1
|
Whole-genome sequencing, genome mining, metabolic reconstruction and evolution of pentachlorophenol and other xenobiotic degradation pathways in Bacillus tropicus strain AOA-CPS1. Funct Integr Genomics 2021; 21:171-193. [PMID: 33547987 DOI: 10.1007/s10142-021-00768-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 09/30/2020] [Accepted: 01/19/2021] [Indexed: 12/11/2022]
Abstract
A pentachlorophenol degrading bacterium was isolated from effluent of a wastewater treatment plant in Durban, South Africa, and identified as Bacillus tropicus strain AOA-CPS1 (BtAOA). The isolate degraded 29% of pentachlorophenol (PCP) within 9 days at an initial PCP concentration of 100 mg L-1 and 62% of PCP when the initial concentration was set at 350 mg L-1. The whole-genome of BtAOA was sequenced using Pacific Biosciences RS II sequencer with the Single Molecule, Real-Time (SMRT) Link (version 7.0.1.66975) and analysed using the HGAP4-de-novo assembly application. The contigs were annotated at NCBI, RASTtk and PROKKA prokaryotic genome annotation pipelines. The BtAOA genome is comprised of a 5,246,860-bp chromosome and a 58,449-bp plasmid with a GC content of 35.4%. The metabolic reconstruction for BtAOA showed that the organism has been naturally exposed to various chlorophenolic compounds including PCP and other xenobiotics. The chromosome encodes genes for core processes, stress response and PCP catabolic genes. Analogues of PCP catabolic gene (cpsBDCAE, and p450) sequences were identified from the NCBI annotation data, PCR-amplified from the whole genome of BtAOA, cloned into pET15b expression vector, overexpressed in E. coli BL21 (DE3) expression host, purified and characterized. Sequence mining and comparative analysis of the metabolic reconstruction of the BtAOA genome with closely related strains suggests that the operon encoding the first two enzymes in the PCP degradation pathway were acquired from a pre-existing pterin-carbinolamine dehydratase subsystem. The other two enzymes were recruited via horizontal gene transfer (HGT) from the pool of hypothetical proteins with no previous specific function, while the last enzyme was recruited from pre-existing enzymes from the TCA or serine-glyoxalase cycle via HGT events. This study provides a comprehensive understanding of the role of BtAOA in PCP degradation and its potential exploitation for bioremediation of other xenobiotic compounds.
Collapse
|
2
|
Bartholomae M, Meyer FM, Commichau FM, Burkovski A, Hillen W, Seidel G. Complex formation between malate dehydrogenase and isocitrate dehydrogenase from Bacillus subtilis is regulated by tricarboxylic acid cycle metabolites. FEBS J 2014; 281:1132-43. [PMID: 24325460 DOI: 10.1111/febs.12679] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/29/2013] [Accepted: 12/03/2013] [Indexed: 12/20/2022]
Abstract
In Bacillus subtilis, recent in vivo studies revealed that particular enzymes of the tricarboxylic acid cycle form complexes that allow an efficient transfer of metabolites. Remarkably, a complex of the malate dehydrogenase (Mdh) (EC 1.1.1.37) with isocitrate dehydrogenase (Icd) (EC 1.1.1.42) was identified, although both enzymes do not catalyze subsequent reactions. In the present study, the interactions between these enzymes were characterized in vitro by surface plasmon resonance in the absence and presence of their substrates and cofactors. These analyses revealed a weak but specific interaction between Mdh and Icd, which was specifically stimulated by a mixture of substrates and cofactors of Icd: isocitrate, NADP(+) and Mg(2+). Wild-type Icd converted these substrates too fast, preventing any valid quantitative analysis of the interaction with Mdh. Therefore, binding of the IcdS104P mutant to Mdh was quantified because the mutation reduced the enzymatic activity by 174-fold but did not affect the stimulatory effect of substrates and cofactors on Icd-Mdh complex formation. The analysis of the unstimulated Mdh-IcdS104P interaction revealed kinetic constants of k(a) = 2.0 ± 0.2 × 10(2) m(-1) ·s(-1) and k(d) = 1.0 ± 0.1 × 10(-3) ·s(-1) and a K(D) value of 5.0 ± 0.1 μm. Addition of isocitrate, NADP(+) and Mg(2+) stimulated the affinity of IcdS104P to Mdh by 33-fold (K(D) = 0.15 ± 0.01 μm, k(a) = 1.7 ± 0.7 × 10(3) m(-1) ·s(-1), k(d) = 2.6 ± 0.6 × 10(-4) ·s(-1)). Analyses of the enzymatic activities of wild-type Icd and Mdh showed that Icd activity doubles in the presence of Mdh, whereas Mdh activity was slightly reduced by Icd. In summary, these data indicate substrate control of complex formation in the tricarboxylic acid cycle metabolon assembly and maintenance of the α-ketoglutarate supply for amino acid anabolism in vivo.
Collapse
Affiliation(s)
- Maike Bartholomae
- Lehrstuhl für Mikrobiologie, Department Biologie, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| | | | | | | | | | | |
Collapse
|
3
|
Cabrera-Valladares N, Martínez LM, Flores N, Hernández-Chávez G, Martínez A, Bolívar F, Gosset G. Physiologic Consequences of Glucose Transport and Phosphoenolpyruvate Node Modifications inBacillus subtilis168. J Mol Microbiol Biotechnol 2012; 22:177-97. [DOI: 10.1159/000339973] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
4
|
Azarkina NV, Konstantinov AA. Energization of Bacillus subtilis membrane vesicles increases catalytic activity of succinate: Menaquinone oxidoreductase. BIOCHEMISTRY (MOSCOW) 2010; 75:50-62. [DOI: 10.1134/s0006297910010074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
CcpC-dependent regulation of citrate synthase gene expression in Listeria monocytogenes. J Bacteriol 2008; 191:862-72. [PMID: 19011028 DOI: 10.1128/jb.01384-08] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Citrate synthase, the first and rate-limiting enzyme of the tricarboxylic acid branch of the Krebs cycle, was shown to be required for de novo synthesis of glutamate and glutamine in Listeria monocytogenes. The citrate synthase (citZ) gene was found to be part of a complex operon with the upstream genes lmo1569 and lmo1568. The downstream isocitrate dehydrogenase (citC) gene appears to be part of the same operon as well. Two promoters were shown to drive citZ expression, a distal promoter located upstream of lmo1569 and a proximal promoter located upstream of the lmo1568 gene. Transcription of citZ from both promoters was regulated by CcpC by interaction with a single site; assays of transcription in vivo and assays of CcpC binding in vitro revealed that CcpC interacts with and represses the proximal promoter that drives expression of the lmo1568, citZ, and citC genes and, by binding to the same site, prevents read-through transcription from the distal, lmo1569 promoter. Expression of the lmo1568 operon was not affected by the carbon source but was repressed during growth in complex medium by addition of glutamine.
Collapse
|
6
|
Abstract
The remarkable ability of bacteria to adapt efficiently to a wide range of nutritional environments reflects their use of overlapping regulatory systems that link gene expression to intracellular pools of a small number of key metabolites. By integrating the activities of global regulators, such as CcpA, CodY and TnrA, Bacillus subtilis manages traffic through two metabolic intersections that determine the flow of carbon and nitrogen to and from crucial metabolites, such as pyruvate, 2-oxoglutarate and glutamate. Here, the latest knowledge on the control of these key intersections in B. subtilis is reviewed.
Collapse
Affiliation(s)
- Abraham L Sonenshein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, Massachusetts 02111, USA.
| |
Collapse
|
7
|
Lerondel G, Doan T, Zamboni N, Sauer U, Aymerich S. YtsJ has the major physiological role of the four paralogous malic enzyme isoforms in Bacillus subtilis. J Bacteriol 2006; 188:4727-36. [PMID: 16788182 PMCID: PMC1482987 DOI: 10.1128/jb.00167-06] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Bacillus subtilis genome contains several sets of paralogs. An extreme case is the four putative malic enzyme genes maeA, malS, ytsJ, and mleA. maeA was demonstrated to encode malic enzyme activity, to be inducible by malate, but also to be dispensable for growth on malate. We report systematic experiments to test whether these four genes ensure backup or cover different functions. Analysis of single- and multiple-mutant strains demonstrated that ytsJ has a major physiological role in malate utilization for which none of the other three genes could compensate. In contrast, maeA, malS, and mleA had distinct roles in malate utilization for which they could compensate one another. The four proteins exhibited malic enzyme activity; MalS, MleA, and MaeA exhibited 4- to 90-fold higher activities with NAD+ than with NADP+. YtsJ activity, in contrast, was 70-fold higher with NADP+ than with NAD+, with Km values of 0.055 and 2.8 mM, respectively. lacZ fusions revealed strong transcription of ytsJ, twofold higher in malate than in glucose medium, but weak transcription of malS and mleA. In contrast, mleA was strongly transcribed in complex medium. Metabolic flux analysis confirmed the major role of YtsJ in malate-to-pyruvate interconversion. While overexpression of the NADP-dependent Escherichia coli malic enzyme MaeB did not suppress the growth defect of a ytsJ mutant on malate, overexpression of the transhydrogenase UdhA from E. coli partially suppressed it. These results suggest an additional physiological role of YtsJ beyond that of malate-to-pyruvate conversion.
Collapse
Affiliation(s)
- Guillaume Lerondel
- Microbiologie et Génétique Moléculaire, INRA (UMR1238) CNRS (UMR2585) and INAP-G, F-78850 Thiverval-Grignon, France
| | | | | | | | | |
Collapse
|
8
|
Kim HJ, Roux A, Sonenshein AL. Direct and indirect roles of CcpA in regulation of Bacillus subtilis Krebs cycle genes. Mol Microbiol 2002; 45:179-90. [PMID: 12100558 DOI: 10.1046/j.1365-2958.2002.03003.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Carbon catabolite repression of the Bacillus subtilis citrate synthase (citZ) and aconitase (citB) genes, previously known to be regulated by CcpC, was shown to depend on CcpA as well. Transcription of the citZ gene was partially derepressed in ccpA and ccpC single mutants and fully derepressed in a ccpA ccpC double mutant. DNase I footprinting studies showed that CcpA binds to a catabolite-responsive element (cre) site located at positions +80 to +97 with respect to the transcription start site, whereas CcpC binds at positions -14 to +6 and +16 to +36. Mutations in the citZ cre site greatly altered CcpA binding and repression. A ccpA null mutation also caused partial derepression of citB. Disruption of citrate synthase activity, however, suppressed the effect of the ccpA mutation, suggesting that increased citrate accumulation in a ccpA mutant partially inactivates CcpC and causes partial derepression of citB. Therefore, CcpA controls expression of Krebs cycle genes directly by regulating transcription of citZ and in-directly by regulating availability of citrate, the inducer for CcpC.
Collapse
Affiliation(s)
- Hyun-Jin Kim
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
9
|
Gao H, Jiang X, Pogliano K, Aronson AI. The E1beta and E2 subunits of the Bacillus subtilis pyruvate dehydrogenase complex are involved in regulation of sporulation. J Bacteriol 2002; 184:2780-8. [PMID: 11976308 PMCID: PMC135025 DOI: 10.1128/jb.184.10.2780-2788.2002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pdhABCD operon of Bacillus subtilis encodes the pyruvate decarboxylase (E1alpha and E1beta), dihydrolipoamide acetyltransferase (E2), and dihydrolipoamide dehydrogenase (E3) subunits of the pyruvate dehydrogenase multienzyme complex (PDH). There are two promoters: one for the entire operon and an internal one in front of the pdhC gene. The latter may serve to ensure adequate quantities of the E2 and E3 subunits, which are needed in greater amounts than E1alpha and E1beta. Disruptions of the pdhB, pdhC, and pdhD genes were isolated, but attempts to construct a pdhA mutant were unsuccessful, suggesting that E1alpha is essential. The three mutants lacked PDH activity, were unable to grow on glucose and grew poorly in an enriched medium. The pdhB and pdhC mutants sporulated to only 5% of the wild-type level, whereas the pdhD mutant strain sporulated to 55% of the wild-type level. This difference indicated that the sporulation defect of the pdhB and pdhC mutant strains was due to a function(s) of these subunits independent of enzymatic activity. Growth, but not low sporulation, was enhanced by the addition of acetate, glutamate, succinate, and divalent cations. Results from the expression of various spo-lacZ fusions revealed that the pdhB mutant was defective in the late stages of engulfment or membrane fusion (stage II), whereas the pdhC mutant was blocked after the completion of engulfment (stage III). This analysis was confirmed by fluorescent membrane staining. The E1beta and E2 subunits which are present in the soluble fraction of sporulating cells appear to function independently of enzymatic activity as checkpoints for stage II-III of sporulation.
Collapse
Affiliation(s)
- Haichun Gao
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | |
Collapse
|
10
|
Viollier PH, Minas W, Dale GE, Folcher M, Thompson CJ. Role of acid metabolism in Streptomyces coelicolor morphological differentiation and antibiotic biosynthesis. J Bacteriol 2001; 183:3184-92. [PMID: 11325948 PMCID: PMC95220 DOI: 10.1128/jb.183.10.3184-3192.2001] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2000] [Accepted: 02/08/2001] [Indexed: 11/20/2022] Open
Abstract
Studies of citrate synthase (CitA) were carried out to investigate its role in morphological development and biosynthesis of antibiotics in Streptomyces coelicolor. Purification of CitA, the major vegetative enzyme activity, allowed characterization of its kinetic properties. The apparent K(m) values of CitA for acetyl coenzyme A (acetyl-CoA) (32 microM) and oxaloacetate (17 microM) were similar to those of citrate synthases from other gram-positive bacteria and eukaryotes. CitA was not strongly inhibited by various allosteric feedback inhibitors (NAD(+), NADH, ATP, ADP, isocitrate, or alpha-ketoglutarate). The corresponding gene (citA) was cloned and sequenced, allowing construction of a citA mutant (BZ2). BZ2 was a glutamate auxotroph, indicating that citA encoded the major citrate synthase allowing flow of acetyl-CoA into the tricarboxylic acid (TCA) cycle. Interruption of aerobic TCA cycle-based metabolism resulted in acidification of the medium and defects in morphological differentiation and antibiotic biosynthesis. These developmental defects of the citA mutant were in part due to a glucose-dependent medium acidification that was also exhibited by some other bald mutants. Unlike other acidogenic bald strains, citA and bldJ mutants were able to produce aerial mycelia and pigments when the medium was buffered sufficiently to maintain neutrality. Extracellular complementation studies suggested that citA defines a new stage of the Streptomyces developmental cascade.
Collapse
Affiliation(s)
- P H Viollier
- Department of Molecular Microbiology, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
11
|
Poole P, Reid C, East AK, Allaway D, Day M, Leonard M. Regulation of themdh-sucCDABoperon inRhizobium leguminosarum. FEMS Microbiol Lett 1999. [DOI: 10.1111/j.1574-6968.1999.tb13669.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
12
|
Matsuno K, Blais T, Serio AW, Conway T, Henkin TM, Sonenshein AL. Metabolic imbalance and sporulation in an isocitrate dehydrogenase mutant of Bacillus subtilis. J Bacteriol 1999; 181:3382-91. [PMID: 10348849 PMCID: PMC93804 DOI: 10.1128/jb.181.11.3382-3391.1999] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A Bacillus subtilis mutant with a deletion in the citC gene, encoding isocitrate dehydrogenase, the third enzyme of the tricarboxylic acid branch of the Krebs cycle, exhibited reduced growth yield in broth medium and had greatly reduced ability to sporulate compared to the wild type due to a block at stage I, i.e., a failure to form the polar division septum. In early stationary phase, mutant cells accumulated intracellular and extracellular concentrations of citrate and isocitrate that were at least 15-fold higher than in wild-type cells. The growth and sporulation defects of the mutant could be partially bypassed by deletion of the major citrate synthase gene (citZ), by raising the pH of the medium, or by supplementation of the medium with certain divalent cations, suggesting that abnormal accumulation of citrate affects survival of stationary-phase cells and sporulation by lowering extracellular pH and chelating metal ions. While these genetic and environmental alterations were not sufficient to allow the majority of the mutant cell population to pass the stage I block (lack of asymmetric septum formation), introduction of the sof-1 mutant form of the Spo0A transcription factor, when coupled with a reduction in citrate synthesis, restored sporulation gene expression and spore formation nearly to wild-type levels. Thus, the primary factor inhibiting sporulation in a citC mutant is abnormally high accumulation of citrate, but relief of this metabolic defect is not by itself sufficient to restore competence for sporulation.
Collapse
Affiliation(s)
- K Matsuno
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | | | |
Collapse
|
13
|
Mekjian KR, Bryan EM, Beall BW, Moran CP. Regulation of hexuronate utilization in Bacillus subtilis. J Bacteriol 1999; 181:426-33. [PMID: 9882655 PMCID: PMC93395 DOI: 10.1128/jb.181.2.426-433.1999] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have identified a locus essential for galacturonate utilization in Bacillus subtilis. Genes homologous to Escherichia coli and Erwinia chrysanthemi glucuronate and galacturonate metabolic genes were found in a cluster consisting of 10 open reading frames (ORFs) in the B. subtilis chromosome. A mutant of B. subtilis containing a replacement of the second and third ORFs was unable to grow with galacturonate as its primary carbon source. Galacturonate induced expression from a sigmaA-dependent promoter, exuP1, located upstream from the first ORF. The eighth ORF in this cluster (the exu locus) encodes a LacI and GalR homolog that negatively regulated expression from exuP1. A 26-bp inverted repeat sequence centered 15 bp downstream from the exuP1 start point of transcription acted in cis to negatively regulate expression from exuP1 under noninducing conditions. Expression from the exuP1 promoter was repressed by high levels of glucose, which is probably mediated by CcpA (catabolite control protein A). A sigmaE-dependent promoter, exuP2, was localized between the second and third ORFs and was active during sporulation.
Collapse
Affiliation(s)
- K R Mekjian
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | |
Collapse
|
14
|
Abstract
Krebs cycle enzyme activity in Bacillus subtilis was examined under aerobic and anaerobic conditions. Citrate synthase and aconitase activities in cells grown anaerobically in the presence of nitrate were reduced by as much as 10- and 30-fold, respectively, from levels observed under aerobic culture conditions. The maximum level of isocitrate dehydrogenase activity during anaerobic growth was only twofold lower than that in aerobic cultures. These reductions in activity under conditions of anaerobiosis were found to be primarily the result of reduced Krebs cycle gene transcription. This repression was not dependent on either the fnr or resDE gene products, which have been shown to regulate expression of other B. subtilis genes in response to anaerobic conditions. Additionally, catabolite control proteins CcpA and CcpB were not responsible for the repression. A dyad symmetry element located between positions -73 and -59 relative to the transcription start site of the aconitase gene (citB) promoter was previously shown to be a target of catabolite repression and the binding site for a putative negative regulator during aerobic growth. The deletion of the upstream arm of the dyad symmetry region abolished the citB repression observed during anaerobic growth. Furthermore, neither citZ or citB was repressed in an anaerobically grown citB mutant, an effect that was very likely the result of citrate accumulation. These results suggest that catabolite repression and anaerobic repression of citZ and citB are regulated by a common mechanism that does not involve CcpA, CcpB, Fnr, or ResDE.
Collapse
Affiliation(s)
- M M Nakano
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport 71130, USA.
| | | | | |
Collapse
|
15
|
Lapidus A, Galleron N, Sorokin A, Ehrlich SD. Sequencing and functional annotation of the Bacillus subtilis genes in the 200 kb rrnB-dnaB region. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 11):3431-3441. [PMID: 9387221 DOI: 10.1099/00221287-143-11-3431] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The 200 kb region of the Bacillus subtilis chromosome spanning from 255 to 275 degrees on the genetic map was sequenced. The strategy applied, based on use of yeast artificial chromosomes and multiplex Long Accurate PCR, proved to be very efficient for sequencing a large bacterial chromosome area. A total of 193 genes of this part of the chromosome was classified by level of knowledge and biological category of their functions. Five levels of gene function understanding are defined. These are: (i) experimental evidence is available of gene product or biological function; (ii) strong homology exists for the putative gene product with proteins from other organisms; (iii) some indication of the function can be derived from homologies with known proteins; (iv) the gene product can be clustered with hypothetical proteins; (v) no indication on the gene function exists. The percentage of detected genes in each category was: 20, 28, 20, 15 and 17, respectively. In the sequenced region, a high percentage of genes are implicated in transport and metabolic linking of glycolysis and the citric acid cycle. A functional connection of several genes from this region and the genes close to 140 degrees in the chromosome was also observed.
Collapse
Affiliation(s)
- Alia Lapidus
- Laboratoire de Genetique Microbienne, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy-en-Josas cedex, France
| | - Nathalie Galleron
- Laboratoire de Genetique Microbienne, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy-en-Josas cedex, France
| | - Alexei Sorokin
- Laboratoire de Genetique Microbienne, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy-en-Josas cedex, France
| | - S Dusko Ehrlich
- Laboratoire de Genetique Microbienne, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy-en-Josas cedex, France
| |
Collapse
|
16
|
Antelmann H, Bernhardt J, Schmid R, Mach H, Völker U, Hecker M. First steps from a two-dimensional protein index towards a response-regulation map for Bacillus subtilis. Electrophoresis 1997; 18:1451-63. [PMID: 9298659 DOI: 10.1002/elps.1150180820] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Data on the identification of proteins of Bacillus subtilis on two-dimensional (2-D) gels as well as their regulation are summarized and the identification of 56 protein spots is included. The pattern of proteins synthesized in Bacillus subtilis during exponential growth, during starvation for glucose or phosphate, or after the imposition of stresses like heat shock, salt- and ethanol stress as well as oxidative stress was analyzed. N-terminal sequencing of protein spots allowed the identification of 93 proteins on 2-D gels, which are required for the synthesis of amino acids and nucleotides, the generation of ATP, for glycolyses, the pentose phosphate cycle, the citric acid cycle as well as for adaptation to a variety of stress conditions. A computer-aided analysis of the 2-D gels was used to monitor the synthesis profile of more than 130 protein spots. Proteins performing housekeeping functions during exponential growth displayed a reduced synthesis rate during stress and starvation, whereas spots induced during stress and starvation were classified as specific stress proteins induced by a single stimulus or a group of related stimuli, or as general stress proteins induced by a variety of entirely different stimuli. The analysis of mutants in global regulators was initiated in order to establish a response regulation map for B. subtilis. These investigations demonstrated that the alternative sigma factor sigma B is involved in the regulation of almost all of the general stress proteins and that the phoPR two-component system is required for the induction of a large part but not all of the proteins induced by phosphate starvation.
Collapse
Affiliation(s)
- H Antelmann
- Ernst-Moritz-Arndt-Universität Greifswald, Institut für Mikrobiologie und Molekularbiologie, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Charnock C. Structural studies of malate dehydrogenases (MDHs): MDHs in Brevundimonas species are the first reported MDHs in Proteobacteria which resemble lactate dehydrogenases in primary structure. J Bacteriol 1997; 179:4066-70. [PMID: 9190829 PMCID: PMC179222 DOI: 10.1128/jb.179.12.4066-4070.1997] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The N-terminal sequences of malate dehydrogenases from 10 bacterial strains, representing seven genera of Proteobacteria, were determined. Of these, the enzyme sequences of species classified in the genus Brevundimonas clearly resembled those malate dehydrogenases with greatest similarity to lactate dehydrogenases. Additional evidence from subunit molecular weights, peptide mapping, and enzyme mobilities suggested that malate dehydrogenases from species of the genus Brevundimonas were structurally distinct from others in the study.
Collapse
Affiliation(s)
- C Charnock
- Department of Microbiology, Institute of Pharmacy, University of Oslo, Blindern, Norway
| |
Collapse
|
18
|
Naterstad K, Lauvrak V, Sirevåg R. Malate dehydrogenase from the mesophile Chlorobium vibrioforme and from the mild thermophile Chlorobium tepidum: molecular cloning, construction of a hybrid, and expression in Escherichia coli. J Bacteriol 1996; 178:7047-52. [PMID: 8955383 PMCID: PMC178614 DOI: 10.1128/jb.178.24.7047-7052.1996] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The genes (mdh) encoding malate dehydrogenase (MDH) from the mesophile Chlorobium vibrioforme and the moderate thermophile C. tepidum were cloned and sequenced, and the complete amino acid sequences were deduced. When the region upstream of mdh was analyzed, a sequence with high homology to an operon encoding ribosomal proteins from Escherichia coli was found. Each mdh gene consists of a 930-bp open reading frame and encodes 310 amino acid residues, corresponding to a subunit weight of 33,200 Da for the dimeric enzyme. The amino acid sequence identity of the two MDHs is 86%. Homology searches using the primary structures of the two MDHs revealed significant sequence similarity to lactate dehydrogenases. A hybrid mdh was constructed from the 3' part of mdh from C. tepidum and the 5' part of mdh from C. vibrioforme. The thermostabilities of the hybrid enzyme and of MDH from C. vibrioforme and C. tepidum were compared.
Collapse
Affiliation(s)
- K Naterstad
- Department of Biology, University of Oslo, Norway
| | | | | |
Collapse
|