-Bassham cycle constitutes the principal route of CO2 assimilation in aerobic chemoautotrophic and in anaerobic phototrophic purple bacteria. Most of the enzymes of the cycle are found to be encoded by cbb genes. Despite some conservation of the internal gene arrangement cbb gene clusters of the various organisms differ in size and operon organization. The cbb operons of facultative autotrophs are more strictly regulated than those of obligate autotrophs. The major control is exerted by the cbbR gene, which codes for a transcriptional activator of the LysR family. This gene is typically located immediately upstream of and in divergent orientation to the regulated cbb operon, forming a control region for both transcriptional units. Recent studies suggest that additional protein factors are involved in the regulation. Although the metabolic signal(s) received by the regulatory components of the operons is (are) still unknown, the redox state of the cell is believed to play a key role. It is proposed that the control of the cbb operon expression is integrated into a regulatory network.
Collapse
Affiliation(s)
- B Kusian
- Institut für Mikrobiologie, Georg-August-Universität Göttingen, Germany
| | | |
Collapse
|
12
|
Meijer WG, de Boer P, van Keulen G. Xanthobacter flavus employs a single triosephosphate isomerase for heterotrophic and autotrophic metabolism. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 6):1925-1931. [PMID: 9202469 DOI: 10.1099/00221287-143-6-1925] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The expression of the cbb and gap-pgk operons of Xanthobacter flavus encoding enzymes of the Calvin cycle is regulated by the transcriptional regulator CbbR. In order to identify other genes involved in the regulation of these operons, a mutant was isolated with a lowered activity of a fusion between the promoter of the cbb operon and the reporter gene lacZ. This mutant was unable to grow autotrophically and had a reduced growth rate on medium supplemented with gluconate or succinate. The regulation of the gap-pgk operon in the mutant was indistinguishable from the wild-type strain, but induction of the cbb operon upon transition to autotrophic growth conditions was delayed. Complementation of the mutant with a genomic library of X. flavus resulted in the isolation of a 1.1 kb ApaI fragment which restored autotrophic growth of the mutant. One open reading frame (ORF) was present on the ApaI fragment, which could encode a protein highly similar to triosephosphate isomerase proteins from other bacteria. Cell extracts of the mutant grown under glycolytic or gluconeogenic conditions had severely reduced triosephosphate isomerase activities. The ORF was therefore identified as tpi, encoding triosephosphate isomerase. The tpi gene is not linked to the previously identified operons encoding Calvin cycle enzymes and therefore represents a third transcriptional unit required for autotrophic metabolism.
Collapse
Affiliation(s)
- Wim G Meijer
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | - Paulo de Boer
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | - Geertje van Keulen
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| |
Collapse
|
13
|
Swaving J, van Leest W, van Ooyen AJ, de Bont JA. Electrotransformation of Xanthobacter autotrophicus GJ10 and other Xanthobacter strains. J Microbiol Methods 1996. [DOI: 10.1016/0167-7012(96)00007-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Meijer WG, van den Bergh ER, Smith LM. Induction of the gap-pgk operon encoding glyceraldehyde-3-phosphate dehydrogenase and 3-phosphoglycerate kinase of Xanthobacter flavus requires the LysR-type transcriptional activator CbbR. J Bacteriol 1996; 178:881-7. [PMID: 8550526 PMCID: PMC177738 DOI: 10.1128/jb.178.3.881-887.1996] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In a previous study, a gene (pgk) encoding phosphoglycerate kinase was isolated from a genomic library of Xanthobacter flavus. Although this gene is essential for autotrophic growth, it is not located within the cbb operon encoding other Calvin cycle enzymes. An analysis of the nucleotide sequence upstream from pgk showed the presence of a gene encoding glyceraldehyde-3-phosphate dehydrogenase and the 3' end of an open reading frame encoding a protein which is 50% identical to transketolase encoded by cbbT of X. flavus. Gene fusions between pgk and lacZ demonstrated that the gap and pgk genes are organized in an operon. Induction of the Calvin cycle in heterotrophically growing cells resulted in a sixfold increase in phosphoglycerate kinase activity in parallel with the appearance of ribulosebisphosphate carboxylase activity. This superinduction of phosphoglycerate kinase did not occur in an X. flavus strain in which cbbR, encoding the transcriptional activator of the cbb operon, was disrupted. The failure to superinduce the gap-pgk operon is not caused by the absence of a functional Calvin cycle, since the expression of this operon in an X. flavus strain with a defective ribulosebisphosphate carboxylase enzyme was the same as the expression in the wild type. It is therefore concluded that the expression of both the cbb and gap-pgk operons is controlled by CbbR.
Collapse
Affiliation(s)
- W G Meijer
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, NN Haren, The Netherlands
| | | | | |
Collapse
|
15
|
van den Bergh ER, Baker SC, Raggers RJ, Terpstra P, Woudstra EC, Dijkhuizen L, Meijer WG. Primary structure and phylogeny of the Calvin cycle enzymes transketolase and fructosebisphosphate aldolase of Xanthobacter flavus. J Bacteriol 1996; 178:888-93. [PMID: 8550527 PMCID: PMC177739 DOI: 10.1128/jb.178.3.888-893.1996] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Xanthobacter flavus, a gram-negative facultatively autotrophic bacterium, employs the Calvin cycle for the fixation of carbon dioxide. Cells grown under autotrophic growth conditions possess an Fe(2+)-dependent fructosebisphosphate (FBP) aldolase (class II) in addition to a class I FBP aldolase. By nucleotide sequencing and heterologous expression in Escherichia coli, genes encoding transketolase (EC 2.2.1.1.; CbbT) and class II FBP aldolase (EC 4.1.2.13; CbbA) were identified. A partial open reading frame encoding a protein similar to pentose-5-phosphate 3-epimerase was identified downstream from cbbA. A phylogenetic tree of transketolase proteins displays a conventional branching order. However, the class II FBP aldolase protein from X. flavus is only distantly related to that of E. coli. The autotrophic FBP aldolase proteins from X. flavus, Alcaligenes eutrophus, and Rhodobacter sphaeroides form a tight cluster, with the proteins from gram-positive bacteria as the closest relatives.
Collapse
Affiliation(s)
- E R van den Bergh
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, NN Haren, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
16
|
van den Bergh ER, van der Kooij TA, Dijkhuizen L, Meijer WG. Fructosebisphosphatase isoenzymes of the chemoautotroph Xanthobacter flavus. J Bacteriol 1995; 177:5860-4. [PMID: 7592335 PMCID: PMC177410 DOI: 10.1128/jb.177.20.5860-5864.1995] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Xanthobacter flavus employs two fructosebisphosphatase (FBPase)-sedoheptulosebisphosphatase (SBPase) enzymes. One of these is constitutively expressed and has a high FBPase-to-SBPase ratio. The alternative enzyme, which is encoded by cbbF, is induced during autotrophic growth. The cbbF gene was expressed in Escherichia coli, and the FBPase was purified to homogeneity. The purified enzyme has a specific FBPase activity of 114 mumol/min/mg of protein, a Michaelis constant for fructosebisphosphate of 3 microM, and a low FBPase-to-SBPase ratio. CbbF was activated by ATP and inhibited by Ca2+.
Collapse
Affiliation(s)
- E R van den Bergh
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Haren, The Netherlands
| | | | | | | |
Collapse
|
17
|
Yoo JG, Bowien B. Analysis of the cbbF genes from Alcaligenes eutrophus that encode fructose-1,6-/sedoheptulose-1,7-bisphosphatase. Curr Microbiol 1995; 31:55-61. [PMID: 7767230 DOI: 10.1007/bf00294635] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The cbbF genes of the facultative chemoautotroph Alcaligenes eutrophus H16 are part of two highly homologous cbb operons. Both the chromosomal and the megaplasmid pHG1-borne copy of cbbF were cloned and sequenced. Subsequent analyses including comparison with known sequences from other organisms and heterologous expression in Escherichia coli revealed that each of the genes encodes fructose-1,6-bisphosphatase (FBPase). A closely related activity likewise operating in the Calvin carbon reduction cycle, sedoheptulose-1,7-bisphosphatase, was also catalyzed by the two isoenzymes which were purified from autotrophically grown cells of A. eutrophus. Two-dimensional gel electrophoresis allowed the separation of the cbbF gene products. Preliminary physical evidence by Southern hybridization with a heterologous gene probe was obtained for the existence of a third FBPase gene, fbp, on the chromosome of the organism. Its product is probably involved in the heterotrophic carbon metabolism.
Collapse
Affiliation(s)
- J G Yoo
- Institut für Mikrobiologie, Georg-August-Universität Göttingen, Germany
| | | |
Collapse
|