1
|
Zou S, Liu J, Zhao K, Zhu X, Zhang B, Liu Z, Zheng Y. Metabolic engineering of Escherichia coli for enhanced production of D-pantothenic acid. BIORESOURCE TECHNOLOGY 2024; 412:131352. [PMID: 39186986 DOI: 10.1016/j.biortech.2024.131352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/08/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
D-pantothenic acid (D-PA) is an essential vitamin that has been widely used in various industries. However, the low productivity caused by slow D-PA production in fermentation hinders its potential applications. In this study, strategies of engineering the synthetic pathway combined with regulating methyl recycle were employed in E. coli to enhance D-PA production. First, a self-induced promoter-mediated dynamic regulation of D-PA degradation pathway was carried out to improve D-PA accumulation. Then, to drive more carbon flux into D-PA synthesis, the key nodes of the R-pantoate pathway which encoded the essential enzyme were integrated into the genome. Subsequently, the further increase in D-PA production was achieved by promoting the regeneration of methyl donor. The strain L11T produced 86.03 g/L D-PA with a productivity of 0.797 g/L/h, which presented the highest D-PA titer and productivity to date. The strategies could be applied to constructing cell factories for producing other bio-based products.
Collapse
Affiliation(s)
- Shuping Zou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jinlong Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Kuo Zhao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xintao Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Bo Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhiqiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Yuguo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
2
|
Lalaouna D, Eyraud A, Devinck A, Prévost K, Massé E. GcvB small RNA uses two distinct seed regions to regulate an extensive targetome. Mol Microbiol 2018; 111:473-486. [PMID: 30447071 DOI: 10.1111/mmi.14168] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2018] [Indexed: 01/01/2023]
Abstract
GcvB small RNA is described as post-transcriptional regulator of 1-2% of all mRNAs in Escherichia coli and Salmonella Typhimurium. At least 24 GcvB:mRNA interactions have been validated in vivo, establishing the largest characterized sRNA targetome. By performing MS2-affinity purification coupled with RNA sequencing (MAPS) technology, we identified seven additional mRNAs negatively regulated by GcvB in E. coli. Contrary to the vast majority of previously known targets, which pair to the well-conserved GcvB R1 region, we validated four mRNAs targeted by GcvB R3 region. This indicates that base-pairing through R3 seed sequence seems relatively common. We also noticed unusual GcvB pairing sites in the coding sequence of two target mRNAs. One of these target mRNAs has a pairing site displaying a unique ACA motif, suggesting that GcvB could hijack a translational enhancer element. The second target mRNA is likely regulated via an active RNase E-mediated mRNA degradation mechanism. Remarkably, we confirmed the importance of the sRNA sponge SroC in the fine-tuning control of GcvB activity in function of growth conditions such as growth phase and nutrient availability.
Collapse
Affiliation(s)
- David Lalaouna
- Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Alex Eyraud
- Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Aurélie Devinck
- Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Karine Prévost
- Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Eric Massé
- Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
3
|
Abstract
The biosynthesis of serine, glycine, and one-carbon (C1) units constitutes a major metabolic pathway in Escherichia coli and Salmonella enterica serovar Typhimurium. C1 units derived from serine and glycine are used in the synthesis of purines, histidine, thymine, pantothenate, and methionine and in the formylation of the aminoacylated initiator fMet-TRNAfMet used to start translation in E. coli and serovar Typhimurium. The need for serine, glycine, and C1 units in many cellular functions makes it necessary for the genes encoding enzymes for their synthesis to be carefully regulated to meet the changing demands of the cell for these intermediates. This review discusses the regulation of the following genes: serA, serB, and serC; gly gene; gcvTHP operon; lpdA; gcvA and gcvR; and gcvB genes. Threonine utilization (the Tut cycle) constitutes a secondary pathway for serine and glycine biosynthesis. L-Serine inhibits the growth of E. coli cells in GM medium, and isoleucine releases this growth inhibition. The E. coli glycine transport system (Cyc) has been shown to transport glycine, D-alanine, D-serine, and the antibiotic D-cycloserine. Transport systems often play roles in the regulation of gene expression, by transporting effector molecules into the cell, where they are sensed by soluble or membrane-bound regulatory proteins.
Collapse
|
4
|
Coornaert A, Chiaruttini C, Springer M, Guillier M. Post-transcriptional control of the Escherichia coli PhoQ-PhoP two-component system by multiple sRNAs involves a novel pairing region of GcvB. PLoS Genet 2013; 9:e1003156. [PMID: 23300478 PMCID: PMC3536696 DOI: 10.1371/journal.pgen.1003156] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 10/25/2012] [Indexed: 01/02/2023] Open
Abstract
PhoQ/PhoP is a central two-component system involved in magnesium homeostasis, pathogenicity, cell envelope composition, and acid resistance in several bacterial species. The small RNA GcvB is identified here as a novel direct regulator of the synthesis of PhoQ/PhoP in Escherichia coli, and this control relies on a novel pairing region of GcvB. After MicA, this is the second Hfq-dependent small RNA that represses expression of the phoPQ operon. Both MicA and GcvB bind phoPQ mRNA in vivo and in vitro around the translation initiation region of phoP. Binding of either small RNA is sufficient to inhibit ribosome binding and induce mRNA degradation. Surprisingly, however, MicA and GcvB have different effects on the levels of the PhoP protein and therefore on the expression of the PhoP regulon. These results highlight the complex connections between small RNAs and transcriptional regulation networks in bacteria. Regulation of bacterial gene expression participates in the ability of these microorganisms to quickly adapt to their environment. This regulation can occur at every level of gene expression. For instance, two-component systems are involved in transcriptional control, while small RNAs usually act at the post-transcriptional level. In this study, the pleiotropic small RNA GcvB is identified as the second small RNA regulator of the central PhoQ/PhoP two-component system, which highlights the connections between the different types of regulation.
Collapse
Affiliation(s)
- Audrey Coornaert
- UPR9073 du CNRS, Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Claude Chiaruttini
- UPR9073 du CNRS, Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Mathias Springer
- UPR9073 du CNRS, Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
| | - Maude Guillier
- UPR9073 du CNRS, Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, Paris, France
- * E-mail:
| |
Collapse
|
5
|
Sharma CM, Papenfort K, Pernitzsch SR, Mollenkopf HJ, Hinton JCD, Vogel J. Pervasive post-transcriptional control of genes involved in amino acid metabolism by the Hfq-dependent GcvB small RNA. Mol Microbiol 2011; 81:1144-65. [PMID: 21696468 DOI: 10.1111/j.1365-2958.2011.07751.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
GcvB is one of the most highly conserved Hfq-associated small RNAs in Gram-negative bacteria and was previously reported to repress several ABC transporters for amino acids. To determine the full extent of GcvB-mediated regulation in Salmonella, we combined a genome-wide experimental approach with biocomputational target prediction. Comparative pulse expression of wild-type versus mutant sRNA variants revealed that GcvB governs a large post-transcriptional regulon, impacting ~1% of all Salmonella genes via its conserved G/U-rich domain R1. Complementary predictions of C/A-rich binding sites in mRNAs and gfp reporter fusion experiments increased the number of validated GcvB targets to more than 20, and doubled the number of regulated amino acid transporters. Unlike the previously described targeting via the single R1 domain, GcvB represses the glycine transporter CycA by exceptionally redundant base-pairing. This novel ability of GcvB is focused upon the one target that could feedback-regulate the glycine-responsive synthesis of GcvB. Several newly discovered mRNA targets involved in amino acid metabolism, including the global regulator Lrp, question the previous assumption that GcvB simply acts to limit unnecessary amino acid uptake. Rather, GcvB rewires primary transcriptional control circuits and seems to act as a distinct regulatory node in amino acid metabolism.
Collapse
Affiliation(s)
- Cynthia M Sharma
- Institute for Molecular Infection Biology, Research Centre of Infectious Diseases, University of Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
6
|
Deficiency in L-serine deaminase interferes with one-carbon metabolism and cell wall synthesis in Escherichia coli K-12. J Bacteriol 2010; 192:5515-25. [PMID: 20729359 DOI: 10.1128/jb.00748-10] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli K-12 provided with glucose and a mixture of amino acids depletes L-serine more quickly than any other amino acid even in the presence of ammonium sulfate. A mutant without three 4Fe4S L-serine deaminases (SdaA, SdaB, and TdcG) of E. coli K-12 is unable to do this. The high level of L-serine that accumulates when such a mutant is exposed to amino acid mixtures starves the cells for C(1) units and interferes with cell wall synthesis. We suggest that at high concentrations, L-serine decreases synthesis of UDP-N-acetylmuramate-L-alanine by the murC-encoded ligase, weakening the cell wall and producing misshapen cells and lysis. The inhibition by high L-serine is overcome in several ways: by a large concentration of L-alanine, by overproducing MurC together with a low concentration of L-alanine, and by overproducing FtsW, thus promoting septal assembly and also by overexpression of the glycine cleavage operon. S-Adenosylmethionine reduces lysis and allows an extensive increase in biomass without improving cell division. This suggests that E. coli has a metabolic trigger for cell division. Without that reaction, if no other inhibition occurs, other metabolic functions can continue and cells can elongate and replicate their DNA, reaching at least 180 times their usual length, but cannot divide.
Collapse
|
7
|
Pulvermacher SC, Stauffer LT, Stauffer GV. Role of the Escherichia coli Hfq protein in GcvB regulation of oppA and dppA mRNAs. Microbiology (Reading) 2009; 155:115-123. [DOI: 10.1099/mic.0.023432-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The gcvB gene encodes a small non-translated RNA (referred to as GcvB) that regulates oppA and dppA, two genes that encode periplasmic binding proteins for the oligopeptide and dipeptide transport systems. Hfq, an RNA chaperone protein, binds many small RNAs and is required for the small RNAs to regulate expression of their respective target genes. We showed that repression by GcvB of dppA : : lacZ and oppA : : phoA translational fusions is dependent upon Hfq. Double mutations in gcvB and hfq yielded similar expression levels of dppA : : lacZ and oppA : : phoA compared with gcvB or hfq single mutations, suggesting that GcvB and Hfq repress by the same mechanism. The effect of Hfq is not through regulation of transcription of gcvB. Hfq is known to increase the stability of some small RNAs and to facilitate the interactions between small RNAs and specific mRNAs. In the absence of Hfq, there is a marked decrease in the half-life of GcvB in cells grown in both Luria–Bertani broth and glucose minimal medium with glycine, suggesting that part of the role of Hfq is to stabilize GcvB. Overproduction of GcvB in wild-type Escherichia coli results in superrepression of a dppA : : lacZ fusion, but overproduction of GcvB in an hfq mutant does not result in significant repression of the dppA : : lacZ fusion. These results suggest that Hfq also is likely required for GcvB–mRNA pairing.
Collapse
Affiliation(s)
| | | | - George V. Stauffer
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
8
|
Genome-scale reconstruction of the Lrp regulatory network in Escherichia coli. Proc Natl Acad Sci U S A 2008; 105:19462-7. [PMID: 19052235 DOI: 10.1073/pnas.0807227105] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Broad-acting transcription factors (TFs) in bacteria form regulons. Here, we present a 4-step method to fully reconstruct the leucine-responsive protein (Lrp) regulon in Escherichia coli K-12 MG 1655 that regulates nitrogen metabolism. Step 1 is composed of obtaining high-resolution ChIP-chip data for Lrp, the RNA polymerase and expression profiles under multiple environmental conditions. We identified 138 unique and reproducible Lrp-binding regions and classified their binding state under different conditions. In the second step, the analysis of these data revealed 6 distinct regulatory modes for individual ORFs. In the third step, we used the functional assignment of the regulated ORFs to reconstruct 4 types of regulatory network motifs around the metabolites that are affected by the corresponding gene products. In the fourth step, we determined how leucine, as a signaling molecule, shifts the regulatory motifs for particular metabolites. The physiological structure that emerges shows the regulatory motifs for different amino acid fall into the traditional classification of amino acid families, thus elucidating the structure and physiological functions of the Lrp-regulon. The same procedure can be applied to other broad-acting TFs, opening the way to full bottom-up reconstruction of the transcriptional regulatory network in bacterial cells.
Collapse
|
9
|
Zhang X, Newman E. Deficiency in l-serine deaminase results in abnormal growth and cell division of Escherichia coli K-12. Mol Microbiol 2008; 69:870-81. [PMID: 18532981 DOI: 10.1111/j.1365-2958.2008.06315.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The loss of the ability to deaminate l-serine severely impairs growth and cell division in Escherichia coli K-12. A strain from which the three genes (sdaA, sdaB, tdcG) coding for this organism's three l-serine deaminases had been deleted grows well in glucose minimal medium but, on subculture into minimal medium with glucose and casamino acids, it makes very large, abnormally shaped cells, many of which lyse. When inoculated into Luria-Bertani (LB) broth with or without glucose, it makes very long filaments. Provision of S-adenosylmethionine restores cell division in LB broth with glucose, and repairs much of the difficulty in growth in medium with casamino acids. We suggest that replication of E. coli is regulated by methylation, that an unusually high intracellular l-serine concentration, in the presence of other amino acids, starves the cell for S-adenosylmethionine and that it is the absence of S-adenosylmethionine and/or of C1-tetrahydrofolate derivatives that prevents normal cell division.
Collapse
Affiliation(s)
- Xiao Zhang
- Biology Department, Concordia University, 1455 de Maisonneuve Ave, Montreal, Quebec, Canada
| | | |
Collapse
|
10
|
Pulvermacher SC, Stauffer LT, Stauffer GV. The role of the small regulatory RNA GcvB in GcvB/mRNA posttranscriptional regulation of oppA and dppA in Escherichia coli. FEMS Microbiol Lett 2008; 281:42-50. [PMID: 18312576 DOI: 10.1111/j.1574-6968.2008.01068.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The gcvB gene encodes two small, nontranslated RNAs that regulate OppA and DppA, periplasmic binding proteins for the oligopeptide and dipeptide transport systems. Analysis of the gcvB sequence identified a region of complementarity near the ribosome-binding sites of dppA and oppA mRNAs. Several changes in gcvB predicted to reduce complementarity of GcvB with dppA-lacZ and oppA-phoA reduced the ability of GcvB to repress the target RNAs while other changes had no effect or resulted in stronger repression of the target mRNAs. Mutations in dppA-lacZ and oppA-phoA that restored complementarity to GcvB restored the ability of GcvB to repress dppA-lacZ but not oppA-phoA. Additionally, a change that reduced complementarity of GcvB to dppA-lacZ reduced GcvB repression of dppA-lacZ with no effect on oppA-phoA. The results suggest that different regions of GcvB have different roles in regulating dppA and oppA mRNA, and although pairing between GcvB and dppA mRNA is likely part of the regulatory mechanism, the results do not support a simple base pairing interaction between GcvB and its target mRNAs as the complete mechanism of repression.
Collapse
|
11
|
Using gene expression data and network topology to detect substantial pathways, clusters and switches during oxygen deprivation of Escherichia coli. BMC Bioinformatics 2007; 8:149. [PMID: 17488495 PMCID: PMC1884177 DOI: 10.1186/1471-2105-8-149] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 05/08/2007] [Indexed: 11/26/2022] Open
Abstract
Background Biochemical investigations over the last decades have elucidated an increasingly complete image of the cellular metabolism. To derive a systems view for the regulation of the metabolism when cells adapt to environmental changes, whole genome gene expression profiles can be analysed. Moreover, utilising a network topology based on gene relationships may facilitate interpreting this vast amount of information, and extracting significant patterns within the networks. Results Interpreting expression levels as pixels with grey value intensities and network topology as relationships between pixels, allows for an image-like representation of cellular metabolism. While the topology of a regular image is a lattice grid, biological networks demonstrate scale-free architecture and thus advanced image processing methods such as wavelet transforms cannot directly be applied. In the study reported here, one-dimensional enzyme-enzyme pairs were tracked to reveal sub-graphs of a biological interaction network which showed significant adaptations to a changing environment. As a case study, the response of the hetero-fermentative bacterium E. coli to oxygen deprivation was investigated. With our novel method, we detected, as expected, an up-regulation in the pathways of hexose nutrients up-take and metabolism and formate fermentation. Furthermore, our approach revealed a down-regulation in iron processing as well as the up-regulation of the histidine biosynthesis pathway. The latter may reflect an adaptive response of E. coli against an increasingly acidic environment due to the excretion of acidic products during anaerobic growth in a batch culture. Conclusion Based on microarray expression profiling data of prokaryotic cells exposed to fundamental treatment changes, our novel technique proved to extract system changes for a rather broad spectrum of the biochemical network.
Collapse
|
12
|
Stauffer LT, Stauffer GV. GcvA interacts with both the alpha and sigma subunits of RNA polymerase to activate the Escherichia coli gcvB gene and the gcvTHP operon. FEMS Microbiol Lett 2005; 242:333-8. [PMID: 15621456 DOI: 10.1016/j.femsle.2004.11.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Revised: 10/12/2004] [Accepted: 11/15/2004] [Indexed: 11/18/2022] Open
Abstract
The glycine cleavage enzyme system in Escherichia coli provides one-carbon units for cellular methylation reactions. The gcvB gene encodes two small RNAs that in turn regulate other genes. The GcvA protein is required for expression of both the gcvTHP (P(gcvT)) and gcvB (P(gcvB)) promoters. However, the architectures of the two promoters are different, with the P(gcvT) promoter representing a class III activator-dependent promoter and the P(gcvB) promoter representing a class II activator-dependent promoter. The RNA polymerase holoenzyme was examined for its role in transcription activation of the gcvTHP operon and the gcvB gene by the GcvA protein. The results suggest that GcvA interacts with the RNA polymerase alpha subunit for activation of the gcvTHP operon and interacts with the RNA polymerase sigma subunit for activation of the gcvB gene.
Collapse
|
13
|
Teplyakov A, Obmolova G, Sarikaya E, Pullalarevu S, Krajewski W, Galkin A, Howard AJ, Herzberg O, Gilliland GL. Crystal structure of the YgfZ protein from Escherichia coli suggests a folate-dependent regulatory role in one-carbon metabolism. J Bacteriol 2004; 186:7134-40. [PMID: 15489424 PMCID: PMC523196 DOI: 10.1128/jb.186.21.7134-7140.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ygfZ gene product of Escherichia coli represents a large protein family conserved in bacteria to eukaryotes. The members of this family are uncharacterized proteins with marginal sequence similarity to the T-protein (aminomethyltransferase) of the glycine cleavage system. To assist with the functional assignment of the YgfZ family, the crystal structure of the E. coli protein was determined by multiwavelength anomalous diffraction. The protein molecule has a three-domain architecture with a central hydrophobic channel. The structure is very similar to that of bacterial dimethylglycine oxidase, an enzyme of the glycine betaine pathway and a homolog of the T-protein. Based on structural superposition, a folate-binding site was identified in the central channel of YgfZ, and the ability of YgfZ to bind folate derivatives was confirmed experimentally. However, in contrast to dimethylglycine oxidase and T-protein, the YgfZ family lacks amino acid conservation at the folate site, which implies that YgfZ is not an aminomethyltransferase but is likely a folate-dependent regulatory protein involved in one-carbon metabolism.
Collapse
Affiliation(s)
- Alexey Teplyakov
- Center for Advanced Research in Biotechnology, 9600 Gudelsky Drive, Rockville, MD 20850, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Vereecke D, Cornelis K, Temmerman W, Holsters M, Goethals K. Versatile persistence pathways for pathogens of animals and plants. Trends Microbiol 2002; 10:485-8. [PMID: 12419605 DOI: 10.1016/s0966-842x(02)02457-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The glyoxylate cycle and the glycine cleavage system are part of conserved metabolic pathways involved in the chronic persistence of microorganisms in animal hosts. In the chromosome of the plant pathogen Rhodococcus fascians, the vic locus has been identified as a region containing genes essential for persistence inside induced leafy galls. Sequence analysis showed that this 18-kb locus is syntenic with chromosomal regions of Mycobacterium species that encompass the 'persistence' loci of these mammalian pathogens. Hence, the ability to switch diet inside the host appears to be governed by 'persistence' enzymes that are conserved between pathogens of animals and plants.
Collapse
Affiliation(s)
- Danny Vereecke
- Dept of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, K.L. Ledeganckstraat 35, Belgium
| | | | | | | | | |
Collapse
|
15
|
Hung SP, Baldi P, Hatfield GW. Global gene expression profiling in Escherichia coli K12. The effects of leucine-responsive regulatory protein. J Biol Chem 2002; 277:40309-23. [PMID: 12130640 DOI: 10.1074/jbc.m204044200] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leucine-responsive regulatory protein (Lrp) is a global regulatory protein that affects the expression of multiple genes and operons in bacteria. Although the physiological purpose of Lrp-mediated gene regulation remains unclear, it has been suggested that it functions to coordinate cellular metabolism with the nutritional state of the environment. The results of gene expression profiles between otherwise isogenic lrp(+) and lrp(-) strains of Escherichia coli support this suggestion. The newly discovered Lrp-regulated genes reported here are involved either in small molecule or macromolecule synthesis or degradation, or in small molecule transport and environmental stress responses. Although many of these regulatory effects are direct, others are indirect consequences of Lrp-mediated changes in the expression levels of other global regulatory proteins. Because computational methods to analyze and interpret high dimensional DNA microarray data are still an early stage, much of the emphasis of this work is directed toward the development of methods to identify differentially expressed genes with a high level of confidence. In particular, we describe a Bayesian statistical framework for a posterior estimate of the standard deviation of gene measurements based on a limited number of replications. We also describe an algorithm to compute a posterior estimate of differential expression for each gene based on the experiment-wide global false positive and false negative level for a DNA microarray data set. This allows the experimenter to compute posterior probabilities of differential expression for each individual differential gene expression measurement.
Collapse
Affiliation(s)
- She-pin Hung
- Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine, CA 92697, USA
| | | | | |
Collapse
|
16
|
Heil G, Stauffer LT, Stauffer GV. Glycine binds the transcriptional accessory protein GcvR to disrupt a GcvA/GcvR interaction and allow GcvA-mediated activation of the Escherichia coli gcvTHP operon. MICROBIOLOGY (READING, ENGLAND) 2002; 148:2203-2214. [PMID: 12101307 DOI: 10.1099/00221287-148-7-2203] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Escherichia coli gcvTHP operon is under control of the LysR-type transcriptional regulator GcvA. GcvA activates the operon in the presence of glycine and represses the operon in its absence. Repression by GcvA is dependent on a second regulatory protein, GcvR. Generally, LysR-type transcriptional regulators bind to specific small co-effector molecules which results in either their altered affinity for specific binding sites on the DNA or altered ability to bend the DNA, resulting in either activation or repression of their respective operons. This study shows that glycine, the co-activator for the gcv operon, does not alter either GcvA's ability to bind DNA nor its ability to bend DNA. Rather, glycine binds to GcvR, disrupting a GcvA/GcvR interaction required for repression and allowing GcvA activation of the gcvTHP operon. Amino acid changes in GcvR that reduce glycine binding result in a loss of glycine-mediated activation in vivo.
Collapse
Affiliation(s)
- Gary Heil
- Department of Microbiology, The University of Iowa, Iowa City, IA 52242, USA1
| | - Lorraine T Stauffer
- Department of Microbiology, The University of Iowa, Iowa City, IA 52242, USA1
| | - George V Stauffer
- Department of Microbiology, The University of Iowa, Iowa City, IA 52242, USA1
| |
Collapse
|
17
|
Ghrist AC, Heil G, Stauffer GV. GcvR interacts with GcvA to inhibit activation of the Escherichia coli glycine cleavage operon. MICROBIOLOGY (READING, ENGLAND) 2001; 147:2215-2221. [PMID: 11495998 DOI: 10.1099/00221287-147-8-2215] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Escherichia coli glycine cleavage enzyme system, encoded by the gcvTHP operon, catalyses the oxidative cleavage of glycine to CO(2), NH(3) and a one-carbon methylene group. Transcription of the gcv operon is positively regulated by GcvA and negatively regulated by GcvA and GcvR. Using a LexA-based system for analysing protein heterodimerization, it is shown that GcvR interacts directly with GcvA in vivo to repress gcvTHP expression. Several mutations in either gcvA or gcvR that result in a loss of gcv repression also result in a loss of GcvA/GcvR heterodimerization. Finally, it is shown that the C-terminal half of GcvA is involved in its interaction with GcvR, whilst the entire GcvR protein appears to be necessary for heterodimerization.
Collapse
Affiliation(s)
- Angela C Ghrist
- Department of Microbiology, The University of Iowa, Iowa City, IA 52242, USA1
| | - Gary Heil
- Department of Microbiology, The University of Iowa, Iowa City, IA 52242, USA1
| | - George V Stauffer
- Department of Microbiology, The University of Iowa, Iowa City, IA 52242, USA1
| |
Collapse
|
18
|
Wonderling LD, Urbanowski ML, Stauffer GV. GcvA binding site 1 in the gcvTHP promoter of Escherichia coli is required for GcvA-mediated repression but not for GcvA-mediated activation. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 11):2909-2918. [PMID: 11065369 DOI: 10.1099/00221287-146-11-2909] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
GcvA binds to three sites in the gcvTHP control region, from base -34 to -69 (site 1), from base -214 to -241 (site 2) and from base -242 to -271 (site 3). Previous results suggested that sites 3 and 2 are required for both GcvA-dependent activation and repression of a gcvT::lacZ fusion. However, the results were less clear as to the role of site 1. To determine the role of site 1 in regulation, single and multiple base changes were made in site 1 and tested for their ability to alter GcvA-mediated activation and GcvA/GcvR-mediated repression. Several of the mutants were also tested for effects on GcvA binding to site 1 and the ability of GcvA to bend DNA at site 1. The results are consistent with site 1 playing primarily a role in negative regulation of the gcvTHP operon.
Collapse
Affiliation(s)
- Laura D Wonderling
- Department of Microbiology, The University of Iowa, Iowa City, IA 52242, USA1
| | - Mark L Urbanowski
- Department of Microbiology, The University of Iowa, Iowa City, IA 52242, USA1
| | - George V Stauffer
- Department of Microbiology, The University of Iowa, Iowa City, IA 52242, USA1
| |
Collapse
|
19
|
Urbanowski ML, Stauffer LT, Stauffer GV. The gcvB gene encodes a small untranslated RNA involved in expression of the dipeptide and oligopeptide transport systems in Escherichia coli. Mol Microbiol 2000; 37:856-68. [PMID: 10972807 DOI: 10.1046/j.1365-2958.2000.02051.x] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Escherichia coli gcvB gene encodes a small RNA transcript that is not translated in vivo. Transcription from the gcvB promoter is activated by the GcvA protein and repressed by the GcvR protein, the transcriptional regulators of the gcvTHP operon encoding the enzymes of the glycine cleavage system. A strain carrying a chromosomal deletion of gcvB exhibits normal regulation of gcvTHP expression and glycine cleavage enzyme activity. However, this mutant has high constitutive synthesis of OppA and DppA, the periplasmic-binding protein components of the two major peptide transport systems normally repressed in cells growing in rich medium. The altered regulation of oppA and dppA was also demonstrated using oppA-phoA and dppA-lacZ gene fusions. Although the mechanism(s) involving gcvB in the repression of these two genes is not known, oppA regulation appears to be at the translational level, whereas dppA regulation occurs at the mRNA level.
Collapse
Affiliation(s)
- M L Urbanowski
- Department of Microbiology, University of Iowa, Iowa City 52242, USA
| | | | | |
Collapse
|
20
|
Jourdan AD, Stauffer GV. GcvA-mediated activation of gcvT-lacZ expression involves the carboxy-terminal domain of the alpha subunit of RNA polymerase. FEMS Microbiol Lett 1999; 181:307-12. [PMID: 10585554 DOI: 10.1111/j.1574-6968.1999.tb08860.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Several LysR-type transcriptional regulators have been shown to require the carboxy-terminal domain of the alpha subunit (alphaCTD) of RNA polymerase to activate their target genes. We show here that GcvA, a LysR-type protein, also uses the alphaCTD to activate the Escherichia coli gcvTHP operon. Amino acid residues in the alphaCTD important for GcvA-dependent activation, however, have no effect on GcvA-mediated repression of the operon.
Collapse
Affiliation(s)
- A D Jourdan
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
21
|
Wonderling LD, Stauffer GV. The cyclic AMP receptor protein is dependent on GcvA for regulation of the gcv operon. J Bacteriol 1999; 181:1912-9. [PMID: 10074087 PMCID: PMC93593 DOI: 10.1128/jb.181.6.1912-1919.1999] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli gcv operon is transcriptionally regulated by the GcvA, GcvR, Lrp, and PurR proteins. In this study, the cyclic AMP (cAMP) receptor protein (CRP) is shown to be involved in positive regulation of the gcv operon. A crp deletion reduced expression of a gcvT-lacZ fusion almost fourfold in glucose minimal (GM) medium. The phenotype was complemented by both the wild-type crp gene and four crp alleles that encode proteins with amino acid substitutions in known activating regions of CRP. A cyaA deletion also resulted in a fourfold decrease in gcvT-lacZ expression, and wild-type expression was restored by the addition of cAMP to the growth medium. A cyaA crp double deletion resulted in levels of gcvT-lacZ expression identical to those observed with either single mutation, showing that CRP and cAMP regulate through the same mechanism. Growth in GM medium plus cAMP or glycerol minimal medium did not result in a significant increase in gcvT-lacZ expression. Thus, the level of cAMP present in GM medium appears to be sufficient for regulation by CRP. DNase I footprint analysis showed that CRP binds and protects two sites centered at bp -313 (site 1) and bp -140 (site 2) relative to the transcription initiation site, but a mutational analysis demonstrated that only site 1 is required for CRP-mediated regulation of gcvT-lacZ expression. Expression of the gcvT-lacZ fusion in a crp gcvA double mutant suggested that CRP's role is dependent on the GcvA protein.
Collapse
Affiliation(s)
- L D Wonderling
- Department of Microbiology, The University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
22
|
Shultzaberger RK, Schneider TD. Using sequence logos and information analysis of Lrp DNA binding sites to investigate discrepancies between natural selection and SELEX. Nucleic Acids Res 1999; 27:882-7. [PMID: 9889287 PMCID: PMC148261 DOI: 10.1093/nar/27.3.882] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In vitro experiments that characterize DNA-protein interactions by artificial selection, such as SELEX,are often performed with the assumption that the experimental conditions are equivalent to natural ones. To test whether SELEX gives natural results, we compared sequence logos composed from naturally occurring leucine-responsive regulatory protein (Lrp) binding sites with those composed from SELEX-generated binding sites. The sequence logos were significantly different, indicating that the binding conditions are disparate. A likely explanation is that the SELEX experiment selected for a dimeric or trimeric Lrp complex bound to DNA. In contrast, natural sites appear to be bound by a monomer. This discrepancy suggests that in vitro selections do not necessarily give binding site sets comparable with the natural binding sites.
Collapse
Affiliation(s)
- R K Shultzaberger
- Catoctin High School, 14745 Sabillasville Road, Thurmont, MD 21788, USA
| | | |
Collapse
|
23
|
Stauffer LT, Stauffer GV. Roles for GcvA-binding sites 3 and 2 and the Lrp-binding region in gcvT::lacZ expression in Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 10):2865-2872. [PMID: 9802028 DOI: 10.1099/00221287-144-10-2865] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
GcvA and Lrp are both necessary for activation of the gcv operon. The upstream GcvA-binding sites 3 and 2 were separated from the Lrp-binding region and the rest of the gcv control region. Moving these sites by 1 or 2 helical turns of DNA further from the gcv promoter reduces, but does not eliminate, either GcvA-mediated activation or repression of a gcvT::lacZ gene fusion. However, moving these sites by 1.5 or 2.5 helical turns of DNA results in a GcvA-mediated super-repression of the operon. This repression is dependent on Lrp and is partially dependent on GcvR. Lrp bound to the gcv control region induces a bend in the DNA. Based on these results, a model for gcv regulation is presented in which Lrp plays a primarily structural role, by bending the DNA and GcvA functions as the activator protein.
Collapse
|
24
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|
25
|
Jourdan AD, Stauffer GV. Mutational analysis of the transcriptional regulator GcvA: amino acids important for activation, repression, and DNA binding. J Bacteriol 1998; 180:4865-71. [PMID: 9733689 PMCID: PMC107511 DOI: 10.1128/jb.180.18.4865-4871.1998] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The GcvA protein is required for both glycine-mediated activation and purine-mediated repression of the gcvTHP operon. Random and site-directed PCR mutagenesis was used to create nucleotide changes in gcvA to identify residues of the protein involved in activation, repression, and DNA binding. Single amino acid substitutions at L30 and F31 cause a defect in activation of a gcvT-lacZ fusion but have no effect on repression or DNA binding. Single amino acid substitutions at V32 and S38 cause the loss of binding of GcvA to DNA. A deletion of the carboxy-terminal 14 amino acids of GcvA results in the loss of purine-mediated repression and, consequently, a constitutive activation of a gcvT-lacZ fusion. The results of this study partially define regions of GcvA involved in activation, repression, and DNA binding and demonstrate that these functions of GcvA are genetically separable.
Collapse
Affiliation(s)
- A D Jourdan
- Department of Microbiology, The University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
26
|
Stauffer LT, Stauffer GV. Spacing and orientation requirements of GcvA-binding sites 3 and 2 and the Lrp-binding region for gcvT::lacZ expression in Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 5):1417-1422. [PMID: 9611815 DOI: 10.1099/00221287-144-5-1417] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Both GcvA and Lrp are required for normal regulation of the gcv operon. Moving the GcvA-binding sites 3 and 2 and the Lrp-binding region either closer to, or further away from, the gcv promoter by approximately one helical turn of DNA resulted in a less than twofold decrease in glycine-mediated activation or inosine-mediated repression of a gcvT::IacZ fusion. Moving these sites approximately two helical turns of DNA away from the gcv promoter resulted in a further loss of both activation and repression; moving these sites approximately three helical turns of DNA from the gcv promoter resulted in an essentially complete loss of both glycine-mediated activation and inosine-mediated repression. However, when these sites were moved by approximately 1.5 and 2.5 helical turns of DNA away from the gcv promoter, there was a complete loss of both glycine-mediated activation and inosine-mediated repression of the gcvT::IacZ fusion. The flexibility in the absolute distance of the GcvA- and Lrp-binding sites relative to the gcv promoter, but strict orientation dependence of these sites is consistent with a possible protein-protein interaction of either GcvA, Lrp, or both of these proteins with RNA polymerase. Because of the location of these target sites relative to the gcv promoter, it is also likely that DNA looping is required for this mechanism of regulation.
Collapse
Affiliation(s)
| | - George V Stauffer
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
27
|
Ghrist AC, Stauffer GV. Promoter characterization and constitutive expression of the Escherichia coli gcvR gene. J Bacteriol 1998; 180:1803-7. [PMID: 9537378 PMCID: PMC107093 DOI: 10.1128/jb.180.7.1803-1807.1998] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Escherichia coli glycine cleavage repressor protein (GcvR) negatively regulates expression of the glycine cleavage operon (gcv). In this study, the gcvR translational start site was determined by N-terminal amino acid sequence analysis of a GcvR-LacZ fusion protein. Primer extension analysis of the gcvR promoter region identified a primary transcription start site 27 bp upstream of the UUG translation start site and a minor transcription start site approximately 100 bp upstream of the translation start codon. The -10 and -35 promoter regions upstream of the primary transcription start site were defined by mutational analysis. Expression of a gcvR-lacZ fusion was unaltered in the presence of glycine or inosine, molecules known to induce or repress expression of gcv, respectively. In addition, it was shown that gcvR-lacZ expression is neither regulated by the glycine cleavage activator protein (GcvA) nor autogenously regulated by GcvR. From DNA sequence analysis, it was predicted that the translation start codon of the downstream bcp gene overlaps the gcvR stop codon, suggesting that these genes may form an operon. However, a down mutation in the -10 promoter region of gcvR had no effect on the expression of a downstream bcp-lacZ fusion, and primer extension analysis of the bcp promoter region demonstrated that bcp has its own promoter within the gcvR coding sequence. These results show that gcvR and bcp do not form an operon. Furthermore, the deletion of bcp from the chromosome had no effect on gcv-lacZ expression.
Collapse
Affiliation(s)
- A C Ghrist
- Department of Microbiology, The University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|
28
|
Castillo A, Reverchon S. Characterization of the pecT control region from Erwinia chrysanthemi 3937. J Bacteriol 1997; 179:4909-18. [PMID: 9244282 PMCID: PMC179341 DOI: 10.1128/jb.179.15.4909-4918.1997] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Erwinia chrysanthemi synthesizes and secretes pectate lyases that attack components of the plant cell wall and, therefore, play a major role in the pathogenesis of soft rot disease. We isolated a new mutant (designated pec-1), by Tn5 mutagenesis, that displays weak pectate lyase production and decreased motility and mucoidicity. Maceration and pathogenicity tests done on different plant organs showed that the pec-1 strain displays a reduced virulence compared to that of the parental strain. The Tn5 insertion was localized between the pelL and the out loci and defines a new regulatory region. Sequencing of the pec-1::Tn5 insertion revealed that pec-1 is tightly linked to the pecT regulatory gene that also controls pectate lyase synthesis. Moreover, the pecT mutation is dominant over the pec-1 mutation, suggesting that these two loci are involved in the same regulatory network. We demonstrated, by Northern blot analysis, that the pec-1::Tn5 insertion provokes derepression of pecT transcription and defines a cis-acting element. Introduction of the pecT gene in trans of a pecT::uidA fusion induced a decrease of pecT::uidA transcription, indicating a negative autoregulation. Band shift experiments confirmed that the PecT repressor specifically interacts with the pecT regulatory region. We also demonstrated that the PecT protein interacts with the regulatory region of the pelD gene encoding a pectate lyase. Therefore, the abolition of the pecT autoregulation in the pec-1 mutant provokes an overproduction of the PecT repressor that is responsible for the decrease of pectate lyase synthesis. Mutagenesis of the pecT regulatory region revealed the presence of two sites in which insertions reproduced the pec-1 phenotype. This result suggests that pecT autoregulation requires the presence of two functional operator sites. From this study, we propose that the PecT repressor binds to these two sites, generating a loop that blocks pecT transcription.
Collapse
Affiliation(s)
- A Castillo
- Laboratoire de Génétique Moléculaire des Microorganismes, CNRS UMR 5577, INSA, Villeurbanne, France.
| | | |
Collapse
|
29
|
Wiese DE, Ernsting BR, Blumenthal RM, Matthews RG. A nucleoprotein activation complex between the leucine-responsive regulatory protein and DNA upstream of the gltBDF operon in Escherichia coli. J Mol Biol 1997; 270:152-68. [PMID: 9236118 DOI: 10.1006/jmbi.1997.1057] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The global regulator Lrp (leucine-responsive regulatory protein), in some cases modulated by its co-regulator leucine, has been shown to regulate more than 40 genes and operons in Escherichia coli. Leucine modulates Lrp regulation of leucine-responsive operons. The level of sensitivity of these operons to leucine varies greatly, but the basis for this variation is only partially understood. One operon controlled by Lrp that is relatively insensitive to leucine is gltBDF, which includes genes specifying the large (GltB) and small (GltD) subunits of glutamate synthase. Earlier gel mobility shift assays have demonstrated that Lrp binds to a fragment of DNA containing the gltBDF promoter region. To further define the nature of this Lrp-gltBDF interaction, DNase I footprinting experiments were performed. The results indicate that Lrp binds cooperatively to three sites quite far upstream, spanning the region from -140 to -260 base-pairs relative to the start of transcription. Phased hypersensitivity is observed throughout the entire binding region, suggesting that Lrp bends the DNA. To determine the relative importance of these three sites for the transcriptional activation of gltBDF, a series of site-directed mutations was generated. The effects of these mutations on Lrp binding were determined both by DNase I footprinting and by quantitative mobility shift assays, while their effects on transcription in vivo were examined by measuring beta-galactosidase activity levels of chromosomal gltB::lacZ operon fusions. Our results indicate that all three sites are required for maximal gene expression, as is the proper phasing of the sites with one another and with the start of transcription. Our results suggest that Lrp binds a central palindromic site, interacting predominantly with the major groove of its DNA target, and that additional dimers bind to flanking sites to form a nucleoprotein activation complex.
Collapse
Affiliation(s)
- D E Wiese
- Department of Biological Chemistry, University of Michigan, Ann Arbor 48109-1055, USA
| | | | | | | |
Collapse
|
30
|
McNeil JB, Zhang F, Taylor BV, Sinclair DA, Pearlman RE, Bognar AL. Cloning, and molecular characterization of the GCV1 gene encoding the glycine cleavage T-protein from Saccharomyces cerevisiae. Gene 1997; 186:13-20. [PMID: 9047339 DOI: 10.1016/s0378-1119(96)00670-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have isolated the gene encoding the glycine cleavage T-protein (GCV1) of the yeast Saccharomyces cerevisiae and shown through gene disruption and enzyme assays that inactivation of GCV1 destroys glycine cleavage function. A DNA fragment encoding the GCV1 gene was cloned by PCR amplification using degenerate oligodeoxyribonucleotides, and the cloned fragment was used as a probe to isolate the complete gene from a yeast genomic library. Growth with glycine stimulated expression of the GCV1 gene as determined by Northern analysis and increased the beta-galactosidase activity of a GCV1-lacZ fusion 30-fold. The URA3 gene was inserted into the coding sequence of GCV1 and the resulting construct was used to disrupt the chromosomal GCV1 gene in a diploid strain of yeast. gcv1::URA3 haploid derivatives grew normally or only slightly more slowly than the isogenic wild-type haploids. All gcv1 strains studied were unable to grow on glycine as a sole nitrogen source and lacked glycine cleavage enzyme activity. Growth of shm1 shm2 mutants was stimulated by glycine, whereas glycine could not supplement the growth of the isogenic gcv1 strain.
Collapse
Affiliation(s)
- J B McNeil
- Department of Medical Genetics and Microbiology, University of Toronto, Ont. Canada
| | | | | | | | | | | |
Collapse
|
31
|
Borst DW, Blumenthal RM, Matthews RG. Use of an in vivo titration method to study a global regulator: effect of varying Lrp levels on expression of gltBDF in Escherichia coli. J Bacteriol 1996; 178:6904-12. [PMID: 8955313 PMCID: PMC178592 DOI: 10.1128/jb.178.23.6904-6912.1996] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Most studies of global regulatory proteins are performed in vitro or involve phenotypic comparisons between wild-type and mutant strains. We report the use of strains in which the gene for the leucine-responsive regulatory protein (lrp) is transcribed from isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible promoters for the purpose of continuously varying the in vivo concentration of Lrp. To obtain a broad range of Lrp concentrations, strains were employed that contained the lrp fusion either in the chromosome (I. C. Blomfield, P. J. Calie, K. J. Eberhardt, M. S. McClain, and B. I. Eisenstein, J. Bacteriol. 175:27-36, 1993) or on a multicopy plasmid. Western blot (immunoblot) analysis with polyclonal antiserum to Lrp confirmed that Lrp levels could be varied more than 70-fold by growing the strains in glucose minimal 3-(N-morpholino)propanesulfonic acid (MOPS) medium containing different amounts of IPTG. Expression of an Lrp-regulated gltB::lacZ operon fusion was measured over this range of Lrp concentrations. beta-Galactosidase activity rose with increasing Lrp levels up to the level of Lrp found in wild-type strains, at which point expression is maximal. The presence of leucine in the medium increased the level of Lrp necessary to achieve half-maximal expression of the gltB::lacZ fusion, as predicted by earlier in vitro studies (B. R. Ernsting, J. W. Denninger, R. M. Blumenthal, and R. G. Matthews, J. Bacteriol. 175:7160-7169, 1993). Interestingly, levels of Lrp greater than those in wild-type cells interfered with activation of gltB::lacZ expression. The growth rate of cultures correlated with the intracellular Lrp concentration: levels of Lrp either lower or higher than wild-type levels resulted in significantly slower growth rates. Thus, the level of Lrp in the cell appears to be optimal for rapid growth in minimal medium, and the gltBDF control region is designed to give maximal expression at this Lrp level.
Collapse
Affiliation(s)
- D W Borst
- Department of Biological Chemistry, The University of Michigan, Ann Arbor 48109-1055, USA
| | | | | |
Collapse
|
32
|
Wilson RL, Urbanowski ML, Stauffer GV. DNA binding sites of the LysR-type regulator GcvA in the gcv and gcvA control regions of Escherichia coli. J Bacteriol 1995; 177:4940-6. [PMID: 7665470 PMCID: PMC177269 DOI: 10.1128/jb.177.17.4940-4946.1995] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The GcvA protein is a LysR family regulatory protein necessary for both activation and repression of the Escherichia coli glycine cleavage enzyme operon (gcv) and negative regulation of gcvA. Gel shift assays indicated that overexpressed GcvA in crude extracts is capable of binding specifically to DNA containing the gcv and gcvA control regions. DNase I footprint analysis of the gcvA control region revealed one region of GcvA-mediated protection overlapping the transcription initiation site and extending from -28 to +20. Three separate GcvA binding sites in gcv were identified by DNase I footprint analysis: a 29-bp region extending from positions -271 to -242, a 28-bp region extending from -242 to -214, and a 35-bp region covering positions -69 to -34 relative to the transcription initiation site. PCR-generated mutations in any of the three GcvA binding sites in gcv decreased GcvA-mediated activation and repression of gcv.
Collapse
Affiliation(s)
- R L Wilson
- Department of Microbiology, University of Iowa, Iowa City 52242, USA
| | | | | |
Collapse
|
33
|
Ghrist AC, Stauffer GV. Characterization of the Escherichia coli gcvR gene encoding a negative regulator of gcv expression. J Bacteriol 1995; 177:4980-4. [PMID: 7665475 PMCID: PMC177274 DOI: 10.1128/jb.177.17.4980-4984.1995] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The Escherichia coli glycine cleavage enzyme system catalyzes the cleavage of glycine, generating CO2, NH3, and a one-carbon unit. Expression of the operon encoding this enzyme system (gcv) is induced in the presence of glycine and repressed in the presence of purines. In this study, a mutant with high-level constitutive expression of a gcvT-lacZ gene fusion was isolated. The mutation in this strain was designated gcvR1 and was mapped to min 53.3 on the E. coli chromosome. A single-copy plasmid carrying the wild-type gcvR gene complemented the mutation, restoring normal regulation of a gcvT-lacZ fusion, while a multicopy plasmid carrying gcvR led to superrepression under all growth conditions. Negative regulation of a gcvT-lacZ fusion by GcvR was shown to require GcvA, a LysR family protein known to both activate gcv in the presence of glycine and repress gcv in the presence of purines. Models explaining how GcvR and GcvA might interact to regulate gcv expression are proposed.
Collapse
Affiliation(s)
- A C Ghrist
- Department of Microbiology, University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|