1
|
Jaiswal LK, Singh RK, Nayak T, Kakkar A, Kandwal G, Singh VS, Gupta A. A comparative analysis of mycobacterial ribonucleases: Towards a therapeutic novel drug target. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105645. [PMID: 39067582 DOI: 10.1016/j.meegid.2024.105645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/18/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
Bacterial responses to continuously changing environments are addressed through modulation of gene expression at the level of transcription initiation, RNA processing and/or decay. Ribonucleases (RNases) are hydrolytic or phosphorolytic enzymes involved in a majority of RNA metabolism reactions. RNases play a crucial role in RNA degradation, either independently or in collaboration with various trans-acting regulatory factors. The genus Mycobacterium consists of five subgenera: Mycobacteroides, Mycolicibacterium, Mycobacterium, Mycolicibacter and Mycolicibacillus, which include 63 fully sequenced species (pathogenic/non-pathogenic) to date. These include 13 different RNases, among which 5 are exonucleases (RNase PH, PNPase, RNase D, nano-RNases and RNase AS) and 8 are endonucleases (RNase J, RNase H, RNase P, RNase III, RNase BN, RNase Z, RNase G and RNase E), although RNase J and RNase BN were later identified to have exoribonuclease functions also. Here, we provide a detailed comparative insight into the Escherichia coli and mycobacterial RNases with respect to their types, phylogeny, structure, function, regulation and mechanism of action, with the main emphasis on RNase E. Among these 13 different mycobacterial RNases, 10 are essential for cell survival and have diverse structures hence, they are promising drug targets. RNase E is also an essential endonuclease that is abundant in many bacteria, forms an RNA degradosome complex that controls central RNA processing/degradation and has a conserved 5' sensor domain/DNase-I like region in its RNase domain. The essential mycobacterial RNases especially RNase E provide a potential repertoire of drug targets that can be exploited for inhibitor/modulator screening against many deadly mycobacterial diseases.
Collapse
Affiliation(s)
- Lav Kumar Jaiswal
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi U.P.-221005, India
| | - Rakesh Kumar Singh
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi U.P.-221005, India
| | - Tanmayee Nayak
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi U.P.-221005, India
| | - Anuja Kakkar
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi U.P.-221005, India
| | - Garima Kandwal
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi U.P.-221005, India
| | - Vijay Shankar Singh
- Department of Microbiology, School of life Sciences, Sikkim University, Gangtok 737102, Sikkim, India
| | - Ankush Gupta
- Molecular Microbiology Laboratory, Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi U.P.-221005, India.
| |
Collapse
|
2
|
Bechhofer DH, Deutscher MP. Bacterial ribonucleases and their roles in RNA metabolism. Crit Rev Biochem Mol Biol 2019; 54:242-300. [PMID: 31464530 PMCID: PMC6776250 DOI: 10.1080/10409238.2019.1651816] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/22/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022]
Abstract
Ribonucleases (RNases) are mediators in most reactions of RNA metabolism. In recent years, there has been a surge of new information about RNases and the roles they play in cell physiology. In this review, a detailed description of bacterial RNases is presented, focusing primarily on those from Escherichia coli and Bacillus subtilis, the model Gram-negative and Gram-positive organisms, from which most of our current knowledge has been derived. Information from other organisms is also included, where relevant. In an extensive catalog of the known bacterial RNases, their structure, mechanism of action, physiological roles, genetics, and possible regulation are described. The RNase complement of E. coli and B. subtilis is compared, emphasizing the similarities, but especially the differences, between the two. Included are figures showing the three major RNA metabolic pathways in E. coli and B. subtilis and highlighting specific steps in each of the pathways catalyzed by the different RNases. This compilation of the currently available knowledge about bacterial RNases will be a useful tool for workers in the RNA field and for others interested in learning about this area.
Collapse
Affiliation(s)
- David H. Bechhofer
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Murray P. Deutscher
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
3
|
Abstract
This review provides a description of the known Escherichia coli ribonucleases (RNases), focusing on their structures, catalytic properties, genes, physiological roles, and possible regulation. Currently, eight E. coli exoribonucleases are known. These are RNases II, R, D, T, PH, BN, polynucleotide phosphorylase (PNPase), and oligoribonuclease (ORNase). Based on sequence analysis and catalytic properties, the eight exoribonucleases have been grouped into four families. These are the RNR family, including RNase II and RNase R; the DEDD family, including RNase D, RNase T, and ORNase; the RBN family, consisting of RNase BN; and the PDX family, including PNPase and RNase PH. Seven well-characterized endoribonucleases are known in E. coli. These are RNases I, III, P, E, G, HI, and HII. Homologues to most of these enzymes are also present in Salmonella. Most of the endoribonucleases cleave RNA in the presence of divalent cations, producing fragments with 3'-hydroxyl and 5'-phosphate termini. RNase H selectively hydrolyzes the RNA strand of RNA?DNA hybrids. Members of the RNase H family are widely distributed among prokaryotic and eukaryotic organisms in three distinct lineages, RNases HI, HII, and HIII. It is likely that E. coli contains additional endoribonucleases that have not yet been characterized. First of all, endonucleolytic activities are needed for certain known processes that cannot be attributed to any of the known enzymes. Second, homologues of known endoribonucleases are present in E. coli. Third, endonucleolytic activities have been observed in cell extracts that have different properties from known enzymes.
Collapse
|
4
|
Chapter 1 A Phylogenetic View of Bacterial Ribonucleases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:1-41. [DOI: 10.1016/s0079-6603(08)00801-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
5
|
Mandel MJ, Stabb EV, Ruby EG. Comparative genomics-based investigation of resequencing targets in Vibrio fischeri: focus on point miscalls and artefactual expansions. BMC Genomics 2008; 9:138. [PMID: 18366731 PMCID: PMC2330054 DOI: 10.1186/1471-2164-9-138] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Accepted: 03/25/2008] [Indexed: 01/19/2023] Open
Abstract
Background Sequence closure often represents the end-point of a genome project, without a system in place for subsequent improvement and refinement. Building on the genome project of Vibrio fischeri ES114, we used a comparative approach to identify and investigate genes that had a high likelihood of sequence error. Results Comparison of the V. fischeri ES114 genome with that of conspecific strain MJ11 identified 82 target loci in ES114 as containing likely errors, and thus of high-priority for resequencing. Analysis of the targets identified 75 loci in which an error had occurred, resulting in the correction of 10,457 base pairs to generate the new ES114 genomic sequence. A majority of the inaccurate loci involved frameshift errors, correction of which fused adjacent ORFs. Although insertions/deletions are thought to be rare in microbial genome assemblies, fourteen of the loci contained extraneous sequence of over 300 bp, likely due to imperfect contig ends that were misassembled in tandem rather than as overlapping segments. Additionally we updated the entire genome annotation with 113 new features including previously uncalled protein-coding genes, regulatory RNA genes and operon leader peptides, and we analyzed the transcriptional apparatus encoded by ES114. Conclusion We demonstrate that errors in microbial genome sequences, thought to largely be confined to point mutations, may also consist of other prevalent large-scale rearrangements such as insertions. Ongoing genome quality control and annotation programs are necessary to accompany technological advancements in data generation. These updates further advance V. fischeri as an important model for understanding intercellular communication and colonization of animal tissue.
Collapse
Affiliation(s)
- Mark J Mandel
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, 1550 Linden Drive, Madison WI 53706-1521, USA.
| | | | | |
Collapse
|
6
|
Mamat U, Meredith TC, Aggarwal P, Kühl A, Kirchhoff P, Lindner B, Hanuszkiewicz A, Sun J, Holst O, Woodard RW. Single amino acid substitutions in either YhjD or MsbA confer viability to 3-deoxy-d-manno-oct-2-ulosonic acid-depletedEscherichia coli. Mol Microbiol 2008; 67:633-48. [DOI: 10.1111/j.1365-2958.2007.06074.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Abstract
This chapter discusses several topics relating to the mechanisms of mRNA decay. These topics include the following: important physical properties of mRNA molecules that can alter their stability; methods for determining mRNA half-lives; the genetics and biochemistry of proteins and enzymes involved in mRNA decay; posttranscriptional modification of mRNAs; the cellular location of the mRNA decay apparatus; regulation of mRNA decay; the relationships among mRNA decay, tRNA maturation, and ribosomal RNA processing; and biochemical models for mRNA decay. Escherichia coli has multiple pathways for ensuring the effective decay of mRNAs and mRNA decay is closely linked to the cell's overall RNA metabolism. Finally, the chapter highlights important unanswered questions regarding both the mechanism and importance of mRNA decay.
Collapse
|
8
|
Martin-Galiano AJ, Frishman D. Defining the fold space of membrane proteins: the CAMPS database. Proteins 2006; 64:906-22. [PMID: 16802318 DOI: 10.1002/prot.21081] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent progress in structure determination techniques has led to a significant growth in the number of known membrane protein structures, and the first structural genomics projects focusing on membrane proteins have been initiated, warranting an investigation of appropriate bioinformatics strategies for optimal structural target selection for these molecules. What determines a membrane protein fold? How many membrane structures need to be solved to provide sufficient structural coverage of the membrane protein sequence space? We present the CAMPS database (Computational Analysis of the Membrane Protein Space) containing almost 45,000 proteins with three or more predicted transmembrane helices (TMH) from 120 bacterial species. This large set of membrane proteins was subjected to single-linkage clustering using only sequence alignments covering at least 40% of the TMH present in a given family. This process yielded 266 sequence clusters with at least 15 members, roughly corresponding to membrane structural folds, sufficiently structurally homogeneous in terms of the variation of TMH number between individual sequences. These clusters were further subdivided into functionally homogeneous subclusters according to the COG (Clusters of Orthologous Groups) system as well as more stringently defined families sharing at least 30% identity. The CAMPS sequence clusters are thus designed to reflect three main levels of interest for structural genomics: fold, function, and modeling distance. We present a library of Hidden Markov Models (HMM) derived from sequence alignments of TMH at these three levels of sequence similarity. Given that 24 out of 266 clusters corresponding to membrane folds already have associated known structures, we estimate that 242 additional new structures, one for each remaining cluster, would provide structural coverage at the fold level of roughly 70% of prokaryotic membrane proteins belonging to the currently most populated families.
Collapse
|
9
|
Ezraty B, Dahlgren B, Deutscher MP. The RNase Z Homologue Encoded by Escherichia coli elaC Gene Is RNase BN. J Biol Chem 2005; 280:16542-5. [PMID: 15764599 DOI: 10.1074/jbc.c500098200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In eukaryotes, archaea, and in some eubacteria, removal of 3' precursor sequences during maturation of tRNA is catalyzed by an endoribonuclease, termed RNase Z. In contrast, in Escherichia coli, a variety of exoribonucleases carry out final 3' maturation. Yet, E. coli retains an RNase Z homologue, ElaC, whose function is under active study. We have overexpressed and purified to homogeneity His-tagged ElaC and show here that it is, in fact, the previously described enzyme, RNase BN. Thus, purified ElaC displays structural and catalytic properties identical to those ascribed to RNase BN. In addition, an elaC mutant strain behaves identically to a known RNase BN- strain, CAN. Finally, we show that wild type elaC can complement the mutation in strain CAN and that the elaC gene in strain CAN carries a nonsense mutation that results in loss of RNase BN activity. These data correct a previous misassignment for the gene encoding RNase BN. Based on the fact that the original RNase BN mutation has now been identified, we propose that the elaC gene be renamed rbn.
Collapse
Affiliation(s)
- Benjamin Ezraty
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, Florida 33101, USA
| | | | | |
Collapse
|
10
|
Deutscher MP, Li Z. Exoribonucleases and their multiple roles in RNA metabolism. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 66:67-105. [PMID: 11051762 DOI: 10.1016/s0079-6603(00)66027-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In recent years there has been a dramatic shift in our thinking about ribonucleases (RNases). Although they were once considered to be nonspecific, degradative enzymes, it is now clear that RNases play a central role in every aspect of cellular RNA metabolism, including decay of mRNA, conversion of RNA precursors to their mature forms, and end-turnover of certain RNAs. Recognition of the importance of this class of enzymes has led to an explosion of work and the establishment of significant new concepts. Thus, we now realize that RNases, both endoribonucleases and exoribonucleases, can be highly specific for particular sequences or structures. It has also become apparent that a single cell can contain a large number of distinct RNases, approaching as many as 20 members, often with overlapping specificities. Some RNases also have been found to be components of supramolecular complexes and to function in concert with other enzymes to carry out their role in RNA metabolism. This review focuses on the exoribonucleases, both prokaryotic and eukaryotic, and details their structure, catalytic properties, and physiological function.
Collapse
Affiliation(s)
- M P Deutscher
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Florida 33101, USA
| | | |
Collapse
|
11
|
Callahan C, Neri-Cortes D, Deutscher MP. Purification and characterization of the tRNA-processing enzyme RNase BN. J Biol Chem 2000; 275:1030-4. [PMID: 10625642 DOI: 10.1074/jbc.275.2.1030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RNase BN, a tRNA-processing enzyme previously shown to be required for the 3'-maturation of certain bacteriophage T4-encoded tRNAs, was overexpressed and purified to near homogeneity from Escherichia coli. The purified enzyme, which is free of nucleic acid, is an alpha(2)-dimer with a molecular mass of approximately 65 kDa. RNase BN displays a number of unusual catalytic properties compared with the other exoribonucleases of E. coli. The enzyme is most active at pH 6.5 in the presence of Co(2+) and high concentrations of monovalent salts. It is highly specific for tRNA substrates containing an incorrect residue within the universal 3'-CCA sequence. Thus, tRNA-CU and tRNA-CA are effective substrates, whereas intact tRNA-CCA, elongated tRNA-CCA-Cn, phosphodiesterase-treated tRNA, and the closely related tRNA-CC are essentially inactive as substrates. RNA or DNA oligonucleotides also are not substrates. These data indicate that RNase BN has an extremely narrow substrate specificity. However, since tRNA molecules with incorrect residues within the -CCA sequence are not normally produced in E. coli, the role of RNase BN in uninfected cells remains to be determined.
Collapse
Affiliation(s)
- C Callahan
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, Miami, Florida 33101-6129, USA
| | | | | |
Collapse
|
12
|
Soutourina J, Plateau P, Delort F, Peirotes A, Blanquet S. Functional characterization of the D-Tyr-tRNATyr deacylase from Escherichia coli. J Biol Chem 1999; 274:19109-14. [PMID: 10383414 DOI: 10.1074/jbc.274.27.19109] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yihZ gene of Escherichia coli is shown to produce a deacylase activity capable of recycling misaminoacylated D-Tyr-tRNATyr. The reaction is specific and, under optimal in vitro conditions, proceeds at a rate of 6 s-1 with a Km value for the substrate equal to 1 microM. Cell growth is sensitive to interruption of the yihZ gene if D-tyrosine is added to minimal culture medium. Toxicity of exogenous D-tyrosine is exacerbated if, in addition to the disruption of yihZ, the gene of D-amino acid dehydrogenase (dadA) is also inactivated. Orthologs of the yihZ gene occur in many, but not all, bacteria. In support of the idea of a general role of the D-Tyr-tRNATyr deacylase function in the detoxification of cells, similar genes can be recognized in Saccharomyces cerevisiae, Caenorhabditis elegans, Arabidopsis thaliana, mouse, and man.
Collapse
Affiliation(s)
- J Soutourina
- Laboratoire de Biochimie, Unité Mixte de Recherche No. 7654, CNRS-Ecole Polytechnique, 91128 Palaiseau Cedex, France
| | | | | | | | | |
Collapse
|
13
|
Abstract
The maturation and degradation of RNA molecules are essential features of the mechanism of gene expression, and provide the two main points for post-transcriptional regulation. Cells employ a functionally diverse array of nucleases to carry out RNA maturation and turnover. Viruses also employ cellular ribonucleases, or even use their own in their reproductive cycles. Studies on bacterial ribonucleases, and in particular those from Escherichia coli, are providing insight into ribonuclease structure, mechanism, and regulation. Ongoing biochemical and genetic analyses are revealing that many ribonucleases are phylogenetically conserved, and exhibit overlapping functional roles and perhaps common catalytic mechanisms. This article reviews the salient features of bacterial ribonucleases, with a focus on those of E. coli, and in particular, ribonuclease III. RNase III participates in a number of RNA maturation and RNA decay pathways, and is regulated by phosphorylation in the T7 phage-infected cell. Plasmid and phage RNAs, in addition to cellular transcripts, are RNase III targets. RNase III orthologues occur in eukaryotic cells, and play key functional roles. As such, RNase III provides an important model with which to understand mechanisms of RNA maturation, RNA decay, and gene regulation.
Collapse
Affiliation(s)
- A W Nicholson
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA.
| |
Collapse
|
14
|
Abstract
This map is an update of the edition 9 map by Berlyn et al. (M. K. B. Berlyn, K. B. Low, and K. E. Rudd, p. 1715-1902, in F. C. Neidhardt et al., ed., Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed., vol. 2, 1996). It uses coordinates established by the completed sequence, expressed as 100 minutes for the entire circular map, and adds new genes discovered and established since 1996 and eliminates those shown to correspond to other known genes. The latter are included as synonyms. An alphabetical list of genes showing map location, synonyms, the protein or RNA product of the gene, phenotypes of mutants, and reference citations is provided. In addition to genes known to correspond to gene sequences, other genes, often older, that are described by phenotype and older mapping techniques and that have not been correlated with sequences are included.
Collapse
Affiliation(s)
- M K Berlyn
- Department of Biology and School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06520-8104, USA.
| |
Collapse
|