1
|
Weber KR, Novillo B, Maupin-Furlow JA. Revisiting synthetic lethality of Gcn5-related N-acetyltransferase (GNAT) family mutations in Haloferax volcanii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638158. [PMID: 40027707 PMCID: PMC11870405 DOI: 10.1101/2025.02.13.638158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Lysine acetylation is a post-translational modification that occurs in all domains of life, highlighting its evolutionary significance. Previous genome comparison identified three Gcn5-related N-acetyltransferase (GNAT) family members as lysine acetyltransferase homologs (Pat1, Pat2, and Elp3) and two deacetylase homologs (Sir2 and HdaI) in the halophilic archaeon Haloferax volcanii , with elp3 and pat2 proposed as a synthetic lethal gene pair. Here we advance these findings by performing single and double mutagenesis of elp3 with the pat1 and pat2 lysine acetyltransferase gene homologs. Genome sequencing and PCR screens of these strains reveal successful generation of Δelp3, Δpat1Δelp3 , and Δpat2Δelp3 mutant strains. Although these mutant strains exhibited a reduced growth rate compared to the parent, they remained viable. Overall, this study provides genetic evidence that elp3 and pat2 , while impacting cell growth, are not a synthetic lethal gene pair as previously reported. IMPORTANCE Here we reveal by whole genome sequencing that the GNAT family gene homologs elp3 and pat2 can be deleted in the same H. volcanii strain. Beyond the targeted deletions, minimal differences between the parent and Δelp3 Δpat2 mutant were observed suggesting that suppressor mutations are not responsible for our ability to generate this double mutant strain. Elp3 and Pat2, thus, may not share as close a functional relationship as implied by earlier study. Our finding is significant as Elp3 is thought to function in acetylation in tRNA modification, while Pat2 likely functions in the lysine acetylation of proteins.
Collapse
|
2
|
Malla RR, Middela K. CRISPR-Based Approaches for Cancer Immunotherapy. Crit Rev Oncog 2023; 28:1-14. [PMID: 38050977 DOI: 10.1615/critrevoncog.2023048723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) technology is a powerful gene editing tool that has the potential to revolutionize cancer treatment. It allows for precise and efficient editing of specific genes that drive cancer growth and progression. CRISPR-based approaches gene knock-out, which deletes specific genes or sequences of DNA within a cancer cell, and gene knock-in, which inserts new sequences of DNA into a cancer cell to identify potential targets for cancer therapy. Further, genome-wide CRISPR-Cas9-based screens identify specific markers for diagnosis of cancers. Recently, immunotherapy has become a highly efficient strategy for the treatment of cancer. The use of CRISPR in cancer immunotherapy is focused on enhancing the function of T cells, making them more effective at attacking cancer cells and inactivating the immune evasion mechanisms of cancer cells. It has the potential to generate CAR-T cells, which are T cells that have been genetically engineered to target and attack cancer cells specifically. This review uncovers the latest developments in CRISPR-based gene editing strategies and delivery of their components in cancer cells. In addition, the applications of CRISPR in cancer immune therapy are discussed. Overall, this review helps to explore the potential of CRISPR-based strategies in cancer immune therapy in clinical settings.
Collapse
Affiliation(s)
- Rama Rao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, Gandhi Institute of Technology and Management (GITAM) (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India; Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Keerthana Middela
- Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| |
Collapse
|
3
|
Matarredona L, Camacho M, Zafrilla B, Bonete MJ, Esclapez J. The Role of Stress Proteins in Haloarchaea and Their Adaptive Response to Environmental Shifts. Biomolecules 2020; 10:biom10101390. [PMID: 33003558 PMCID: PMC7601130 DOI: 10.3390/biom10101390] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/26/2022] Open
Abstract
Over the years, in order to survive in their natural environment, microbial communities have acquired adaptations to nonoptimal growth conditions. These shifts are usually related to stress conditions such as low/high solar radiation, extreme temperatures, oxidative stress, pH variations, changes in salinity, or a high concentration of heavy metals. In addition, climate change is resulting in these stress conditions becoming more significant due to the frequency and intensity of extreme weather events. The most relevant damaging effect of these stressors is protein denaturation. To cope with this effect, organisms have developed different mechanisms, wherein the stress genes play an important role in deciding which of them survive. Each organism has different responses that involve the activation of many genes and molecules as well as downregulation of other genes and pathways. Focused on salinity stress, the archaeal domain encompasses the most significant extremophiles living in high-salinity environments. To have the capacity to withstand this high salinity without losing protein structure and function, the microorganisms have distinct adaptations. The haloarchaeal stress response protects cells against abiotic stressors through the synthesis of stress proteins. This includes other heat shock stress proteins (Hsp), thermoprotectants, survival proteins, universal stress proteins, and multicellular structures. Gene and family stress proteins are highly conserved among members of the halophilic archaea and their study should continue in order to develop means to improve for biotechnological purposes. In this review, all the mechanisms to cope with stress response by haloarchaea are discussed from a global perspective, specifically focusing on the role played by universal stress proteins.
Collapse
|
4
|
Jevtić Ž, Stoll B, Pfeiffer F, Sharma K, Urlaub H, Marchfelder A, Lenz C. The Response of Haloferax volcanii to Salt and Temperature Stress: A Proteome Study by Label-Free Mass Spectrometry. Proteomics 2019; 19:e1800491. [PMID: 31502396 DOI: 10.1002/pmic.201800491] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 08/27/2019] [Indexed: 01/23/2023]
Abstract
In-depth proteome analysis of the haloarchaeal model organism Haloferax volcanii has been performed under standard, low/high salt, and low/high temperature conditions using label-free mass spectrometry. Qualitative analysis of protein identification data from high-pH/reversed-phase fractionated samples indicates 61.1% proteome coverage (2509 proteins), which is close to the maximum recorded values in archaea. Identified proteins match to the predicted proteome in their physicochemical properties, with only a small bias against low-molecular-weight and membrane-associated proteins. Cells grown under low and high salt stress as well as low and high temperature stress are quantitatively compared to standard cultures by sequential window acquisition of all theoretical mass spectra (SWATH-MS). A total of 2244 proteins, or 54.7% of the predicted proteome, are quantified across all conditions at high reproducibility, which allowed for global analysis of protein expression changes under these stresses. Of these, 2034 are significantly regulated under at least one stress condition. KEGG pathway enrichment analysis shows that several major cellular pathways are part of H. volcanii's universal stress response. In addition, specific pathways (purine, cobalamin, and tryptophan) are affected by temperature stress. The most strongly downregulated proteins under all stress conditions, zinc finger protein HVO_2753 and ribosomal protein S14, are found oppositely regulated to their immediate genetic neighbors from the same operon.
Collapse
Affiliation(s)
- Živojin Jevtić
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, Göttingen, 37077, Germany
| | | | - Friedhelm Pfeiffer
- Computational Biology Group, Max Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Kundan Sharma
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, Göttingen, 37077, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, Göttingen, 37077, Germany.,Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, 37075, Germany
| | | | - Christof Lenz
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, Göttingen, 37077, Germany.,Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, 37075, Germany
| |
Collapse
|
5
|
Hackley RK, Schmid AK. Global Transcriptional Programs in Archaea Share Features with the Eukaryotic Environmental Stress Response. J Mol Biol 2019; 431:4147-4166. [PMID: 31437442 PMCID: PMC7419163 DOI: 10.1016/j.jmb.2019.07.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 01/06/2023]
Abstract
The environmental stress response (ESR), a global transcriptional program originally identified in yeast, is characterized by a rapid and transient transcriptional response composed of large, oppositely regulated gene clusters. Genes induced during the ESR encode core components of stress tolerance, macromolecular repair, and maintenance of homeostasis. In this review, we investigate the possibility for conservation of the ESR across the eukaryotic and archaeal domains of life. We first re-analyze existing transcriptomics data sets to illustrate that a similar transcriptional response is identifiable in Halobacterium salinarum, an archaeal model organism. To substantiate the archaeal ESR, we calculated gene-by-gene correlations, gene function enrichment, and comparison of temporal dynamics. We note reported examples of variation in the ESR across fungi, then synthesize high-level trends present in expression data of other archaeal species. In particular, we emphasize the need for additional high-throughput time series expression data to further characterize stress-responsive transcriptional programs in the Archaea. Together, this review explores an open question regarding features of global transcriptional stress response programs shared across domains of life.
Collapse
Affiliation(s)
- Rylee K Hackley
- Department of Biology, Duke University, Durham, NC 27708, USA; University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA
| | - Amy K Schmid
- Department of Biology, Duke University, Durham, NC 27708, USA; University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA; Center for Genomics and Computational Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
6
|
Effects of salinity on the cellular physiological responses of Natrinema sp. J7-2. PLoS One 2017; 12:e0184974. [PMID: 28926633 PMCID: PMC5604999 DOI: 10.1371/journal.pone.0184974] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 09/04/2017] [Indexed: 12/12/2022] Open
Abstract
The halophilic archaea (haloarchaea) live in hyersaline environments such as salt lakes, salt ponds and marine salterns. To cope with the salt stress conditions, haloarchaea have developed two fundamentally different strategies: the "salt-in" strategy and the "compatible-solute" strategy. Although investigation of the molecular mechanisms underlying the tolerance to high salt concentrations has made outstanding achievements, experimental study from the aspect of transcription is rare. In the present study, we monitored cellular physiology of Natrinema sp. J7-2 cells incubated in different salinity media (15%, 25% and 30% NaCl) from several aspects, such as cellular morphology, growth, global transcriptome and the content of intracellular free amino acids. The results showed that the cells were polymorphic and fragile at a low salt concentration (15% NaCl) but had a long, slender rod shape at high salt concentrations (25% and 30% NaCl). The cells grew best in 25% NaCl, mediocre in 30% NaCl and struggled in 15% NaCl. An RNA-seq analysis revealed differentially expressed genes (DEGs) in various salinity media. A total of 1,148 genes were differentially expressed, consisting of 719 DEGs (348 up-regulated and 371 down-regulated genes) between cells in 15% vs 25% NaCl, and 733 DEGs (521 up-regulated and 212 down-regulated genes) between cells in 25% vs 30% NaCl. Moreover, 304 genes were commonly differentially expressed in both 15% vs 25% and 25% vs30% NaCl. The DEGs were enriched in different KEGG metabolic pathways, such as amino acids, glycerolipid, ribosome, nitrogen, protoporphyrin, porphyrin and porhiniods. The intracellular predominant free amino acids consisted of the glutamate family (Glu, Arg and Pro), aspartate family (Asp) and aromatic amino acids (Phe and Trp), especially Glu and Asp.
Collapse
|
7
|
Jantzer K, Zerulla K, Soppa J. Phenotyping in the archaea: optimization of growth parameters and analysis of mutants of Haloferax volcanii. FEMS Microbiol Lett 2011; 322:123-30. [PMID: 21692831 DOI: 10.1111/j.1574-6968.2011.02341.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A method to grow the halophilic archaeon Haloferax volcanii in microtiter plates has been optimized and now allows the parallel generation of very reproducible growth curves. The doubling time in a synthetic medium with glucose is around 6 h. The method was used to optimize glucose and casamino acid concentrations, to clarify carbon source usage and to analyze vitamin dependence. The characterization of osmotolerance revealed that after a lag phase of 24 h, H. volcanii is able to grow at salt concentrations as low as 0.7 M NaCl, much lower than the 1.4 M NaCl described as the lowest concentration until now. The application of oxidative stresses showed that H. volcanii exhibits a reaction to paraquat that is delayed by about 10 h. Surprisingly, only one of two amino acid auxotrophic mutants could be fully supplemented by the addition of the respective amino acid. Analysis of eight sRNA gene deletion mutants exemplified that the method can be applied for bona fide phenotyping of mutant collections. This method for the parallel analysis of many cultures contributes towards making H. volcanii an archaeal model species for functional genomic approaches.
Collapse
Affiliation(s)
- Katharina Jantzer
- Institute for Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt a.M., Germany
| | | | | |
Collapse
|
8
|
Hartman AL, Norais C, Badger JH, Delmas S, Haldenby S, Madupu R, Robinson J, Khouri H, Ren Q, Lowe TM, Maupin-Furlow J, Pohlschroder M, Daniels C, Pfeiffer F, Allers T, Eisen JA. The complete genome sequence of Haloferax volcanii DS2, a model archaeon. PLoS One 2010; 5:e9605. [PMID: 20333302 PMCID: PMC2841640 DOI: 10.1371/journal.pone.0009605] [Citation(s) in RCA: 204] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 02/11/2010] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Haloferax volcanii is an easily culturable moderate halophile that grows on simple defined media, is readily transformable, and has a relatively stable genome. This, in combination with its biochemical and genetic tractability, has made Hfx. volcanii a key model organism, not only for the study of halophilicity, but also for archaeal biology in general. METHODOLOGY/PRINCIPAL FINDINGS We report here the sequencing and analysis of the genome of Hfx. volcanii DS2, the type strain of this species. The genome contains a main 2.848 Mb chromosome, three smaller chromosomes pHV1, 3, 4 (85, 438, 636 kb, respectively) and the pHV2 plasmid (6.4 kb). CONCLUSIONS/SIGNIFICANCE The completed genome sequence, presented here, provides an invaluable tool for further in vivo and in vitro studies of Hfx. volcanii.
Collapse
Affiliation(s)
- Amber L. Hartman
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
- The Institute for Genomic Research (J. Craig Venter Institute), Rockville, Maryland, United States of America
- UC Davis Genome Center, University of California Davis, Davis, California, United States of America
| | - Cédric Norais
- Institut de Génétique et Microbiologie, Université Paris-Sud, Paris, France
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jonathan H. Badger
- The Institute for Genomic Research (J. Craig Venter Institute), Rockville, Maryland, United States of America
| | - Stéphane Delmas
- Institute of Genetics, University of Nottingham, Nottingham, United Kingdom
| | - Sam Haldenby
- Institute of Genetics, University of Nottingham, Nottingham, United Kingdom
| | - Ramana Madupu
- The Institute for Genomic Research (J. Craig Venter Institute), Rockville, Maryland, United States of America
| | - Jeffrey Robinson
- The Institute for Genomic Research (J. Craig Venter Institute), Rockville, Maryland, United States of America
| | - Hoda Khouri
- The Institute for Genomic Research (J. Craig Venter Institute), Rockville, Maryland, United States of America
| | - Qinghu Ren
- The Institute for Genomic Research (J. Craig Venter Institute), Rockville, Maryland, United States of America
| | - Todd M. Lowe
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Julie Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Mecky Pohlschroder
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Charles Daniels
- Department of Microbiology, Ohio State University, Columbus, Ohio, United States of America
| | - Friedhelm Pfeiffer
- Department of Membrane Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Thorsten Allers
- Institute of Genetics, University of Nottingham, Nottingham, United Kingdom
| | - Jonathan A. Eisen
- The Institute for Genomic Research (J. Craig Venter Institute), Rockville, Maryland, United States of America
- UC Davis Genome Center, University of California Davis, Davis, California, United States of America
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
- Department of Evolution and Ecology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
9
|
Bidle KA, Haramaty L, Baggett N, Nannen J, Bidle KD. Tantalizing evidence for caspase-like protein expression and activity in the cellular stress response of Archaea. Environ Microbiol 2010; 12:1161-72. [DOI: 10.1111/j.1462-2920.2010.02157.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Bidle KA, Kirkland PA, Nannen JL, Maupin-Furlow JA. Proteomic analysis of Haloferax volcanii reveals salinity-mediated regulation of the stress response protein PspA. MICROBIOLOGY-SGM 2008; 154:1436-1443. [PMID: 18451052 DOI: 10.1099/mic.0.2007/015586-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A proteomic survey of the halophilic archaeon Haloferax volcanii was performed by comparative two-dimensional gel electrophoresis in order to determine the molecular effects of salt stress on the organism. Cells were grown under optimal (2.1 M) and high (3.5 M) NaCl conditions. From this analysis, over 44 protein spots responsive to these conditions were detected. These spots were excised, digested in-gel with trypsin, subjected to QSTAR tandem mass spectrometry (LC/MS/MS) analysis, and identified by comparing the MS/MS-derived peptide sequence to that deduced from the H. volcanii genome. Approximately 40 % of the proteins detected (18 in total) displayed differential abundance based on the detection of at least two peptide fragments per protein and overall MOWSE scores of >or=75 per protein. All of these identified proteins were either uniquely present or 2.3- to 26-fold higher in abundance under one condition compared to the other. The majority of proteins identified in this study were preferentially displayed under optimal salinity and primarily involved in translation, transport and metabolism. However, one protein of interest whose transcript levels were confirmed in these studies to be upregulated under high salt conditions was identified as a homologue of the phage shock protein PspA. The pspA gene belongs to the psp stress-responsive regulon commonly found among Gram-negative bacteria where its transcription is stimulated by a wide variety of stressors, including heat shock, osmotic shock and prolonged stationary-phase incubation. Homologues of PspA are also found among the genomes of cyanobacteria, higher plants and other Archaea, suggesting that this protein may retain some aspects of functional conservation across the three domains of life. Given its integral role in sensing a variety of membrane stressors in bacteria, these results suggest that PspA may play an important role in hypersaline adaptation in H. volcanii.
Collapse
Affiliation(s)
- Kelly A Bidle
- Department of Biology, Rider University, Lawrenceville, NJ, USA
| | - P Aaron Kirkland
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | | | - Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| |
Collapse
|
11
|
Genomics and functional genomics with haloarchaea. Arch Microbiol 2008; 190:197-215. [PMID: 18493745 DOI: 10.1007/s00203-008-0376-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 04/08/2008] [Accepted: 04/20/2008] [Indexed: 10/22/2022]
Abstract
The first haloarchaeal genome was published in 2000 and today five genome sequences are available. Transcriptome and proteome analyses have been established for two and three haloarchaeal species, respectively, and more than 20 studies using these functional genomic approaches have been published in the last two years. These studies gave global overviews of metabolic regulation (aerobic and anaerobic respiration, phototrophy, carbon source usage), stress response (UV, X-rays, transition metals, osmotic and temperature stress), cell cycle-dependent transcript level regulation, and transcript half-lives. The only translatome analysis available for any prokaryotic species revealed that 10 and 20% of all transcripts are translationally regulated in Haloferax volcanii and Halobacterium salinarum, respectively. Very effective methods for the construction of in frame deletion mutants have been established recently for haloarchaea and are intensively used to unravel the biological roles of genes in this group. Bioinformatic analyses include both cross-genome comparisons as well as integration of genomic data with experimental results. The first systems biology approaches have been performed that used experimental data to construct predictive models of gene expression and metabolism, respectively. In this contribution the current status of genomics, functional genomics, and molecular genetics of haloarchaea is summarized and selected examples are discussed.
Collapse
|
12
|
Saum SH, Müller V. Regulation of osmoadaptation in the moderate halophile Halobacillus halophilus: chloride, glutamate and switching osmolyte strategies. SALINE SYSTEMS 2008; 4:4. [PMID: 18442383 PMCID: PMC2412884 DOI: 10.1186/1746-1448-4-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 04/28/2008] [Indexed: 11/10/2022]
Abstract
The moderate halophile Halobacillus halophilus is the paradigm for chloride dependent growth in prokaryotes. Recent experiments shed light on the molecular basis of the chloride dependence that is reviewed here. In the presence of moderate salinities Halobacillus halophilus mainly accumulates glutamine and glutamate to adjust turgor. The transcription of glnA2 (encoding a glutamine synthetase) as well as the glutamine synthetase activity were identified as chloride dependent steps. Halobacillus halophilus switches its osmolyte strategy and produces proline as the main compatible solute at high salinities. Furthermore, Halobacillus halophilus also shifts its osmolyte strategy at the transition from the exponential to the stationary phase where proline is exchanged by ectoine. Glutamate was found as a "second messenger" essential for proline production. This observation leads to a new model of sensing salinity by sensing the physico-chemical properties of different anions.
Collapse
Affiliation(s)
- Stephan H Saum
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany.
| | | |
Collapse
|
13
|
Bidle KA, Hanson TE, Howell K, Nannen J. HMG-CoA reductase is regulated by salinity at the level of transcription in Haloferax volcanii. Extremophiles 2006; 11:49-55. [PMID: 16969709 DOI: 10.1007/s00792-006-0008-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Accepted: 06/05/2006] [Indexed: 10/24/2022]
Abstract
The moderately halophilic archaeon Haloferax volcanii was surveyed for protein profile changes correlated with growth at high and low salinity. A single polypeptide with an approximate mass of 46 kDa was conspicuously more abundant during growth at high salinity. This protein was identified as HMG-CoA reductase (HMGR), encoded by the hmgR gene. HMGR is a key enzyme in the mevalonate pathway of isoprenoid biosynthesis, the sole route in haloarchaea for lipid and carotenoid production. Enzymatic assays confirmed that HMGR activity is more abundant in cells grown at high salinity. Low salt cultures of H. volcanii contained lower amounts of hmgR transcript compared to cells grown in high salt suggesting that the observed regulation occurs at the level of transcription. Paradoxically, both lipid and carotenoid content decreased in H. volcanii grown at high salinity despite the increased levels of HMGR specific activity. To our knowledge, this is the first report demonstrating that the expression of HMGR is regulated in response to non-optimal salinity in a halophilic archaeon.
Collapse
Affiliation(s)
- Kelly A Bidle
- Department of Biology, Rider University, Lawrenceville, NJ 08648, USA.
| | | | | | | |
Collapse
|
14
|
Fendrihan S, Legat A, Pfaffenhuemer M, Gruber C, Weidler G, Gerbl F, Stan-Lotter H. Extremely halophilic archaea and the issue of long-term microbial survival. RE/VIEWS IN ENVIRONMENTAL SCIENCE AND BIO/TECHNOLOGY 2006; 5:203-218. [PMID: 21984879 PMCID: PMC3188376 DOI: 10.1007/s11157-006-0007-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Halophilic archaebacteria (haloarchaea) thrive in environments with salt concentrations approaching saturation, such as natural brines, the Dead Sea, alkaline salt lakes and marine solar salterns; they have also been isolated from rock salt of great geological age (195-250 million years). An overview of their taxonomy, including novel isolates from rock salt, is presented here; in addition, some of their unique characteristics and physiological adaptations to environments of low water activity are reviewed. The issue of extreme long-term microbial survival is considered and its implications for the search for extraterrestrial life. The development of detection methods for subterranean haloarchaea, which might also be applicable to samples from future missions to space, is presented.
Collapse
Affiliation(s)
- Sergiu Fendrihan
- Department of Microbiology, University of Salzburg, Billrothstr. 11, A-5020 Salzburg, Austria
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Two major types of environment provide habitats for the most xerophilic organisms known: foods preserved by some form of dehydration or enhanced sugar levels, and hypersaline sites where water availability is limited by a high concentration of salts (usually NaCl). These environments are essentially microbial habitats, with high-sugar foods being dominated by xerophilic (sometimes called osmophilic) filamentous fungi and yeasts, some of which are capable of growth at a water activity (a(w)) of 0.61, the lowest a(w) value for growth recorded to date. By contrast, high-salt environments are almost exclusively populated by prokaryotes, notably the haloarchaea, capable of growing in saturated NaCl (a(w) 0.75). Different strategies are employed for combating the osmotic stress imposed by high levels of solutes in the environment. Eukaryotes and most prokaryotes synthesize or accumulate organic so-called 'compatible solutes' (osmolytes) that have counterbalancing osmotic potential. A restricted range of bacteria and the haloarchaea counterbalance osmotic stress imposed by NaCl by accumulating equivalent amounts of KCl. Haloarchaea become entrapped and survive for long periods inside halite (NaCl) crystals. They are also found in ancient subterranean halite (NaCl) deposits, leading to speculation about survival over geological time periods.
Collapse
Affiliation(s)
- W D Grant
- Department of Infection, Immunity and Inflammation, University of Leicester, Maurice Shock Building, University Road, Leicester LE1 9HN, UK.
| |
Collapse
|
16
|
Macario AJ, Lange M, Ahring BK, Conway de Macario E. Stress genes and proteins in the archaea. Microbiol Mol Biol Rev 1999; 63:923-67, table of contents. [PMID: 10585970 PMCID: PMC98981 DOI: 10.1128/mmbr.63.4.923-967.1999] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The field covered in this review is new; the first sequence of a gene encoding the molecular chaperone Hsp70 and the first description of a chaperonin in the archaea were reported in 1991. These findings boosted research in other areas beyond the archaea that were directly relevant to bacteria and eukaryotes, for example, stress gene regulation, the structure-function relationship of the chaperonin complex, protein-based molecular phylogeny of organisms and eukaryotic-cell organelles, molecular biology and biochemistry of life in extreme environments, and stress tolerance at the cellular and molecular levels. In the last 8 years, archaeal stress genes and proteins belonging to the families Hsp70, Hsp60 (chaperonins), Hsp40(DnaJ), and small heat-shock proteins (sHsp) have been studied. The hsp70(dnaK), hsp40(dnaJ), and grpE genes (the chaperone machine) have been sequenced in seven, four, and two species, respectively, but their expression has been examined in detail only in the mesophilic methanogen Methanosarcina mazei S-6. The proteins possess markers typical of bacterial homologs but none of the signatures distinctive of eukaryotes. In contrast, gene expression and transcription initiation signals and factors are of the eucaryal type, which suggests a hybrid archaeal-bacterial complexion for the Hsp70 system. Another remarkable feature is that several archaeal species in different phylogenetic branches do not have the gene hsp70(dnaK), an evolutionary puzzle that raises the important question of what replaces the product of this gene, Hsp70(DnaK), in protein biogenesis and refolding and for stress resistance. Although archaea are prokaryotes like bacteria, their Hsp60 (chaperonin) family is of type (group) II, similar to that of the eukaryotic cytosol; however, unlike the latter, which has several different members, the archaeal chaperonin system usually includes only two (in some species one and in others possibly three) related subunits of approximately 60 kDa. These form, in various combinations depending on the species, a large structure or chaperonin complex sometimes called the thermosome. This multimolecular assembly is similar to the bacterial chaperonin complex GroEL/S, but it is made of only the large, double-ring oligomers each with eight (or nine) subunits instead of seven as in the bacterial complex. Like Hsp70(DnaK), the archaeal chaperonin subunits are remarkable for their evolution, but for a different reason. Ubiquitous among archaea, the chaperonins show a pattern of recurrent gene duplication-hetero-oligomeric chaperonin complexes appear to have evolved several times independently. The stress response and stress tolerance in the archaea involve chaperones, chaperonins, other heat shock (stress) proteins including sHsp, thermoprotectants, the proteasome, as yet incompletely understood thermoresistant features of many molecules, and formation of multicellular structures. The latter structures include single- and mixed-species (bacterial-archaeal) types. Many questions remain unanswered, and the field offers extraordinary opportunities owing to the diversity, genetic makeup, and phylogenetic position of archaea and the variety of ecosystems they inhabit. Specific aspects that deserve investigation are elucidation of the mechanism of action of the chaperonin complex at different temperatures, identification of the partners and substitutes for the Hsp70 chaperone machine, analysis of protein folding and refolding in hyperthermophiles, and determination of the molecular mechanisms involved in stress gene regulation in archaeal species that thrive under widely different conditions (temperature, pH, osmolarity, and barometric pressure). These studies are now possible with uni- and multicellular archaeal models and are relevant to various areas of basic and applied research, including exploration and conquest of ecosystems inhospitable to humans and many mammals and plants.
Collapse
Affiliation(s)
- A J Macario
- Wadsworth Center, New York State Department of Health, and Department of Biomedical Sciences, School of Public Health, The University at Albany, Albany, New York 12201-0509, USA
| | | | | | | |
Collapse
|
17
|
Affiliation(s)
- Martin
- Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02167, USA
| | | | | |
Collapse
|
18
|
Mojica FJ, Cisneros E, Ferrer C, Rodríguez-Valera F, Juez G. Osmotically induced response in representatives of halophilic prokaryotes: the bacterium Halomonas elongata and the archaeon Haloferax volcanii. J Bacteriol 1997; 179:5471-81. [PMID: 9287003 PMCID: PMC179419 DOI: 10.1128/jb.179.17.5471-5481.1997] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Haloferax volcanii and Halomonas elongata have been selected as representatives of halophilic Archaea and Bacteria, respectively, to analyze the responses to various osmolarities at the protein synthesis level. We have identified a set of high-salt-related proteins (39, 24, 20, and 15.5 kDa in H. elongata; 70, 68, 48, and 16 kDa in H. volcanii) whose synthesis rates increased with increasing salinities. A different set of proteins (60, 42, 15, and 6 kDa for H. elongata; 63, 44, 34, 18, 17, and 6 kDa for H. volcanii), some unique for low salinities, was induced under low-salt conditions. For both organisms, and especially for the haloarchaeon, adaptation to low-salt conditions involved a stronger and more specific response than adaptation to high-salt conditions, indicating that unique mechanisms may have evolved for low-salinity adaptation. In the case of H. volcanii, proteins with a typical transient response to osmotic shock, induced by both hypo- and hyperosmotic conditions, probably corresponding to described heat shock proteins and showing the characteristics of general stress proteins, have also been identified. Cell recovery after a shift to low salinities was immediate in both organisms. In contrast, adaptation to higher salinities in both cases involved a lag period during which growth and general protein synthesis were halted, although the high-salt-related proteins were induced rapidly. In H. volcanii, this lag period corresponded exactly to the time needed for cells to accumulate adequate intracellular potassium concentrations, while extrusion of potassium after the down-shift was immediate. Thus, reaching osmotic balance must be the main limiting factor for recovery of cell functions after the variation in salinity.
Collapse
Affiliation(s)
- F J Mojica
- Departamento Genética y Microbiología, Universidad de Alicante, Campus de San Juan, Spain
| | | | | | | | | |
Collapse
|