1
|
Koskiniemi S, Pränting M, Gullberg E, Näsvall J, Andersson DI. Activation of cryptic aminoglycoside resistance in Salmonella enterica. Mol Microbiol 2011; 80:1464-78. [PMID: 21507083 DOI: 10.1111/j.1365-2958.2011.07657.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aminoglycoside resistance in bacteria can be acquired by several mechanisms, including drug modification, target alteration, reduced uptake and increased efflux. Here we demonstrate that increased resistance to the aminoglycosides streptomycin and spectinomycin in Salmonella enterica can be conferred by increased expression of an aminoglycoside adenyl transferase encoded by the cryptic, chromosomally located aadA gene. During growth in rich medium the wild-type strain was susceptible but mutations that impaired electron transport and conferred a small colony variant (SCV) phenotype or growth in glucose/glycerol minimal media resulted in activation of the aadA gene and aminoglycoside resistance. Expression of the aadA gene was positively regulated by the stringent response regulator guanosine penta/tetraphosphate ((p)ppGpp). SCV mutants carrying stop codon mutations in the hemA and ubiA genes showed a streptomycin pseudo-dependent phenotype, where growth was stimulated by streptomycin. Our data suggest that this phenotype is due to streptomycin-induced readthrough of the stop codons, a resulting increase in HemA/UbiA levels and improved electron transport and growth. Our results demonstrate that environmental and mutational activation of a cryptic resistance gene can confer clinically significant resistance and that a streptomycin-pseudo-dependent phenotype can be generated via a novel mechanism that does not involve the classical rpsL mutations.
Collapse
Affiliation(s)
- Sanna Koskiniemi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
2
|
Niba ETE, Li G, Aoki K, Kitakawa M. Characterization of rodZ mutants: RodZ is not absolutely required for the cell shape and motility. FEMS Microbiol Lett 2010; 309:35-42. [PMID: 20528937 DOI: 10.1111/j.1574-6968.2010.02014.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
RodZ (YfgA) is a membrane protein well conserved among bacterial species and important in the determination of cell shape and motility, although the molecular mechanism involved is not well established. We have characterized a DeltarodZ mutant and show that defective peptidoglycan synthesis might be the primary effect of the deletion. A motile pseudorevertant of DeltarodZ isolated possessed a near rod-shaped cell morphology, indicating that RodZ is not absolutely required for the elongation of the lateral cell wall and the synthesis of functional flagella.
Collapse
Affiliation(s)
- Emma Tabe Eko Niba
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | | | | | | |
Collapse
|
3
|
Bai X, Hogenhout SA. A genome sequence survey of the mollicute corn stunt spiroplasma Spiroplasma kunkelii. FEMS Microbiol Lett 2002; 210:7-17. [PMID: 12023071 DOI: 10.1111/j.1574-6968.2002.tb11153.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The mollicute corn stunt spiroplasma (Spiroplasma kunkelii) is a leafhopper-transmitted pathogen of maize. Sequencing of the approximately 1.6-Mb genome of S. kunkelii was initiated to aid understanding the genetic basis of spiroplasma interactions with their plant and leafhopper hosts. In total, 144712 nucleotides of non-redundant, high-quality S. kunkelii genome sequence were obtained. Sequence tags were searched against the Mycoplasmataceae and Bacillus/Clostridium databases. Results showed that, in addition to spiroplasma phage SpV1 DNA insertions, spiroplasma genomes harbor more purine and amino acid biosynthesis, transcription regulation, cell envelope and DNA transport/binding genes than Mycoplasmataceae genomes. This investigation demonstrates that survey sequencing is an efficient procedure for gene discovery and genome characterization. The results of the S. kunkelii sequencing project are available at the Spiroplasma WebPage at http://www.oardc.ohio-state.edu/spiroplasma/genome.htm.
Collapse
Affiliation(s)
- Xiaodong Bai
- Department of Entomology, Ohio Agricultural Research and Development Center (OARDC), Ohio State University, Wooster 44691, USA
| | | |
Collapse
|
4
|
Altincicek B, Kollas AK, Sanderbrand S, Wiesner J, Hintz M, Beck E, Jomaa H. GcpE is involved in the 2-C-methyl-D-erythritol 4-phosphate pathway of isoprenoid biosynthesis in Escherichia coli. J Bacteriol 2001; 183:2411-6. [PMID: 11274098 PMCID: PMC95155 DOI: 10.1128/jb.183.8.2411-2416.2001] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In a variety of organisms, including plants and several eubacteria, isoprenoids are synthesized by the mevalonate-independent 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. Although different enzymes of this pathway have been described, the terminal biosynthetic steps of the MEP pathway have not been fully elucidated. In this work, we demonstrate that the gcpE gene of Escherichia coli is involved in this pathway. E. coli cells were genetically engineered to utilize exogenously provided mevalonate for isoprenoid biosynthesis by the mevalonate pathway. These cells were then deleted for the essential gcpE gene and were viable only if the medium was supplemented with mevalonate or the cells were complemented with an episomal copy of gcpE.
Collapse
Affiliation(s)
- B Altincicek
- Institute of Biochemistry, Academic Hospital Centre, Justus Liebig University, D-35392 Giessen, Germany.
| | | | | | | | | | | | | |
Collapse
|
5
|
Campos N, Rodríguez-Concepción M, Seemann M, Rohmer M, Boronat A. Identification of gcpE as a novel gene of the 2-C-methyl-D-erythritol 4-phosphate pathway for isoprenoid biosynthesis in Escherichia coli. FEBS Lett 2001; 488:170-3. [PMID: 11163766 DOI: 10.1016/s0014-5793(00)02420-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis is essential in most eubacteria and plants and has remarkable biotechnological interest. However, only the first steps of this pathway have been determined. Using bioinformatic and genetic approaches, we have identified gcpE as a novel gene of the MEP pathway. The distribution of this gene in bacteria and plants strictly parallels that of the gene encoding 1-deoxy-D-xylulose 5-phosphate reductoisomerase, which catalyses the first committed step of the MEP pathway. Our data demonstrate that the gcpE gene is essential for the MEP pathway in Escherichia coli and indicate that this gene is required for the trunk line of the isoprenoid biosynthetic route.
Collapse
Affiliation(s)
- N Campos
- Department de Bioquímica i Biologia Molecular, Universitat de Barcelona, Spain
| | | | | | | | | |
Collapse
|
6
|
Ishikawa J, Sunada A, Oyama R, Hotta K. Identification and characterization of the point mutation which affects the transcription level of the chromosomal 3-N-acetyltransferase gene of Streptomyces griseus SS-1198. Antimicrob Agents Chemother 2000; 44:437-40. [PMID: 10639379 PMCID: PMC89700 DOI: 10.1128/aac.44.2.437-440.2000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We determined the molecular basis for the enhanced expression of the aac(3)-Xa gene encoding an aminoglycoside 3-N-acetyltransferase in Streptomyces griseus. A C-->T substitution was identified at the putative promoter of the mutant gene. RNA analyses demonstrated that the substitution caused a marked increase in the production of the gene-specific transcripts. Therefore, it seemed very likely that the aac(3)-Xa gene was activated by the substitution resulting in the emergence of a stronger promoter.
Collapse
Affiliation(s)
- J Ishikawa
- Department of Bioactive Molecules, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.
| | | | | | | |
Collapse
|
7
|
Bush K, Miller GH. Bacterial enzymatic resistance: beta-lactamases and aminoglycoside-modifying enzymes. Curr Opin Microbiol 1998; 1:509-15. [PMID: 10066532 DOI: 10.1016/s1369-5274(98)80082-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Numerous novel beta-lactamases and aminoglycoside-modifying enzymes with altered substrate profiles continue to be identified. Plasmid-mediated transmission of many of these enzymes readily occurs due to inclusion of the encoding genes in mobile gene cassettes. Recent crystallographic determinations of the structures of metallo-beta-lactamases and aminoglycoside-modifying enzymes provide the opportunity for the rational design of inhibitors.
Collapse
Affiliation(s)
- K Bush
- RW Johnson Pharmaceutical Research Institute, 1000 Route 202, Raritan NJ 08869, USA.
| | | |
Collapse
|
8
|
Rather PN, Paradise MR, Parojcic MM, Patel S. A regulatory cascade involving AarG, a putative sensor kinase, controls the expression of the 2'-N-acetyltransferase and an intrinsic multiple antibiotic resistance (Mar) response in Providencia stuartii. Mol Microbiol 1998; 28:1345-53. [PMID: 9680222 DOI: 10.1046/j.1365-2958.1998.00900.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A recessive mutation, aarG1, has been identified that resulted in an 18-fold increase in the expression of beta-galactosidase from an aac(2')-lacZ fusion. Transcriptional fusions and Northern blot analysis demonstrated that the aarG1 allele also resulted in a large increase in the expression of aarP, a gene encoding a transcriptional activator of aac(2')-Ia. The effects of aarG1 on aac(2')-Ia expression were mediated by aarP-dependent and -independent mechanisms. The aarG1 allele also resulted in a multiple antibiotic resistance (Mar) phenotype, which included increased chloramphenicol, tetracycline and fluoroquinolone resistance. This Mar phenotype also resulted from aarP-dependent and -independent mechanisms. Sequence analysis of the aarG locus revealed the presence of two open reading frames, designated aarR and aarG, organized in tandem. The putative AarR protein displayed 75% amino acid identity to the response regulator PhoP, and the AarG protein displayed 57% amino acid identity to the sensor kinase PhoQ. The aarG1 mutation, a C to T substitution, resulted in a threonine to isoleucine substitution at position 279 (T279I) in the putative sensor kinase. The AarG product was functionally similar to PhoQ, as it was able to restore wild-type levels of maganin resistance to a Salmonella typhimurium phoQ mutant. However, expression of the aarP and aac(2')-Ia genes was not significantly affected by the levels of Mg2+ or Ca2+, suggesting that aarG senses a signal other than divalent cations.
Collapse
Affiliation(s)
- P N Rather
- Veterans Affairs Medical Center and Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | | | | | | |
Collapse
|
9
|
Paradise MR, Cook G, Poole RK, Rather PN. Mutations in aarE, the ubiA homolog of Providencia stuartii, result in high-level aminoglycoside resistance and reduced expression of the chromosomal aminoglycoside 2'-N-acetyltransferase. Antimicrob Agents Chemother 1998; 42:959-62. [PMID: 9559821 PMCID: PMC105580 DOI: 10.1128/aac.42.4.959] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The aarE1 allele was identified on the basis of the resulting phenotype of increased aminoglycoside resistance. The aarE1 mutation also resulted in a small-colony phenotype and decreased levels of aac(2')-Ia mRNA. The deduced AarE gene product displayed 61% amino acid identity to the Escherichia coli UbiA protein, an octaprenyltransferase required for the second step of ubiquinone biosynthesis. Complementation experiments in both Providencia stuartii and E. coli demonstrated that aarE and ubiA are functionally equivalent.
Collapse
Affiliation(s)
- M R Paradise
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
10
|
|
11
|
Macinga DR, Cook GM, Poole RK, Rather PN. Identification and characterization of aarF, a locus required for production of ubiquinone in Providencia stuartii and Escherichia coli and for expression of 2'-N-acetyltransferase in P. stuartii. J Bacteriol 1998; 180:128-35. [PMID: 9422602 PMCID: PMC106858 DOI: 10.1128/jb.180.1.128-135.1998] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Providencia stuartii contains a chromosomal 2'-N-acetyltransferase [AAC(2')-Ia] involved in the O acetylation of peptidoglycan. The AAC(2')-Ia enzyme is also capable of acetylating and inactivating certain aminoglycosides and confers high-level resistance to these antibiotics when overexpressed. We report the identification of a locus in P. stuartii, designated aarF, that is required for the expression of AAC(2')-Ia. Northern (RNA) analysis demonstrated that aac(2')-Ia mRNA levels were dramatically decreased in a P. stuartii strain carrying an aarF::Cm disruption. The aarF::Cm disruption also resulted in a deficiency in the respiratory cofactor ubiquinone. The aarF locus encoded a protein that had a predicted molecular mass of 62,559 Da and that exhibited extensive amino acid similarity to the products of two adjacent open reading frames of unknown function (YigQ and YigR), located at 86 min on the Escherichia coli chromosome. An E. coli yigR::Kan mutant was also deficient in ubiquinone content. Complementation studies demonstrated that the aarF and the E. coli yigQR loci were functionally equivalent. The aarF or yigQR genes were unable to complement ubiD and ubiE mutations that are also present at 86 min on the E. coli chromosome. This result indicates that aarF (yigQR) represents a novel locus for ubiquinone production and reveals a previously unreported connection between ubiquinone biosynthesis and the regulation of gene expression.
Collapse
Affiliation(s)
- D R Macinga
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
12
|
Rather PN, Parojcic MM, Paradise MR. An extracellular factor regulating expression of the chromosomal aminoglycoside 2'-N-acetyltransferase of Providencia stuartii. Antimicrob Agents Chemother 1997; 41:1749-54. [PMID: 9257754 PMCID: PMC163998 DOI: 10.1128/aac.41.8.1749] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The chromosomal aac(2')-Ia gene in Providencia stuartii encodes a housekeeping 2'-N-acetyltransferase [AAC(2')-Ia] involved in the acetylation of peptidoglycan. In addition, the AAC(2')-Ia enzyme also acetylates and confers resistance to the clinically important aminoglycoside antibiotics gentamicin, tobramycin, and netilmicin. Expression of the aac(2')-Ia gene was found to be strongly influenced by cell density, with a sharp decrease in aac(2')-Ia mRNA accumulation as cells approached stationary phase. This decrease was mediated by the accumulation of an extracellular factor, designated AR (for acetyltransferase repressing)-factor. AR-factor was produced in both minimal and rich media and acted in a manner that was strongly dose dependent. The activity of AR-factor was also pH dependent, with optimal activity at pH 8.0 and above. Biochemical characterization of conditioned media from P. stuartii has shown that AR-factor is between 500 and 1,000 Da in molecular size and is heat stable. In addition, AR-factor was inactivated by a variety of proteases, suggesting that it may be a small peptide.
Collapse
Affiliation(s)
- P N Rather
- Department of Medicine, Case Western Reserve University School of Medicine, Veterans Affairs Medical Center, Cleveland, Ohio 44106, USA.
| | | | | |
Collapse
|