1
|
Wang X, Han Q, Yu Q, Wang S, Yang J, Su W, Wan-Yan R, Sun X, Li H. Mammalian carcass decay increases carbon storage and temporal turnover of carbon-fixing microbes in alpine meadow soil. ENVIRONMENTAL RESEARCH 2023; 225:115653. [PMID: 36898422 DOI: 10.1016/j.envres.2023.115653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/20/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Corpse decomposition is of great significance to the carbon cycle of natural ecosystem. Carbon fixation is a carbon conversion process that converts carbon dioxide into organic carbon, which greatly contributes to carbon emission reduction. However, the effects of wild animal carcass decay on carbon-fixing microbes in grassland soil environment are still unknown. In this research, thirty wild mammal (Ochotona curzoniae) corpses were placed on alpine meadow soil to study the carbon storage and carbon-fixing microbiota succession for a 94-day decomposition using next-generation sequencing. Our results revealed that 1) the concentration of total carbon increased approximately 2.24-11.22% in the corpse group. 2) Several carbon-fixing bacterial species (Calothrix parietina, Ancylobacter rudongensis, Rhodopseudomonas palustris) may predict the concentration of total carbon. 3) Animal cadaver degradation caused the differentiation of carbon-fixing microbiota structures during succession and made the medium-stage networks of carbon-fixing microbes more complicated. 4) The temporal turnover rate in the experimental groups was higher than that in the control groups, indicating a quick change of gravesoil carbon-fixing microbiota. 5) The deterministic process dominates the assembly mechanism of experimental groups (ranging from 53.42% to 94.94%), which reflects that the carbon-fixing microbial community in gravesoil can be regulated. Under global climate change, this study provides a new perspective for understanding the effects of wild animal carcass decay on soil carbon storage and carbon-fixing microbes.
Collapse
Affiliation(s)
- Xiaochen Wang
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Qian Han
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Qiaoling Yu
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Sijie Wang
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Jiawei Yang
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Wanghong Su
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Ruijun Wan-Yan
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Xiaofang Sun
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Huan Li
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China; State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Synergistic Inorganic Carbon and Denitrification Genes Contributed to Nitrite Accumulation in a Hydrogen-Based Membrane Biofilm Reactor. Bioengineering (Basel) 2022; 9:bioengineering9050222. [PMID: 35621500 PMCID: PMC9137978 DOI: 10.3390/bioengineering9050222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022] Open
Abstract
Partial denitrification, the termination of NO3−-N reduction at nitrite (NO2−-N), has received growing interest for treating wastewaters with high ammonium concentrations, because it can be coupled to anammox for total-nitrogen removal. NO2− accumulation in the hydrogen (H2)-based membrane biofilm reactor (MBfR) has rarely been studied, and the mechanisms behind its accumulation have not been defined. This study aimed at achieving the partial denitrification with H2-based autotrophic reducing bacteria in a MBfR. Results showed that by increasing the NO3− loading, increasing the pH, and decreasing the inorganic-carbon concentration, a nitrite transformation rate higher than 68% was achieved. Community analysis indicated that Thauera and Azoarcus became the dominant genera when partial denitrification was occurring. Functional genes abundances proved that partial denitrification to accumulate NO2− was correlated to increases of gene for the form I RuBisCo enzyme (cbbL). This study confirmed the feasibility of autotrophic partial denitrification formed in the MBfR, and revealed the inorganic carbon mechanism in MBfR denitrification.
Collapse
|
3
|
Abstract
Carboxysomes are anabolic bacterial microcompartments that play an essential role in carbon fixation in cyanobacteria and some chemoautotrophs. This self-assembling organelle encapsulates the key CO2-fixing enzymes, Rubisco, and carbonic anhydrase using a polyhedral protein shell that is constructed by hundreds of shell protein paralogs. The α-carboxysome from the chemoautotroph Halothiobacillus neapolitanus serves as a model system in fundamental studies and synthetic engineering of carboxysomes. In this study, we adopted a QconCAT-based quantitative mass spectrometry approach to determine the stoichiometric composition of native α-carboxysomes from H. neapolitanus. We further performed an in-depth comparison of the protein stoichiometry of native α-carboxysomes and their recombinant counterparts heterologously generated in Escherichia coli to evaluate the structural variability and remodeling of α-carboxysomes. Our results provide insight into the molecular principles that mediate carboxysome assembly, which may aid in rational design and reprogramming of carboxysomes in new contexts for biotechnological applications. IMPORTANCE A wide range of bacteria use special protein-based organelles, termed bacterial microcompartments, to encase enzymes and reactions to increase the efficiency of biological processes. As a model bacterial microcompartment, the carboxysome contains a protein shell filled with the primary carbon fixation enzyme Rubisco. The self-assembling organelle is generated by hundreds of proteins and plays important roles in converting carbon dioxide to sugar, a process known as carbon fixation. In this study, we uncovered the exact stoichiometry of all building components and the structural plasticity of the functional α-carboxysome, using newly developed quantitative mass spectrometry together with biochemistry, electron microscopy, and enzymatic assay. The study advances our understanding of the architecture and modularity of natural carboxysomes. The knowledge learned from natural carboxysomes will suggest feasible ways to produce functional carboxysomes in other hosts, such as crop plants, with the overwhelming goal of boosting cell metabolism and crop yields.
Collapse
|
4
|
Yang F, Zhang J, Cai Z, Zhou J, Li Y. Exploring the oxygenase function of Form II Rubisco for production of glycolate from CO 2. AMB Express 2021; 11:65. [PMID: 33963929 PMCID: PMC8106553 DOI: 10.1186/s13568-021-01224-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
The oxygenase activity of Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) converts ribulose-1,5-bisphosphate (RuBP) into 2-phosphoglycolate, which in turn channels into photorespiration, resulting in carbon and energy loss in higher plants. We observed that glycolate can be accumulated extracellularly when two genes encoding the glycolate dehydrogenase of cyanobacteria Synechocystis sp. PCC 6803 were inactivated. This inspired us to explore the oxygenase function of Rubisco for production of glycolate, an important industrial chemical, from CO2 by engineered cyanobacteria. Since the oxygenase activity of Rubisco is generally low in CO2-rich carboxysome of cyanobacteria, we introduced Form II Rubisco, which cannot be assembled in carboxysome, into the cytoplasm of cyanobacteria. Heterologous expression of a Form II Rubisco from endosymbiont of tubeworm Riftia pachyptila (RPE Rubisco) significantly increased glycolate production. We show that the RPE Rubisco is expressed in the cytoplasm. Glycolate production increased upon addition of NaHCO3 but decreased upon supplying CO2. The titer of glycolate reached 2.8 g/L in 18 days, a 14-fold increase compared with the initial strain with glycolate dehydrogenase inactivated. This is also the highest glycolate titer biotechnologically produced from CO2 ever reported. Photosynthetic production of glycolate demonstrated the oxygenase activity of Form II Rubisco can be explored for production of chemicals from CO2.
Collapse
|
5
|
Flamholz AI, Dugan E, Blikstad C, Gleizer S, Ben-Nissan R, Amram S, Antonovsky N, Ravishankar S, Noor E, Bar-Even A, Milo R, Savage DF. Functional reconstitution of a bacterial CO 2 concentrating mechanism in Escherichia coli. eLife 2020; 9:59882. [PMID: 33084575 PMCID: PMC7714395 DOI: 10.7554/elife.59882] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
Many photosynthetic organisms employ a CO2 concentrating mechanism (CCM) to increase the rate of CO2 fixation via the Calvin cycle. CCMs catalyze ≈50% of global photosynthesis, yet it remains unclear which genes and proteins are required to produce this complex adaptation. We describe the construction of a functional CCM in a non-native host, achieved by expressing genes from an autotrophic bacterium in an Escherichia coli strain engineered to depend on rubisco carboxylation for growth. Expression of 20 CCM genes enabled E. coli to grow by fixing CO2 from ambient air into biomass, with growth in ambient air depending on the components of the CCM. Bacterial CCMs are therefore genetically compact and readily transplanted, rationalizing their presence in diverse bacteria. Reconstitution enabled genetic experiments refining our understanding of the CCM, thereby laying the groundwork for deeper study and engineering of the cell biology supporting CO2 assimilation in diverse organisms.
Collapse
Affiliation(s)
- Avi I Flamholz
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Eli Dugan
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Cecilia Blikstad
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Shmuel Gleizer
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Roee Ben-Nissan
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Shira Amram
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Niv Antonovsky
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Sumedha Ravishankar
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Elad Noor
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant PhysiologyPotsdamGermany
| | - Ron Milo
- Department of Plant and Environmental Sciences, Weizmann Institute of ScienceRehovotIsrael
| | - David F Savage
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
6
|
Function of three RuBisCO enzymes under different CO2 conditions in Hydrogenovibrio marinus. J Biosci Bioeng 2018; 126:730-735. [DOI: 10.1016/j.jbiosc.2018.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/03/2018] [Accepted: 06/05/2018] [Indexed: 01/21/2023]
|
7
|
Wang YN, Tsang YF, Wang L, Fu X, Hu J, Li H, Le Y. Inhibitory effect of self-generated extracellular dissolved organic carbon on carbon dioxide fixation in sulfur-oxidizing bacteria during a chemoautotrophic cultivation process and its elimination. BIORESOURCE TECHNOLOGY 2018; 252:44-51. [PMID: 29306128 DOI: 10.1016/j.biortech.2017.12.089] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/26/2017] [Accepted: 12/27/2017] [Indexed: 06/07/2023]
Abstract
The features of extracellular dissolved organic carbon (EDOC) generation in two typical aerobic sulfur-oxidizing bacteria (Thiobacillus thioparus DSM 505 and Halothiobacillus neapolitanus DSM 15147) and its impact on CO2 fixation during chemoautotrophic cultivation process were investigated. The results showed that EDOC accumulated in both strains during CO2 fixation process. Large molecular weight (MW) EDOC derived from cell lysis and decay was dominant during the entire process in DSM 505, whereas small MW EDOC accounted for a large proportion during initial and middle stages of DSM 15147 as its cytoskeleton synthesis rate did not keep up with CO2 assimilation rate. The self-generated EDOC feedback repressed cbb gene transcription and thus decreased total bacterial cell number and CO2 fixation yield in both strains, but DSM 505 was more sensitive to this inhibition effect. Moreover, the membrane bioreactor effectively decreased the EDOC/TOC ratio and improved carbon fixation yield of DSM 505.
Collapse
Affiliation(s)
- Ya-Nan Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; College of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories, Hong Kong Special Administrative Region, China
| | - Lei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Research Institute for Shanghai Pollution Control and Ecological Security, 200092, China.
| | - Xiaohua Fu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Research Institute for Shanghai Pollution Control and Ecological Security, 200092, China
| | - Jiajun Hu
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Huan Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Research Institute for Shanghai Pollution Control and Ecological Security, 200092, China
| | - Yiquan Le
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Research Institute for Shanghai Pollution Control and Ecological Security, 200092, China
| |
Collapse
|
8
|
Fang Y, Huang F, Faulkner M, Jiang Q, Dykes GF, Yang M, Liu LN. Engineering and Modulating Functional Cyanobacterial CO 2-Fixing Organelles. FRONTIERS IN PLANT SCIENCE 2018; 9:739. [PMID: 29922315 PMCID: PMC5996877 DOI: 10.3389/fpls.2018.00739] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/15/2018] [Indexed: 05/12/2023]
Abstract
Bacterial microcompartments (BMCs) are proteinaceous organelles widespread among bacterial phyla and provide a means for compartmentalizing specific metabolic pathways. They sequester catalytic enzymes from the cytoplasm, using an icosahedral proteinaceous shell with selective permeability to metabolic molecules and substrates, to enhance metabolic efficiency. Carboxysomes were the first BMCs discovered and their unprecedented capacity of CO2 fixation allows cyanobacteria to make a significant contribution to global carbon fixation. There is an increasing interest in utilizing synthetic biology to construct synthetic carboxysomes in new hosts, i.e., higher plants, to enhance carbon fixation and productivity. Here, we report the construction of a synthetic operon of the β-carboxysome from the cyanobacterium Synechococcus elongatus PCC7942 to generate functional β-carboxysome-like structures in Escherichia coli. The protein expression, structure, assembly, and activity of synthetic β-carboxysomes were characterized in depth using confocal, electron and atomic force microscopy, proteomics, immunoblot analysis, and enzymatic assays. Furthermore, we examined the in vivo interchangeability of β-carboxysome building blocks with other BMC components. To our knowledge, this is the first production of functional β-carboxysome-like structures in heterologous organisms. It provides important information for the engineering of fully functional carboxysomes and CO2-fixing modules in higher plants. The study strengthens our synthetic biology toolbox for generating BMC-based organelles with tunable activities and new scaffolding biomaterials for metabolic improvement and molecule delivery.
Collapse
|
9
|
Baumgart M, Huber I, Abdollahzadeh I, Gensch T, Frunzke J. Heterologous expression of the Halothiobacillus neapolitanus carboxysomal gene cluster in Corynebacterium glutamicum. J Biotechnol 2017; 258:126-135. [DOI: 10.1016/j.jbiotec.2017.03.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/16/2017] [Accepted: 03/18/2017] [Indexed: 12/20/2022]
|
10
|
Faulkner M, Rodriguez-Ramos J, Dykes GF, Owen SV, Casella S, Simpson DM, Beynon RJ, Liu LN. Direct characterization of the native structure and mechanics of cyanobacterial carboxysomes. NANOSCALE 2017; 9:10662-10673. [PMID: 28616951 PMCID: PMC5708340 DOI: 10.1039/c7nr02524f] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Carboxysomes are proteinaceous organelles that play essential roles in enhancing carbon fixation in cyanobacteria and some proteobacteria. These self-assembling organelles encapsulate Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) and carbonic anhydrase using a protein shell structurally resembling an icosahedral viral capsid. The protein shell serves as a physical barrier to protect enzymes from the cytosol and a selectively permeable membrane to mediate transport of enzyme substrates and products. The structural and mechanical nature of native carboxysomes remain unclear. Here, we isolate functional β-carboxysomes from the cyanobacterium Synechococcus elongatus PCC7942 and perform the first characterization of the macromolecular architecture and inherent physical mechanics of single β-carboxysomes using electron microscopy, atomic force microscopy (AFM) and proteomics. Our results illustrate that the intact β-carboxysome comprises three structural domains, a single-layered icosahedral shell, an inner layer and paracrystalline arrays of interior Rubisco. We also observe the protein organization of the shell and partial β-carboxysomes that likely serve as the β-carboxysome assembly intermediates. Furthermore, the topography and intrinsic mechanics of functional β-carboxysomes are determined in native conditions using AFM and AFM-based nanoindentation, revealing the flexible organization and soft mechanical properties of β-carboxysomes compared to rigid viruses. Our study provides new insights into the natural characteristics of β-carboxysome organization and nanomechanics, which can be extended to diverse bacterial microcompartments and are important considerations for the design and engineering of functional carboxysomes in other organisms to supercharge photosynthesis. It offers an approach for inspecting the structural and mechanical features of synthetic metabolic organelles and protein scaffolds in bioengineering.
Collapse
Affiliation(s)
- Matthew Faulkner
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | | | - Gregory F Dykes
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Siân V Owen
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Selene Casella
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Deborah M Simpson
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Robert J Beynon
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| | - Lu-Ning Liu
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| |
Collapse
|
11
|
Response of cbb gene transcription levels of four typical sulfur-oxidizing bacteria to the CO 2 concentration and its effect on their carbon fixation efficiency during sulfur oxidation. Enzyme Microb Technol 2016; 92:31-40. [DOI: 10.1016/j.enzmictec.2016.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/20/2016] [Accepted: 06/23/2016] [Indexed: 12/26/2022]
|
12
|
Kerfeld CA, Melnicki MR. Assembly, function and evolution of cyanobacterial carboxysomes. CURRENT OPINION IN PLANT BIOLOGY 2016; 31:66-75. [PMID: 27060669 DOI: 10.1016/j.pbi.2016.03.009] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 05/19/2023]
Abstract
All cyanobacteria contain carboxysomes, RuBisCO-encapsulating bacterial microcompartments that function as prokaryotic organelles. The two carboxysome types, alpha and beta, differ fundamentally in components, assembly, and species distribution. Alpha carboxysomes share a highly-conserved gene organization, with evidence of horizontal gene transfer from chemoautotrophic proteobacteria to the picocyanobacteria, and seem to co-assemble shells concomitantly with aggregation of cargo enzymes. In contrast, beta carboxysomes assemble an enzymatic core first, with an encapsulation peptide playing a critical role in formation of the surrounding shell. Based on similarities in assembly, and phylogenetic analysis of the pentameric shell protein conserved across all bacterial microcompartments, beta carboxysomes appear to be more closely related to the microcompartments of heterotrophic bacteria (metabolosomes) than to alpha carboxysomes, which appear deeply divergent. Beta carboxysomes can be found in the basal cyanobacterial clades that diverged before the ancestor of the chloroplast and have recently been shown to be able to encapsulate functional RuBisCO enzymes resurrected from ancestrally-reconstructed sequences, consistent with an ancient origin. Alpha and beta carboxysomes are not only distinct units of evolution, but are now emerging as genetic/metabolic modules for synthetic biology; heterologous expression and redesign of both the shell and the enzymatic core have recently been achieved.
Collapse
Affiliation(s)
- Cheryl A Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Matthew R Melnicki
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
13
|
Structural Characterization of a Newly Identified Component of α-Carboxysomes: The AAA+ Domain Protein CsoCbbQ. Sci Rep 2015; 5:16243. [PMID: 26538283 PMCID: PMC4633670 DOI: 10.1038/srep16243] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/12/2015] [Indexed: 12/17/2022] Open
Abstract
Carboxysomes are bacterial microcompartments that enhance carbon fixation by concentrating ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and its substrate CO2 within a proteinaceous shell. They are found in all cyanobacteria, some purple photoautotrophs and many chemoautotrophic bacteria. Carboxysomes consist of a protein shell that encapsulates several hundred molecules of RuBisCO, and contain carbonic anhydrase and other accessory proteins. Genes coding for carboxysome shell components and the encapsulated proteins are typically found together in an operon. The α-carboxysome operon is embedded in a cluster of additional, conserved genes that are presumably related to its function. In many chemoautotrophs, products of the expanded carboxysome locus include CbbO and CbbQ, a member of the AAA+ domain superfamily. We bioinformatically identified subtypes of CbbQ proteins and show that their genes frequently co-occur with both Form IA and Form II RuBisCO. The α-carboxysome-associated ortholog, CsoCbbQ, from Halothiobacillus neapolitanus forms a hexamer in solution and hydrolyzes ATP. The crystal structure shows that CsoCbbQ is a hexamer of the typical AAA+ domain; the additional C-terminal domain, diagnostic of the CbbQ subfamily, structurally fills the inter-monomer gaps, resulting in a distinctly hexagonal shape. We show that CsoCbbQ interacts with CsoCbbO and is a component of the carboxysome shell, the first example of ATPase activity associated with a bacterial microcompartment.
Collapse
|
14
|
Cai F, Dou Z, Bernstein SL, Leverenz R, Williams EB, Heinhorst S, Shively J, Cannon GC, Kerfeld CA. Advances in Understanding Carboxysome Assembly in Prochlorococcus and Synechococcus Implicate CsoS2 as a Critical Component. Life (Basel) 2015; 5:1141-71. [PMID: 25826651 PMCID: PMC4499774 DOI: 10.3390/life5021141] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/09/2015] [Accepted: 03/16/2015] [Indexed: 11/16/2022] Open
Abstract
The marine Synechococcus and Prochlorococcus are the numerically dominant cyanobacteria in the ocean and important in global carbon fixation. They have evolved a CO2-concentrating-mechanism, of which the central component is the carboxysome, a self-assembling proteinaceous organelle. Two types of carboxysome, α and β, encapsulating form IA and form IB d-ribulose-1,5-bisphosphate carboxylase/oxygenase, respectively, differ in gene organization and associated proteins. In contrast to the β-carboxysome, the assembly process of the α-carboxysome is enigmatic. Moreover, an absolutely conserved α-carboxysome protein, CsoS2, is of unknown function and has proven recalcitrant to crystallization. Here, we present studies on the CsoS2 protein in three model organisms and show that CsoS2 is vital for α-carboxysome biogenesis. The primary structure of CsoS2 appears tripartite, composed of an N-terminal, middle (M)-, and C-terminal region. Repetitive motifs can be identified in the N- and M-regions. Multiple lines of evidence suggest CsoS2 is highly flexible, possibly an intrinsically disordered protein. Based on our results from bioinformatic, biophysical, genetic and biochemical approaches, including peptide array scanning for protein-protein interactions, we propose a model for CsoS2 function and its spatial location in the α-carboxysome. Analogies between the pathway for β-carboxysome biogenesis and our model for α-carboxysome assembly are discussed.
Collapse
Affiliation(s)
- Fei Cai
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Zhicheng Dou
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, MS 39406-5043, USA.
| | - Susan L Bernstein
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Ryan Leverenz
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA.
| | - Eric B Williams
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, MS 39406-5043, USA.
| | - Sabine Heinhorst
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, MS 39406-5043, USA.
| | - Jessup Shively
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA.
| | - Gordon C Cannon
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, MS 39406-5043, USA.
| | - Cheryl A Kerfeld
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
15
|
Bacterial microcompartments and the modular construction of microbial metabolism. Trends Microbiol 2015; 23:22-34. [DOI: 10.1016/j.tim.2014.10.003] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/07/2014] [Accepted: 10/08/2014] [Indexed: 01/22/2023]
|
16
|
Rae BD, Long BM, Badger MR, Price GD. Functions, compositions, and evolution of the two types of carboxysomes: polyhedral microcompartments that facilitate CO2 fixation in cyanobacteria and some proteobacteria. Microbiol Mol Biol Rev 2013; 77:357-79. [PMID: 24006469 PMCID: PMC3811607 DOI: 10.1128/mmbr.00061-12] [Citation(s) in RCA: 275] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyanobacteria are the globally dominant photoautotrophic lineage. Their success is dependent on a set of adaptations collectively termed the CO2-concentrating mechanism (CCM). The purpose of the CCM is to support effective CO2 fixation by enhancing the chemical conditions in the vicinity of the primary CO2-fixing enzyme, D-ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO), to promote the carboxylase reaction and suppress the oxygenase reaction. In cyanobacteria and some proteobacteria, this is achieved by encapsulation of RubisCO within carboxysomes, which are examples of a group of proteinaceous bodies called bacterial microcompartments. Carboxysomes encapsulate the CO2-fixing enzyme within the selectively permeable protein shell and simultaneously encapsulate a carbonic anhydrase enzyme for CO2 supply from a cytoplasmic bicarbonate pool. These bodies appear to have arisen twice and undergone a process of convergent evolution. While the gross structures of all known carboxysomes are ostensibly very similar, with shared gross features such as a selectively permeable shell layer, each type of carboxysome encapsulates a phyletically distinct form of RubisCO enzyme. Furthermore, the specific proteins forming structures such as the protein shell or the inner RubisCO matrix are not identical between carboxysome types. Each type has evolutionarily distinct forms of the same proteins, as well as proteins that are entirely unrelated to one another. In light of recent developments in the study of carboxysome structure and function, we present this review to summarize the knowledge of the structure and function of both types of carboxysome. We also endeavor to cast light on differing evolutionary trajectories which may have led to the differences observed in extant carboxysomes.
Collapse
Affiliation(s)
- Benjamin D Rae
- Division of Plant Science, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | | | | | | |
Collapse
|
17
|
Kellermann C, Selesi D, Lee N, Hügler M, Esperschütz J, Hartmann A, Griebler C. Microbial CO2 fixation potential in a tar-oil-contaminated porous aquifer. FEMS Microbiol Ecol 2012; 81:172-87. [DOI: 10.1111/j.1574-6941.2012.01359.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 03/05/2012] [Accepted: 03/06/2012] [Indexed: 02/04/2023] Open
Affiliation(s)
- Claudia Kellermann
- Institute of Groundwater Ecology; Helmholtz Zentrum München; German Research Center for Environmental Health (GmbH); Neuherberg; Germany
| | - Draženka Selesi
- Institute of Groundwater Ecology; Helmholtz Zentrum München; German Research Center for Environmental Health (GmbH); Neuherberg; Germany
| | - Natuschka Lee
- Lehrstuhl für Mikrobiologie; Technische Universität München; Munich; Germany
| | - Michael Hügler
- DVGW - Technologiezentrum Wasser (TZW); Karlsruhe; Germany
| | - Jürgen Esperschütz
- Research Unit Environmental Genomics; Helmholtz Zentrum München; German Research Center for Environmental Health (GmbH); Neuherberg; Germany
| | - Anton Hartmann
- Research Unit Microbe-Plant Interactions; Helmholtz Zentrum München; German Research Center for Environmental Health (GmbH); Neuherberg; Germany
| | - Christian Griebler
- Institute of Groundwater Ecology; Helmholtz Zentrum München; German Research Center for Environmental Health (GmbH); Neuherberg; Germany
| |
Collapse
|
18
|
Beller HR, Legler TC, Kane SR. Genetic manipulation of the obligate chemolithoautotrophic bacterium Thiobacillus denitrificans. Methods Mol Biol 2012; 881:99-136. [PMID: 22639212 DOI: 10.1007/978-1-61779-827-6_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Chemolithoautotrophic bacteria can be of industrial and environmental importance, but they present a challenge for systems biology studies, as their central metabolism deviates from that of model organisms and there is a much less extensive experimental basis for their gene annotation than for typical organoheterotrophs. For microbes with sequenced genomes but unconventional metabolism, the ability to create knockout mutations can be a powerful tool for functional genomics and thereby render an organism more amenable to systems biology approaches. In this chapter, we describe a genetic system for Thiobacillus denitrificans, with which insertion mutations can be introduced by homologous recombination and complemented in trans. Insertion mutations are generated by in vitro transposition, the mutated genes are amplified by the PCR, and the amplicons are introduced into T. denitrificans by electroporation. Use of a complementation vector, pTL2, based on the IncP plasmid pRR10 is also addressed.
Collapse
Affiliation(s)
- Harry R Beller
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | | | | |
Collapse
|
19
|
Crépeau V, Cambon Bonavita MA, Lesongeur F, Randrianalivelo H, Sarradin PM, Sarrazin J, Godfroy A. Diversity and function in microbial mats from the Lucky Strike hydrothermal vent field. FEMS Microbiol Ecol 2011; 76:524-40. [DOI: 10.1111/j.1574-6941.2011.01070.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
20
|
Abstract
Bacterial microcompartments (BMCs) are organelles composed entirely of protein. They promote specific metabolic processes by encapsulating and colocalizing enzymes with their substrates and cofactors, by protecting vulnerable enzymes in a defined microenvironment, and by sequestering toxic or volatile intermediates. Prototypes of the BMCs are the carboxysomes of autotrophic bacteria. However, structures of similar polyhedral shape are being discovered in an ever-increasing number of heterotrophic bacteria, where they participate in the utilization of specialty carbon and energy sources. Comparative genomics reveals that the potential for this type of compartmentalization is widespread across bacterial phyla and suggests that genetic modules encoding BMCs are frequently laterally transferred among bacteria. The diverse functions of these BMCs suggest that they contribute to metabolic innovation in bacteria in a broad range of environments.
Collapse
Affiliation(s)
- Cheryl A Kerfeld
- U.S. Department of Energy-Joint Genome Institute, Walnut Creek, California 94598, USA.
| | | | | |
Collapse
|
21
|
Tourova TP, Kovaleva OL, Sorokin DY, Muyzer G. Ribulose-1,5-bisphosphate carboxylase/oxygenase genes as a functional marker for chemolithoautotrophic halophilic sulfur-oxidizing bacteria in hypersaline habitats. Microbiology (Reading) 2010; 156:2016-2025. [PMID: 20299400 DOI: 10.1099/mic.0.034603-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The presence and diversity of the cbb genes encoding the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) (a key enzyme of the Calvin–Benson cycle of autotrophic CO2 assimilation) were investigated in pure cultures of seven genera of halophilic chemolithoautotrophic sulfur-oxidizing bacteria (SOB) and in sediments from a hypersaline lake in which such bacteria have been recently discovered. All of the halophilic SOB strains (with the exception of Thiohalomonas nitratireducens) possessed the cbbL gene encoding RuBisCO form I, while the cbbM gene encoding RuBisCO form II was detected only in some of the pure cultures. The general topologies of the CbbL/CbbM trees and the 16S rRNA gene tree were different, but both markers showed that the halophilic SOB genera formed independent lineages in the Gammaproteobacteria. In some cases, such as with several strains of the genus Thiohalospira and with Thioalkalibacter halophilus, the cbbL clustering was incongruent with the positions of these strains on the ribosomal tree. In the cbbM tree, the clustering of Thiohalospira and Thiohalorhabdus strains was incongruent with their branching in both cbbL and 16S rRNA gene trees. cbbL and cbbM genes related to those found in the analysed halophilic SOB were also detected in a sediment from a hypersaline lake in Kulunda Steppe (Russia). Most of the cbbL and cbbM genes belonged to members of the genus Thiohalorhabdus. In the cbbL clone library, sequences related to those of Halothiobacillus and Thiohalospira were detected as minor components. Some of the environmental cbbM sequences belonged to as yet unknown phylotypes, representing deep lineages of halophilic autotrophs.
Collapse
Affiliation(s)
- Tatjana P. Tourova
- Institute of Microbiology, Russian Academy of Sciences, p-t 60-letiya Oktyabrya, 7/2, Moscow, Russia
| | - Olga L. Kovaleva
- Department of Microbiology, Moscow State University, Moscow, Russia
| | - Dimitry Yu. Sorokin
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
- Institute of Microbiology, Russian Academy of Sciences, p-t 60-letiya Oktyabrya, 7/2, Moscow, Russia
| | - Gerard Muyzer
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
22
|
Organization, structure, and assembly of alpha-carboxysomes determined by electron cryotomography of intact cells. J Mol Biol 2009; 396:105-17. [PMID: 19925807 DOI: 10.1016/j.jmb.2009.11.019] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 11/06/2009] [Accepted: 11/09/2009] [Indexed: 12/31/2022]
Abstract
Carboxysomes are polyhedral inclusion bodies that play a key role in autotrophic metabolism in many bacteria. Using electron cryotomography, we examined carboxysomes in their native states within intact cells of three chemolithoautotrophic bacteria. We found that carboxysomes generally cluster into distinct groups within the cytoplasm, often in the immediate vicinity of polyphosphate granules, and a regular lattice of density frequently connects granules to nearby carboxysomes. Small granular bodies were also seen within carboxysomes. These observations suggest a functional relationship between carboxysomes and polyphosphate granules. Carboxysomes exhibited greater size, shape, and compositional variability in cells than in purified preparations. Finally, we observed carboxysomes in various stages of assembly, as well as filamentous structures that we attribute to misassembled shell protein. Surprisingly, no more than one partial carboxysome was ever observed per cell. Based on these observations, we propose a model for carboxysome assembly in which the shell and the internal RuBisCO (ribulose-1,5-bisphosphate carboxylase/oxygenase) lattice form simultaneously, likely guided by specific interactions between shell proteins and RuBisCOs.
Collapse
|
23
|
Cai F, Menon BB, Cannon GC, Curry KJ, Shively JM, Heinhorst S. The pentameric vertex proteins are necessary for the icosahedral carboxysome shell to function as a CO2 leakage barrier. PLoS One 2009; 4:e7521. [PMID: 19844578 PMCID: PMC2760150 DOI: 10.1371/journal.pone.0007521] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 10/02/2009] [Indexed: 11/18/2022] Open
Abstract
Background Carboxysomes are polyhedral protein microcompartments found in many autotrophic bacteria; they encapsulate the CO2 fixing enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) within a thin protein shell and provide an environment that enhances the catalytic capabilities of the enzyme. Two types of shell protein constituents are common to carboxysomes and related microcompartments of heterotrophic bacteria, and the genes for these proteins are found in a large variety of bacteria. Methodology/Principal Findings We have created a Halothiobacillus neapolitanus knockout mutant that does not produce the two paralogous CsoS4 proteins thought to occupy the vertices of the icosahedral carboxysomes and related microcompartments. Biochemical and ultrastructural analyses indicated that the mutant predominantly forms carboxysomes of normal appearance, in addition to some elongated microcompartments. Despite their normal shape, purified mutant carboxysomes are functionally impaired, although the activities of the encapsulated enzymes are not negatively affected. Conclusions/Significance In the absence of the CsoS4 proteins the carboxysome shell loses its limited permeability to CO2 and is no longer able to provide the catalytic advantage RubisCO derives from microcompartmentalization. This study presents direct evidence that the diffusion barrier property of the carboxysome shell contributes significantly to the biological function of the carboxysome.
Collapse
Affiliation(s)
- Fei Cai
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - Balaraj B. Menon
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - Gordon C. Cannon
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - Kenneth J. Curry
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - Jessup M. Shively
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Sabine Heinhorst
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
- * E-mail:
| |
Collapse
|
24
|
Tourova TP, Spiridonova EM. Phylogeny and evolution of the ribulose 1,5-bisphosphate carboxylase/oxygenase genes in prokaryotes. Mol Biol 2009. [DOI: 10.1134/s0026893309050033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Menon BB, Dou Z, Heinhorst S, Shively JM, Cannon GC. Halothiobacillus neapolitanus carboxysomes sequester heterologous and chimeric RubisCO species. PLoS One 2008; 3:e3570. [PMID: 18974784 PMCID: PMC2570492 DOI: 10.1371/journal.pone.0003570] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 10/09/2008] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The carboxysome is a bacterial microcompartment that consists of a polyhedral protein shell filled with ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO), the enzyme that catalyzes the first step of CO2 fixation via the Calvin-Benson-Bassham cycle. METHODOLOGY/PRINCIPAL FINDINGS To analyze the role of RubisCO in carboxysome biogenesis in vivo we have created a series of Halothiobacillus neapolitanus RubisCO mutants. We identified the large subunit of the enzyme as an important determinant for its sequestration into alpha-carboxysomes and found that the carboxysomes of H. neapolitanus readily incorporate chimeric and heterologous RubisCO species. Intriguingly, a mutant lacking carboxysomal RubisCO assembles empty carboxysome shells of apparently normal shape and composition. CONCLUSIONS/SIGNIFICANCE These results indicate that carboxysome shell architecture is not determined by the enzyme they normally sequester. Our study provides, for the first time, clear evidence that carboxysome contents can be manipulated and suggests future nanotechnological applications that are based upon engineered protein microcompartments.
Collapse
Affiliation(s)
- Balaraj B. Menon
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - Zhicheng Dou
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - Sabine Heinhorst
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - Jessup M. Shively
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Gordon C. Cannon
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| |
Collapse
|
26
|
Badger MR, Bek EJ. Multiple Rubisco forms in proteobacteria: their functional significance in relation to CO2 acquisition by the CBB cycle. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:1525-41. [PMID: 18245799 DOI: 10.1093/jxb/erm297] [Citation(s) in RCA: 271] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Rubisco is the predominant enzymatic mechanism in the biosphere by which autotrophic bacteria, algae, and terrestrial plants fix CO(2) into organic biomass via the Calvin-Benson-Basham reductive pentose phosphate pathway. Rubisco is not a perfect catalyst, suffering from low turnover rates, a low affinity for its CO(2) substrate, and a competitive inhibition by O(2) as an alternative substrate. As a consequence of changing environmental conditions over the past 3.5 billion years, with decreasing CO(2) and increasing O(2) in the atmosphere, Rubisco has evolved into multiple enzymatic forms with a range of kinetic properties, as well as co-evolving with CO(2)-concentrating mechanisms to cope with the different environmental contexts in which it must operate. The most dramatic evidence of this is the occurrence of multiple forms of Rubisco within autotrophic proteobacteria, where Forms II, IC, IBc, IAc, and IAq can be found either singly or in multiple combinations within a particular bacterial genome. Over the past few years there has been increasing availability of genomic sequence data for bacteria and this has allowed us to gain more extensive insights into the functional significance of this diversification. This paper is focused on summarizing what is known about the diversity of Rubisco forms, their kinetic properties, development of bacterial CO(2)-concentrating mechanisms, and correlations with metabolic flexibility and inorganic carbon environments in which proteobacteria perform various types of obligate and facultative chemo- and photoautotrophic CO(2) fixation.
Collapse
Affiliation(s)
- Murray Ronald Badger
- Molecular Plant Physiology Group, Research School of Biological Sciences, The Australian National University, Canberra, ACT, Australia.
| | | |
Collapse
|
27
|
Cai F, Heinhorst S, Shively JM, Cannon GC. Transcript analysis of the Halothiobacillus neapolitanus cso operon. Arch Microbiol 2007; 189:141-50. [PMID: 17899012 DOI: 10.1007/s00203-007-0305-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 08/13/2007] [Accepted: 08/31/2007] [Indexed: 10/22/2022]
Abstract
Carboxysomes are polyhedral microcompartments that sequester the CO(2)-fixing enzyme ribulose 1,5-bisphosphate carboxylase/oxygenase in many autotrophic bacteria. Their protein constituents are encoded by a set of tightly clustered genes that are thought to form an operon (the cso operon). This study is the first to systematically address transcriptional regulation of carboxysome protein expression. Quantification of transcript levels derived from the cso operon of Halothiobacillus neapolitanus, the sulfur oxidizer that has emerged as the model organism for carboxysome structural and functional studies, indicated that all cso genes are transcribed, albeit at different levels. Combined with comparative genomic evidence, this study supports the premise that the cso gene cluster constitutes an operon. Characterization of transcript 5'- and 3'-ends and examination of likely regulatory sequences and secondary structure elements within the operon suggested potential strategies by which the vastly different levels of individual carboxysome proteins in the microcompartment could have arisen.
Collapse
Affiliation(s)
- Fei Cai
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, MS 39406-0001, USA
| | | | | | | |
Collapse
|
28
|
Tsai Y, Sawaya MR, Cannon GC, Cai F, Williams EB, Heinhorst S, Kerfeld CA, Yeates TO. Structural analysis of CsoS1A and the protein shell of the Halothiobacillus neapolitanus carboxysome. PLoS Biol 2007; 5:e144. [PMID: 17518518 PMCID: PMC1872035 DOI: 10.1371/journal.pbio.0050144] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2006] [Accepted: 03/21/2007] [Indexed: 01/07/2023] Open
Abstract
The carboxysome is a bacterial organelle that functions to enhance the efficiency of CO2 fixation by encapsulating the enzymes ribulose bisphosphate carboxylase/oxygenase (RuBisCO) and carbonic anhydrase. The outer shell of the carboxysome is reminiscent of a viral capsid, being constructed from many copies of a few small proteins. Here we describe the structure of the shell protein CsoS1A from the chemoautotrophic bacterium Halothiobacillus neapolitanus. The CsoS1A protein forms hexameric units that pack tightly together to form a molecular layer, which is perforated by narrow pores. Sulfate ions, soaked into crystals of CsoS1A, are observed in the pores of the molecular layer, supporting the idea that the pores could be the conduit for negatively charged metabolites such as bicarbonate, which must cross the shell. The problem of diffusion across a semiporous protein shell is discussed, with the conclusion that the shell is sufficiently porous to allow adequate transport of small molecules. The molecular layer formed by CsoS1A is similar to the recently observed layers formed by cyanobacterial carboxysome shell proteins. This similarity supports the argument that the layers observed represent the natural structure of the facets of the carboxysome shell. Insights into carboxysome function are provided by comparisons of the carboxysome shell to viral capsids, and a comparison of its pores to the pores of transmembrane protein channels.
Collapse
Affiliation(s)
- Yingssu Tsai
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Michael R Sawaya
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
- University of California Los Angeles–United States Department of Energy Institute for Genomics and Proteomics, Los Angeles, California, United States of America
| | - Gordon C Cannon
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - Fei Cai
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - Eric B Williams
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - Sabine Heinhorst
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - Cheryl A Kerfeld
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
- University of California Los Angeles–United States Department of Energy Institute for Genomics and Proteomics, Los Angeles, California, United States of America
- Life Sciences Core, University of California Los Angeles, Los Angeles, California, United States of America
| | - Todd O Yeates
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California, United States of America
- University of California Los Angeles–United States Department of Energy Institute for Genomics and Proteomics, Los Angeles, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
29
|
Letain TE, Kane SR, Legler TC, Salazar EP, Agron PG, Beller HR. Development of a genetic system for the chemolithoautotrophic bacterium Thiobacillus denitrificans. Appl Environ Microbiol 2007; 73:3265-71. [PMID: 17337560 PMCID: PMC1907124 DOI: 10.1128/aem.02928-06] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thiobacillus denitrificans is a widespread, chemolithoautotrophic bacterium with an unusual and environmentally relevant metabolic repertoire, which includes its ability to couple denitrification to sulfur compound oxidation; to catalyze anaerobic, nitrate-dependent oxidation of Fe(II) and U(IV); and to oxidize mineral electron donors. Recent analysis of its genome sequence also revealed the presence of genes encoding two [NiFe]hydrogenases, whose role in metabolism is unclear, as the sequenced strain does not appear to be able to grow on hydrogen as a sole electron donor under denitrifying conditions. In this study, we report the development of a genetic system for T. denitrificans, with which insertion mutations can be introduced by homologous recombination and complemented in trans. The antibiotic sensitivity of T. denitrificans was characterized, and a procedure for transformation with foreign DNA by electroporation was established. Insertion mutations were generated by in vitro transposition, the mutated genes were amplified by the PCR, and the amplicons were introduced into T. denitrificans by electroporation. The IncP plasmid pRR10 was found to be a useful vector for complementation. The effectiveness of the genetic system was demonstrated with the hynL gene, which encodes the large subunit of a [NiFe]hydrogenase. Interruption of hynL in a hynL::kan mutant resulted in a 75% decrease in specific hydrogenase activity relative to the wild type, whereas complementation of the hynL mutation resulted in activity that was 50% greater than that of the wild type. The availability of a genetic system in T. denitrificans will facilitate our understanding of the genetics and biochemistry underlying its unusual metabolism.
Collapse
Affiliation(s)
- Tracy E Letain
- Lawrence Livermore National Laboratory, P.O. Box 808, L-542, Livermore, CA 94551-0808, USA
| | | | | | | | | | | |
Collapse
|
30
|
|
31
|
Long BM, Price GD, Badger MR. Proteomic assessment of an established technique for carboxysome enrichment from Synechococcus PCC7942. ACTA ACUST UNITED AC 2005. [DOI: 10.1139/b05-058] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Carboxysomes are protein-bound, polyhedral microbodies within cyanobacteria, containing the key enzyme for photosynthetic CO2 fixation, ribulose-1,5-bisphosphate carboxylaseoxygenase (Rubisco). Sequencing of cyanobacterial genomes has revealed that cyanobacteria possess one or other of two types of carboxysomes. Cyanobacteria containing form 1A Rubisco possess α-carboxysomes, while those with form 1B Rubisco possess β-carboxysomes. Given the central importance of carboxysomes in the CO2-concentrating mechanism of cyanobacteria, understanding the nature and composition of these structures is of considerable importance. In an effort to develop techniques for the characterization of the structure of β-carboxysomes, particularly the outer protein shell, we have undertaken a proteomic assessment of the PercollMg2+ carboxysome enrichment technique using the freshwater cyanobacterium Synechococcus sp. PCC7942. Both matrix-assisted laser desorptionionization time of flight mass spectrometry (MALDI-TOF MS) and multidimensional protein identification technology (MuDPIT) methods were used to determine the protein content of a novel carboxysome-rich fraction. A total of 17 proteins were identified using MALDI-TOF MS from enriched carboxysome preparations, while 122 proteins were identified using MuDPIT analysis on the same material. The carboxysomal protein CcmM was identified by MALDI-TOF MS as two distinct proteins of 38 and 58 kDa. The only other carboxysomal proteins identified were the large and small subunits of Rubisco (RbcL and RbcS). Reasons for the lack of evidence for the expected full complement of carboxysomal proteins and future directions are discussed.Key words: CO2-concentrating mechanism, cyanobacteria, carboxysomes, proteomics.
Collapse
|
32
|
Yoshizawa Y, Toyoda K, Arai H, Ishii M, Igarashi Y. CO2-responsive expression and gene organization of three ribulose-1,5-bisphosphate carboxylase/oxygenase enzymes and carboxysomes in Hydrogenovibrio marinus strain MH-110. J Bacteriol 2004; 186:5685-91. [PMID: 15317772 PMCID: PMC516815 DOI: 10.1128/jb.186.17.5685-5691.2004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hydrogenovibrio marinus strain MH-110, an obligately lithoautotrophic hydrogen-oxidizing bacterium, fixes CO2 by the Calvin-Benson-Bassham cycle. Strain MH-110 possesses three different sets of genes for ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO): CbbLS-1 and CbbLS-2, which belong to form I (L8S8), and CbbM, which belongs to form II (Lx). In this paper, we report that the genes for CbbLS-1 (cbbLS-1) and CbbM (cbbM) are both followed by the cbbQO genes and preceded by the cbbR genes encoding LysR-type regulators. In contrast, the gene for CbbLS-2 (cbbLS-2) is followed by genes encoding carboxysome shell peptides. We also characterized the three RubisCOs in vivo by examining their expression profiles in environments with different CO2 availabilities. Immunoblot analyses revealed that when strain MH-110 was cultivated in 15% CO2, only the form II RubisCO, CbbM, was expressed. When strain MH-110 was cultivated in 2% CO2, CbbLS-1 was expressed in addition to CbbM. In the 0.15% CO2 culture, the expression of CbbM decreased and that of CbbLS-1 disappeared, and CbbLS-2 was expressed. In the atmospheric CO2 concentration of approximately 0.03%, all three RubisCOs were expressed. Transcriptional analyses of mRNA by reverse transcription-PCR showed that the regulation was at the transcriptional level. Electron microscopic observation of MH-110 cells revealed the formation of carboxysomes in the 0.15% CO2 concentration. The results obtained here indicate that strain MH-110 adapts well to various CO2 concentrations by using different types of RubisCO enzymes.
Collapse
Affiliation(s)
- Yoichi Yoshizawa
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
33
|
Bazylinski DA, Dean AJ, Williams TJ, Long LK, Middleton SL, Dubbels BL. Chemolithoautotrophy in the marine, magnetotactic bacterial strains MV-1 and MV-2. Arch Microbiol 2004; 182:373-87. [PMID: 15338111 DOI: 10.1007/s00203-004-0716-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Revised: 06/14/2004] [Accepted: 07/19/2004] [Indexed: 11/28/2022]
Abstract
Magnetite-producing magnetotactic bacteria collected from the oxic-anoxic transition zone of chemically stratified marine environments characterized by O2/H2S inverse double gradients, contained internal S-rich inclusions resembling elemental S globules, suggesting they oxidize reduced S compounds that could support autotrophy. Two strains of marine magnetotactic bacteria, MV-1 and MV-2, isolated from such sites grew in O2-gradient media with H2S or thiosulfate (S2O3(2-)) as electron sources and O2 as electron acceptor or anaerobically with S2O3(2-) and N2O as electron acceptor, with bicarbonate (HCO3-)/CO2 as sole C source. Cells grown with H2S contained S-rich inclusions. Cells oxidized S2O3(2-) to sulfate (SO4(2-)). Both strains grew microaerobically with formate. Neither grew microaerobically with tetrathionate (S4O6(2-)), methanol, or Fe2+ as FeS, or siderite (FeCO3). Growth with S2O3(2-) and radiolabeled 14C-HCO3- showed that cell C was derived from HCO3-/CO2. Cell-free extracts showed ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) activity. Southern blot analyses indicated the presence of a form II RubisCO (cbbM) but no form I (cbbL) in both strains. cbbM and cbbQ, a putative post-translational activator of RubisCO, were identified in MV-1. MV-1 and MV-2 are thus chemolithoautotrophs that use the Calvin-Benson-Bassham pathway. cbbM was also identified in Magnetospirillum magnetotacticum. Thus, magnetotactic bacteria at the oxic-anoxic transition zone of chemically stratified aquatic environments are important in C cycling and primary productivity.
Collapse
Affiliation(s)
- Dennis A Bazylinski
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| | | | | | | | | | | |
Collapse
|
34
|
So AKC, Espie GS, Williams EB, Shively JM, Heinhorst S, Cannon GC. A novel evolutionary lineage of carbonic anhydrase (epsilon class) is a component of the carboxysome shell. J Bacteriol 2004; 186:623-30. [PMID: 14729686 PMCID: PMC321498 DOI: 10.1128/jb.186.3.623-630.2004] [Citation(s) in RCA: 199] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Accepted: 10/29/2003] [Indexed: 11/20/2022] Open
Abstract
A significant portion of the total carbon fixed in the biosphere is attributed to the autotrophic metabolism of prokaryotes. In cyanobacteria and many chemolithoautotrophic bacteria, CO(2) fixation is catalyzed by ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), most if not all of which is packaged in protein microcompartments called carboxysomes. These structures play an integral role in a cellular CO(2)-concentrating mechanism and are essential components for autotrophic growth. Here we report that the carboxysomal shell protein, CsoS3, from Halothiobacillus neapolitanus is a novel carbonic anhydrase (epsilon-class CA) that has an evolutionary lineage distinct from those previously recognized in animals, plants, and other prokaryotes. Functional CAs encoded by csoS3 homologues were also identified in the cyanobacteria Prochlorococcus sp. and Synechococcus sp., which dominate the oligotrophic oceans and are major contributors to primary productivity. The location of the carboxysomal CA in the shell suggests that it could supply the active sites of RuBisCO in the carboxysome with the high concentrations of CO(2) necessary for optimal RuBisCO activity and efficient carbon fixation in these prokaryotes, which are important contributors to the global carbon cycle.
Collapse
Affiliation(s)
- Anthony K-C So
- Department of Botany, University of Toronto at Mississauga, Mississauga, Ontario, L5L 1C6, Canada
| | | | | | | | | | | |
Collapse
|
35
|
Cannon GC, Bradburne CE, Aldrich HC, Baker SH, Heinhorst S, Shively JM. Microcompartments in prokaryotes: carboxysomes and related polyhedra. Appl Environ Microbiol 2001; 67:5351-61. [PMID: 11722879 PMCID: PMC93316 DOI: 10.1128/aem.67.12.5351-5361.2001] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- G C Cannon
- Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi 39406-5043, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Although the debate continues, the concept of global warming as a consequence of the increased production of 'greenhouse gases' via human activities is now widely accepted. The role of microbes, especially the prokaryotes, in the formation, trapping and retention of 'greenhouse gases' has, for the most part, been overlooked. The future requires that we pay close attention to these organisms for possible solutions to adverse global changes.
Collapse
Affiliation(s)
- J M Shively
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634, USA.
| | | | | | | |
Collapse
|
37
|
Orús MI, Rodríguez-Buey ML, Marco E, Fernández-Valiente E. Changes in carboxysome structure and grouping and in photosynthetic affinity for inorganic carbon in Anabaena strain PCC 7119 (Cyanophyta) in response to modification of CO2 and Na+ supply. PLANT & CELL PHYSIOLOGY 2001; 42:46-53. [PMID: 11158443 DOI: 10.1093/pcp/pce005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In ANABAENA: PCC 7119 a 4-fold decrease in the value of the apparent photosynthetic affinity for external inorganic carbon [K1/2 (Ci)] occurred between 9 and 12 h after the transfer from high-CO2 (2% CO2-enriched air) to air-growing conditions. A slight increase in carboxysome frequency occurred, but during this transition their appearance and distribution remained unchanged. ANABAENA: PCC 7119 did not improve its K1/2 (Ci) beyond the above cited level of acclimation neither by culturing the cyanobacteria in Na+-deficient medium in air nor by aeration with CO2-depleted air. In air-grown cultures, Na+ deficiency induced a large increase in carboxysome frequency and an alteration of their appearance: the greatest proportion were electron-dense whereas this type constituted a minority in high-CO2 and in air, Na+-sufficient conditions. It also induced major changes in carboxysome distribution, whereby more than 60% were grouped, compared with only 10% in high-CO2 and in air, Na+-sufficient conditions. These changes in carboxysome expression were extremely rapid, occurring mainly during the first 2 h.
Collapse
Affiliation(s)
- M I Orús
- Departamento de Biología, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | | | | | | |
Collapse
|
38
|
Kofoid E, Rappleye C, Stojiljkovic I, Roth J. The 17-gene ethanolamine (eut) operon of Salmonella typhimurium encodes five homologues of carboxysome shell proteins. J Bacteriol 1999; 181:5317-29. [PMID: 10464203 PMCID: PMC94038 DOI: 10.1128/jb.181.17.5317-5329.1999] [Citation(s) in RCA: 228] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The eut operon of Salmonella typhimurium encodes proteins involved in the cobalamin-dependent degradation of ethanolamine. Previous genetic analysis revealed six eut genes that are needed for aerobic use of ethanolamine; one (eutR), encodes a positive regulator which mediates induction of the operon by vitamin B12 plus ethanolamine. The DNA sequence of the eut operon included 17 genes, suggesting a more complex pathway than that revealed genetically. We have correlated an open reading frame in the sequence with each of the previously identified genes. Nonpolar insertion and deletion mutations made with the Tn10-derived transposable element T-POP showed that at least 10 of the 11 previously undetected eut genes have no Eut phenotype under the conditions tested. Of the dispensable eut genes, five encode apparent homologues of proteins that serve (in other organisms) as shell proteins of the carboxysome. This bacterial organelle, found in photosynthetic and sulfur-oxidizing bacteria, may contribute to CO2 fixation by concentrating CO2 and excluding oxygen. The presence of these homologues in the eut operon of Salmonella suggests that CO2 fixation may be a feature of ethanolamine catabolism in Salmonella.
Collapse
Affiliation(s)
- E Kofoid
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | |
Collapse
|
39
|
Abstract
Many microorganisms possess inducible mechanisms that concentrate CO2 at the carboxylation site, compensating for the relatively low affinity of Rubisco for its substrate, and allowing acclimation to a wide range of CO2 concentrations. The organization of the carboxysomes in prokaryotes and of the pyrenoids in eukaryotes, and the presence of membrane mechanisms for inorganic carbon (Ci) transport, are central to the concentrating mechanism. The presence of multiple Ci transporting systems in cyanobacteria has been indicated. Certain genes involved in structural organization, Ci transport and the energization of the latter have been identified. Massive Ci fluxes associated with the CO2-concentrating mechanism have wide-reaching ecological and geochemical implications.
Collapse
Affiliation(s)
- Aaron Kaplan
- Department of Plant Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904 Israel; e-mail:
| | | |
Collapse
|