1
|
Park J, Lee D, Yi H, Yun CW, Kim HS. Bacterial persistence to antibiotics activated by tRNA mutations. J Antimicrob Chemother 2024; 79:2923-2931. [PMID: 39225038 DOI: 10.1093/jac/dkae307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVES Bacterial persistence is a significant cause of the intractability of chronic and relapsing infections. Despite its importance, many of the underlying mechanisms are still not well understood. METHODS Antibiotic-tolerant mutants of Burkholderia thailandensis were isolated through exposure to lethal doses of AMP or MEM, followed by whole-genome sequencing to identify mutations. Subsequently, these mutants underwent comprehensive characterization via killing curves, growth curves, and persistence-fraction plots. Northern blot analysis was employed to detect uncharged tRNA, while the generation of relA and spoT null mutations served to confirm the involvement of the stringent response in this persistence mechanism. Phenotypic reversion of the persistence mutation was demonstrated by incubating the mutants without antibiotics for 2 weeks. RESULTS We have discovered a novel mechanism of persistence triggered by specific mutations at positions 32 or 38 within the anticodon loop of tRNAAsp. This leads to heightened persistence through a RelA-dependent stringent response. Notably, this persistence can be easily reverted to wild-type physiology by losing the mutant tRNA allele within the tRNA gene cluster when persistence is no longer essential for survival. CONCLUSIONS This distinct form of persistence underscores the novel function of tRNA mutations at positions 32 or 38 within the anticodon loop, as well as the significance of the tRNA gene cluster in conferring adaptability to regulate persistence for enhanced survival.
Collapse
Affiliation(s)
- Jongwook Park
- Division of Biosystems & Biomedical Sciences, College of Health Sciences, 145 Anam-ro, Seongbuk-gu, Seoul, Korea
| | - Dongju Lee
- Division of Biosystems & Biomedical Sciences, College of Health Sciences, 145 Anam-ro, Seongbuk-gu, Seoul, Korea
| | - Hyojeong Yi
- Division of Biosystems & Biomedical Sciences, College of Health Sciences, 145 Anam-ro, Seongbuk-gu, Seoul, Korea
| | - Cheol-Won Yun
- School of Life Sciences and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Heenam Stanley Kim
- Division of Biosystems & Biomedical Sciences, College of Health Sciences, 145 Anam-ro, Seongbuk-gu, Seoul, Korea
| |
Collapse
|
2
|
García-Villada L, Degtyareva NP, Brooks AM, Goldberg JB, Doetsch PW. A role for the stringent response in ciprofloxacin resistance in Pseudomonas aeruginosa. Sci Rep 2024; 14:8598. [PMID: 38615146 PMCID: PMC11016087 DOI: 10.1038/s41598-024-59188-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024] Open
Abstract
Pseudomonas aeruginosa is a major cause of nosocomial infections and the leading cause of chronic lung infections in cystic fibrosis and chronic obstructive pulmonary disease patients. Antibiotic treatment remains challenging because P. aeruginosa is resistant to high concentrations of antibiotics and has a remarkable ability to acquire mutations conferring resistance to multiple groups of antimicrobial agents. Here we report that when P. aeruginosa is plated on ciprofloxacin (cipro) plates, the majority of cipro-resistant (ciproR) colonies observed at and after 48 h of incubation carry mutations in genes related to the Stringent Response (SR). Mutations in one of the major SR components, spoT, were present in approximately 40% of the ciproR isolates. Compared to the wild-type strain, most of these isolates had decreased growth rate, longer lag phase and altered intracellular ppGpp content. Also, 75% of all sequenced mutations were insertions and deletions, with short deletions being the most frequently occurring mutation type. We present evidence that most of the observed mutations are induced on the selective plates in a subpopulation of cells that are not instantly killed by cipro. Our results suggests that the SR may be an important contributor to antibiotic resistance acquisition in P. aeruginosa.
Collapse
Affiliation(s)
| | | | - Ashley M Brooks
- Integrative Bioinformatics, Biostatistics and Computational Biology Branch, NIEHS, Durham, NC, USA
| | - Joanna B Goldberg
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Paul W Doetsch
- Genomic Integrity and Structural Biology Laboratory, NIEHS, Durham, NC, USA.
| |
Collapse
|
3
|
Miyagawa A, Ohno S, Hattori T, Yamamura H. Antimicrobial activities of amphiphilic cationic polymers and their efficacy of combination with novobiocin. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:299-312. [PMID: 34559588 DOI: 10.1080/09205063.2021.1985243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Today, drug-resistant bacteria represent a significant problem worldwide. In fact, bacteria are becoming resistant even to newly developed antibiotics. Therefore, there is an urgent need to develop antibiotics to which bacteria cannot become resistant. In this study, antimicrobial polymers to which bacteria cannot develop resistance were prepared from 6-aminohexyl methacrylamide and N-isopropyl acrylamide. The polymers with molecular weights of the order of 105 showed little antimicrobial activity against Staphylococcus aureus and Escherichia coli as well as low toxicity. On the other hand, polymers with lower molecular weights (of the order of 104) did show antimicrobial activity against S. aureus and E. coli. These polymers were combined with novobiocin to investigate the combined usage effects against E. coli. The combined usage of novobiocin and the low-molecular-weight polymers reduced the minimum inhibitory concentration, which was less than 0.0625 μg/mL against E. coli. This result indicates that the combination is useful for increasing the efficacy of antibiotics and broadening their antimicrobial spectrum. Furthermore, the results showed the possibility that the antimicrobial polymers serve not only as antibiotics to which bacteria have not developed resistance but also as adjuvants for other antibiotics.
Collapse
Affiliation(s)
- Atsushi Miyagawa
- Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, Japan
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, Japan
| | - Shinya Ohno
- Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, Japan
| | - Tomohiko Hattori
- Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, Japan
| | - Hatsuo Yamamura
- Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, Japan
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, Japan
| |
Collapse
|
4
|
Zhang Z, Yu YX, Wang YG, Liu X, Wang LF, Zhang H, Liao MJ, Li B. Complete genome analysis of a virulent Vibrio scophthalmi strain VSc190401 isolated from diseased marine fish half-smooth tongue sole, Cynoglossus semilaevis. BMC Microbiol 2020; 20:341. [PMID: 33176689 PMCID: PMC7661262 DOI: 10.1186/s12866-020-02028-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022] Open
Abstract
Background Vibrio scophthalmi is an opportunistic bacterial pathogen, which is widely distributed in the marine environment. Earlier studies have suggested that it is a normal microorganism in the turbot gut. However, recent studies have confirmed that this bacterial strain can cause diseases in many different marine animals. Therefore, it is necessary to investigate its whole genome for better understanding its physiological and pathogenic mechanisms. Results In the present study, we obtained a pathogenic strain of V. scophthalmi from diseased half-smooth tongue sole (Cynoglossus semilaevis) and sequenced its whole genome. Its genome contained two circular chromosomes and two plasmids with a total size of 3,541,838 bp, which harbored 3185 coding genes. Among these genes, 2648, 2298, and 1915 genes could be found through annotation information in COG, Blast2GO, and KEGG databases, respectively. Moreover, 10 genomic islands were predicted to exist in the chromosome I through IslandViewer online system. Comparison analysis in VFDB and PHI databases showed that this strain had 334 potential virulence-related genes and 518 pathogen-host interaction-related genes. Although it contained genes related to four secretion systems of T1SS, T2SS, T4SS, and T6SS, there was only one complete T2SS secretion system. Based on CARD database blast results, 180 drug resistance genes belonging to 27 antibiotic resistance categories were found in the whole genome of such strain. However, there were many differences between the phenotype and genotype of drug resistance. Conclusions Based on the whole genome analysis, the pathogenic V. scophthalmi strain contained many types of genes related to pathogenicity and drug resistance. Moreover, it showed inconsistency between phenotype and genotype on drug resistance. These results suggested that the physiological mechanism seemed to be complex. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-020-02028-7.
Collapse
Affiliation(s)
- Zheng Zhang
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, Shandong, 266071, PR China. .,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, 266237, PR China.
| | - Yong-Xiang Yu
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, Shandong, 266071, PR China
| | - Yin-Geng Wang
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, Shandong, 266071, PR China. .,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, 266237, PR China.
| | - Xiao Liu
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, Shandong, 266071, PR China
| | - Li-Fang Wang
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, Shandong, 266071, PR China
| | - Hao Zhang
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, Shandong, 266071, PR China
| | - Mei-Jie Liao
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, Shandong, 266071, PR China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong, 266237, PR China
| | - Bin Li
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academic of Fishery Sciences, Qingdao, Shandong, 266071, PR China
| |
Collapse
|
5
|
Ledger L, Eidt J, Cai HY. Identification of Antimicrobial Resistance-Associated Genes through Whole Genome Sequencing of Mycoplasma bovis Isolates with Different Antimicrobial Resistances. Pathogens 2020; 9:pathogens9070588. [PMID: 32707642 PMCID: PMC7400188 DOI: 10.3390/pathogens9070588] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 01/08/2023] Open
Abstract
Antimicrobial resistance (AMR) in Mycoplasma bovis has been previously associated with topoisomerase and ribosomal gene mutations rather than specific resistance-conferring genes. Using whole genome sequencing (WGS) to identify potential new AMR mechanisms for M. bovis, it was found that a 2019 clinical isolate with high MIC (2019-043682) for fluoroquinolones, macrolides, lincosamides, pleuromutilins and tetracyclines had a new core genome multilocus sequencing (cgMLST) type (ST10-like) and 91% sequence similarity to the published genome of M. bovis PG45. Closely related to PG45, a 1982 isolate (1982-M6152) shared the same cgMLST type (ST17), 97.2% sequence similarity and low MIC results. Known and potential AMR- associated genetic events were identified through multiple sequence alignment of the three genomes. Isolate 2019-043682 had 507 genes with non-synonymous mutations (NSMs) and 67 genes disrupted. Isolate 1982-M6152 had 81 NSMs and 20 disruptions. Using functional roles and known mechanisms of antimicrobials, a 55 gene subset was assessed for AMR potential. Seventeen were previously identified from other bacteria as sites of AMR mutation, 38 shared similar functions to them, and 11 contained gene-disrupting mutations. This study indicated that M. bovis may obtain high AMR characteristics by mutating or disrupting other functional genes, in addition to topoisomerases and ribosomal genes.
Collapse
|
6
|
Yi H, Lee H, Cho KH, Kim HS. Mutations in MetG (methionyl-tRNA synthetase) and TrmD [tRNA (guanine-N1)-methyltransferase] conferring meropenem tolerance in Burkholderia thailandensis. J Antimicrob Chemother 2019; 73:332-338. [PMID: 29136176 DOI: 10.1093/jac/dkx378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/19/2017] [Indexed: 01/08/2023] Open
Abstract
Objectives Although meropenem is widely used to treat Burkholderia infections, the response of Burkholderia pathogens to this antibiotic is largely unexplored. Methods Burkholderia thailandensis, a model for Burkholderia spp., particularly Burkholderia mallei and Burkholderia pseudomallei, was challenged with a lethal level of meropenem and survivors were isolated. The genomes of two of the isolates were analysed to identify mutated genes and these genes were then specifically examined in more isolates to profile mutation diversity. Mutants were characterized to investigate the biological basis underlying survival against meropenem. Results One of two genes associated with tRNA metabolism [metG or trmD, encoding methionyl-tRNA synthetase or tRNA (guanine-N1)-methyltransferase, respectively] was found to be mutated in the two survivors. A single nucleotide substitution and a frameshift mutation were found in metG and trmD, respectively. Five different substitution mutations affecting methionine- or tRNA-binding sites were found in metG during further screening. The mutants exhibited slowed growth and increased tolerance not only to meropenem but also various other antibiotics. This tolerance required intact RelA, a key stringent response. Conclusions Specific mutations affecting the tRNA pool, particularly those in metG, play a pivotal role in the B. thailandensis response to meropenem challenge. This mechanism of antibiotic tolerance is important because it can reduce the effectiveness of meropenem and thereby facilitate chronic infection by Burkholderia pathogens. In addition, specific mutations found in MetG will prove useful in the effort to develop new drugs to completely inhibit this essential enzyme, while preventing stringent-response-mediated antibiotic tolerance in pathogens.
Collapse
Affiliation(s)
- Hyojeong Yi
- Department of Biomedical Sciences, College of Medicine, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-705, Korea
| | - Hyeri Lee
- Department of Biomedical Sciences, College of Medicine, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-705, Korea
| | - Kwang-Hwi Cho
- School of Systems Biomedical Science and Research Center for Integrative Basic Science, Soongsil University, Seoul 156-743, Korea
| | - Heenam Stanley Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-705, Korea
| |
Collapse
|
7
|
Amdinocillin (Mecillinam) resistance mutations in clinical isolates and laboratory-selected mutants of Escherichia coli. Antimicrob Agents Chemother 2015; 59:1718-27. [PMID: 25583718 DOI: 10.1128/aac.04819-14] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Amdinocillin (mecillinam) is a β-lactam antibiotic that is used mainly for the treatment of uncomplicated urinary tract infections. The objectives of this study were to identify mutations that confer amdinocillin resistance on laboratory-isolated mutants and clinical isolates of Escherichia coli and to determine why amdinocillin resistance remains rare clinically even though resistance is easily selected in the laboratory. Under laboratory selection, frequencies of mutation to amdinocillin resistance varied from 8 × 10(-8) to 2 × 10(-5) per cell, depending on the concentration of amdinocillin used during selection. Several genes have been demonstrated to give amdinocillin resistance, but here eight novel genes previously unknown to be involved in amdinocillin resistance were identified. These genes encode functions involved in the respiratory chain, the ribosome, cysteine biosynthesis, tRNA synthesis, and pyrophosphate metabolism. The clinical isolates exhibited significantly greater fitness than the laboratory-isolated mutants and a different mutation spectrum. The cysB gene was mutated (inactivated) in all of the clinical isolates, in contrast to the laboratory-isolated mutants, where mainly other types of more costly mutations were found. Our results suggest that the frequency of mutation to amdinocillin resistance is high because of the large mutational target (at least 38 genes). However, the majority of these resistant mutants have a low growth rate, reducing the probability that they are stably maintained in the bladder. Inactivation of the cysB gene and a resulting loss of cysteine biosynthesis are the major mechanism of amdinocillin resistance in clinical isolates of E. coli.
Collapse
|
8
|
Ponmani T, Munavar MH. G673 could be a novel mutational hot spot for intragenic suppressors of pheS5 lesion in Escherichia coli. Microbiologyopen 2014; 3:369-82. [PMID: 24811065 PMCID: PMC4082710 DOI: 10.1002/mbo3.161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 12/12/2013] [Accepted: 01/02/2014] [Indexed: 11/08/2022] Open
Abstract
The pheS5 Ts mutant of Escherichia coli defined by a G293 → A293 transition, which is responsible for thermosensitive Phenylalanyl-tRNA synthetase has been well studied at both biochemical and molecular level but genetic analyses pertaining to suppressors of pheS5 were hard to come by. Here we have systematically analyzed a spectrum of Temperature-insensitive derivatives isolated from pheS5 Ts mutant and identified two intragenic suppressors affecting the same base pair coordinate G673 (pheS19 defines G673 → T673 ; Gly225 → Cys225 and pheS28 defines G673 → C673 ; Gly225 → Arg225). In fact in the third derivative, the intragenic suppressor originally named pheS43 (G673 → C673 transversion) is virtually same as pheS28. In the fourth case, the very pheS5 lesion itself has got changed from A293 → T293 (named pheS40). Cloning of pheS(+), pheS5, pheS5-pheS19, pheS5-pheS28 alleles into pBR322 and introduction of these clones into pheS5 mutant revealed that excess of double mutant protein is not at all good for the survival of cells at 42°C. These results clearly indicate a pivotal role for Gly225 in the structural/functional integrity of alpha subunit of E. coli PheRS enzyme and it is proposed that G673 might define a hot spot for intragenic suppressors of pheS5.
Collapse
Affiliation(s)
- Thangaraj Ponmani
- Department of Molecular Biology, School of Biological Sciences, Centre for Excellence in Genomic Sciences, Centre for Advanced Studies in functional and organismal Genomics, Madurai Kamaraj University [University with Potential for Excellence], Madurai, 625 021, India
| | | |
Collapse
|
9
|
Riordan JT, Tietjen JA, Walsh CW, Gustafson JE, Whittam TS. Inactivation of alternative sigma factor 54 (RpoN) leads to increased acid resistance, and alters locus of enterocyte effacement (LEE) expression in Escherichia coli O157 : H7. MICROBIOLOGY-SGM 2009; 156:719-730. [PMID: 19942657 DOI: 10.1099/mic.0.032631-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Alternative sigma factor 54 (RpoN) is an important regulator of stress resistance and virulence genes in many bacterial species. In this study, we report on the gene expression alterations that follow rpoN inactivation in Escherichia coli O157 : H7 strain Sakai (Sakai rpoN : : kan), and the influence of RpoN on the acid resistance phenotype. Microarray gene expression profiling revealed the differential expression of 103 genes in SakairpoN : : kan relative to Sakai. This included the growth-phase-dependent upregulation of genes required for glutamate-dependent acid resistance (GDAR) ( gadA, gadB, gadC and gadE), and the downregulation of locus of enterocyte effacement (LEE) genes, which encode a type III secretion system. Upregulation of gad genes in SakairpoN : : kan during exponential growth correlated with increased GDAR and survival in a model stomach system. Complementation of SakairpoN : : kan with a cloned version of rpoN restored acid susceptibility. Genes involved in GDAR regulation, including rpoS (sigma factor 38) and gadE (acid-responsive regulator), were shown to be required for the survival of SakairpoN : : kan by the GDAR mechanism. This study describes the contribution of rpoN to acid resistance and GDAR gene regulation, and reveals RpoN to be an important regulator of stress resistance and virulence genes in E. coli O157 : H7.
Collapse
Affiliation(s)
- James T Riordan
- Department of Cell Biology, Microbiology and Molecular Biology (CMMB), University of South Florida, Tampa, FL 33620, USA
| | - Jillian A Tietjen
- Microbial Evolution Laboratory, National Food Safety and Toxicology Center, Michigan State University, East Lansing, MI 48824, USA
| | - Coilin W Walsh
- Microbial Evolution Laboratory, National Food Safety and Toxicology Center, Michigan State University, East Lansing, MI 48824, USA
| | - John E Gustafson
- Microbiology Group, Biology Department and Molecular Biology Program, New Mexico State University, Las Cruces, NM 88003, USA
| | - Thomas S Whittam
- Microbial Evolution Laboratory, National Food Safety and Toxicology Center, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
10
|
DeVito JA. Recombineering with tolC as a selectable/counter-selectable marker: remodeling the rRNA operons of Escherichia coli. Nucleic Acids Res 2007; 36:e4. [PMID: 18084036 PMCID: PMC2248734 DOI: 10.1093/nar/gkm1084] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This work describes the novel use of tolC as a selectable/counter-selectable marker for the facile modification of DNA in Escherichia coli. Expression of TolC (an outer membrane protein) confers relative resistance to toxic small molecules, while its absence renders the cell tolerant to colicin E1. These features, coupled with the lambdaredgam recombination system, allow for selection of tolC insertions/deletions anywhere on the E. coli chromosome or on plasmid DNA. This methodology obviates the need for minimal growth media, specialized wash protocols and the lengthy incubation times required by other published recombineering methods. As a rigorous test of the TolC selection system, six out of seven 23S rRNA genes were consecutively and seamlessly removed from the E. coli chromosome without affecting expression of neighboring genes within the complex rrn operons. The resulting plasmid-free strain retains one 23S rRNA gene (rrlC) in its natural location on the chromosome and is the first mutant of its kind. These new rRNA mutants will be useful in the study of rRNA gene regulation and ribosome function. Given its high efficiency, low background and facility in rich media, tolC selection is a broadly applicable method for the modification of DNA by recombineering.
Collapse
Affiliation(s)
- Joseph A DeVito
- Discovery Biology, Rib-X Pharmaceuticals Inc., New Haven, CT 06511, USA.
| |
Collapse
|
11
|
Viducic D, Ono T, Murakami K, Katakami M, Susilowati H, Miyake Y. rpoN gene of Pseudomonas aeruginosa alters its susceptibility to quinolones and carbapenems. Antimicrob Agents Chemother 2007; 51:1455-62. [PMID: 17261620 PMCID: PMC1855457 DOI: 10.1128/aac.00348-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 07/18/2006] [Accepted: 01/21/2007] [Indexed: 11/20/2022] Open
Abstract
The alternative sigma factor sigma54 has been implicated in diverse functions within the cells. In this study, we have constructed an rpoN mutant of Pseudomonas aeruginosa and investigated its importance as a target for antimicrobial agents, such as quinolones and carbapenems. The stationary-phase cells of the rpoN mutant displayed a survival rate approximately 15 times higher than that of the wild-type cells in the presence of quinolones and carbapenems. The stationary phase led to substantial production of pyoverdine by the P. aeruginosa rpoN mutant. Pyoverdine synthesis correlated with decreased susceptibility to antimicrobial agents. Quantitative real-time PCR revealed that stationary-phase cells of the rpoN mutant grown without an antimicrobial agent had approximately 4- to 140- and 2- to 14-fold-higher levels of transcripts of the pvdS and vqsR genes, respectively, than the wild-type strain. In the presence of an antimicrobial agent, levels of pvdS and vqsR transcripts were elevated 400- and 5-fold, respectively, in comparison to the wild-type levels. Flow cytometry assays using a green fluorescent protein reporter demonstrated increased expression of the vqsR gene in the rpoN mutant throughout growth. A pvdS mutant of P. aeruginosa, deficient in pyoverdine production, was shown to be susceptible to biapenem. These findings suggest that rpoN is involved in tolerance to antimicrobial agents in P. aeruginosa and that its tolerant effect is partly dependent on increased pyoverdine production and vqsR gene expression.
Collapse
Affiliation(s)
- Darija Viducic
- Department of Microbiology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8504, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Peter BJ, Arsuaga J, Breier AM, Khodursky AB, Brown PO, Cozzarelli NR. Genomic transcriptional response to loss of chromosomal supercoiling in Escherichia coli. Genome Biol 2004; 5:R87. [PMID: 15535863 PMCID: PMC545778 DOI: 10.1186/gb-2004-5-11-r87] [Citation(s) in RCA: 229] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Revised: 10/01/2004] [Accepted: 10/11/2004] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The chromosome of Escherichia coli is maintained in a negatively supercoiled state, and supercoiling levels are affected by growth phase and a variety of environmental stimuli. In turn, supercoiling influences local DNA structure and can affect gene expression. We used microarrays representing nearly the entire genome of Escherichia coli MG1655 to examine the dynamics of chromosome structure. RESULTS We measured the transcriptional response to a loss of supercoiling caused either by genetic impairment of a topoisomerase or addition of specific topoisomerase inhibitors during log-phase growth and identified genes whose changes are statistically significant. Transcription of 7% of the genome (306 genes) was rapidly and reproducibly affected by changes in the level of supercoiling; the expression of 106 genes increased upon chromosome relaxation and the expression of 200 decreased. These changes are most likely to be direct effects, as the kinetics of their induction or repression closely follow the kinetics of DNA relaxation in the cells. Unexpectedly, the genes induced by relaxation have a significantly enriched AT content in both upstream and coding regions. CONCLUSIONS The 306 supercoiling-sensitive genes are functionally diverse and widely dispersed throughout the chromosome. We propose that supercoiling acts as a second messenger that transmits information about the environment to many regulatory networks in the cell.
Collapse
Affiliation(s)
- Brian J Peter
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3204, USA
- Current address: Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 2QH, UK
| | - Javier Arsuaga
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3204, USA
- Mathematics Department, University of California, Berkeley, CA 94720, USA
| | - Adam M Breier
- Graduate Group in Biophysics, University of California, Berkeley, CA 94720, USA
| | - Arkady B Khodursky
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, St. Paul, MN 55108, USA
| | - Patrick O Brown
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305-5307, USA
| | - Nicholas R Cozzarelli
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3204, USA
| |
Collapse
|
13
|
Lilic M, Jovanovic M, Jovanovic G, Savic DJ. Identification of the CysB-regulated gene, hslJ, related to the Escherichia coli novobiocin resistance phenotype. FEMS Microbiol Lett 2003; 224:239-46. [PMID: 12892888 DOI: 10.1016/s0378-1097(03)00441-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The cysB gene product is a LysR-type regulatory protein required for expression of the cys regulon. cysB mutants of Escherichia coli and Salmonella, along with being auxotrophs for the cysteine, exhibit increased resistance to the antibiotics novobiocin (Nov) and mecillinam. In this work, by using lambdaplacMu9 insertions creating random lacZ fusions, we identify a gene, hslJ, whose expression appeared to be increased in cysB mutants and needed for Nov resistance. Measurements of the HSLJ::lacZ gene fusion expression demonstrated that the hslJ gene is negatively regulated by CysB. In addition we observe the negative autogenous control of HslJ. When the control imposed by CysB is lifted in the cysB mutant, the elevation of Nov resistance can be achieved only in the presence of wild-type hslJ allele. A double cysB hslJ mutant restores the sensitivity to Nov. Overexpression of the wild-type HslJ protein either in a cysB(+) or a cysB(-) background increases the level of Nov resistance indicating that hslJ product is indeed involved in accomplishing this phenotype. The HSLJ::OmegaKan allele encodes the C-terminaly truncated mutant protein HslJ Q121Ter which is not functional in achieving the Nov resistance but when overexpressed induces the psp operon. Finally, we found that inactivation of hslJ does not affect the increased resistance to mecillinam in cysB mutants.
Collapse
Affiliation(s)
- Mirjana Lilic
- Institute of Molecular Genetics and Genetic Engineering, PO Box 446, 11001, Belgrade, Serbia and Montenegro, Yugoslavia
| | | | | | | |
Collapse
|