1
|
Akutsu T, Tan Z, Hirata A, Tezuka T, Ohnishi Y. Involvement of an orphan response regulator of the two-component regulatory system in the formation of physiologically mature sporangia in Actinoplanes missouriensis. Microbiol Spectr 2025; 13:e0327224. [PMID: 40013807 PMCID: PMC11960193 DOI: 10.1128/spectrum.03272-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/07/2025] [Indexed: 02/28/2025] Open
Abstract
The actinomycete Actinoplanes missouriensis forms terminal sporangia that contain dormant sporangiospores. Upon contact with water, sporangia release zoospores through a process called sporangium dehiscence. In this study, we characterized asfR (AMIS_76070), which encodes an orphan response regulator receiver domain protein of the two-component regulatory system, as one of 136 genes whose transcription was highly activated during sporangium formation. Actinoplanes sporangium formation regulator (AsfR) homologs are conserved among Actinoplanes bacteria. An asfR null mutant (ΔasfR) strain formed normally shaped sporangia containing apparently normal dormant spores, but they exhibited defective sporangium dehiscence; the number of spores released from the sporangia of the ΔasfR strain was four orders of magnitude lower than that from the sporangia of the wild-type strain. This phenotypic change was recovered by introducing asfR with its own promoter into the ΔasfR strain. Based on the amino acid sequence and predicted structure, the function of AsfR appeared to be controlled by the phosphorylation of Asp-72. Consistently, the phenotypic change observed in the ΔasfR strain was not restored by introducing a mutated asfR (D72N) gene. Three orphan histidine kinases (HKs) in A. missouriensis were found to interact with AsfR by screening using a bacterial two-hybrid assay. However, gene disruption experiments revealed that these three HKs were not required for sporangium dehiscence in A. missouriensis. Although the molecular functions of AsfR remain to be elucidated, this study shows that AsfR is involved in the formation of physiologically mature sporangia that are fully prepared to release spores under sporangium dehiscence-inducing conditions.IMPORTANCEActinoplanes missouriensis undergoes a life cycle involving complex morphological development, including mycelial growth, sporangium formation and dehiscence, swimming as zoospores, germination, and outgrowth to mycelial growth. In this study, we revealed that a stand-alone response regulator receiver domain protein, AsfR, is required for the formation of physiologically mature sporangia that can release spores under sporangium dehiscence-inducing conditions. A. missouriensis seems to express genes that are involved in sporangium dehiscence during sporangium formation, considering that an asfR null mutant produced normally shaped sporangia, but these sporangia were deficient in sporangium dehiscence. Although the molecular functions of AsfR, as well as the histidine kinase(s) that phosphorylates AsfR, remain to be elucidated, identification of AsfR as a possible key regulator for the preparation of the onset and progression of sporangium dehiscence is significant, because almost no proteins involved in the early stages of sporangium dehiscence have been identified in A. missouriensis.
Collapse
Grants
- JP26252010 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP18H02122 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP17K07711 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP20K05781 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP19H05685 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- A3 Foresight Program MEXT | Japan Society for the Promotion of Science (JSPS)
Collapse
Affiliation(s)
- Takuya Akutsu
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Zhuwen Tan
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Aiko Hirata
- Bioimaging Center, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-shi, Chiba, Japan
| | - Takeaki Tezuka
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
2
|
Schlüter L, Busche T, Bondzio L, Hütten A, Niehaus K, Schneiker-Bekel S, Pühler A, Kalinowski J. Sigma Factor Engineering in Actinoplanes sp. SE50/110: Expression of the Alternative Sigma Factor Gene ACSP50_0507 (σH As) Enhances Acarbose Yield and Alters Cell Morphology. Microorganisms 2024; 12:1241. [PMID: 38930623 PMCID: PMC11205660 DOI: 10.3390/microorganisms12061241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Sigma factors are transcriptional regulators that are part of complex regulatory networks for major cellular processes, as well as for growth phase-dependent regulation and stress response. Actinoplanes sp. SE50/110 is the natural producer of acarbose, an α-glucosidase inhibitor that is used in diabetes type 2 treatment. Acarbose biosynthesis is dependent on growth, making sigma factor engineering a promising tool for metabolic engineering. ACSP50_0507 is a homolog of the developmental and osmotic-stress-regulating Streptomyces coelicolor σHSc. Therefore, the protein encoded by ACSP50_0507 was named σHAs. Here, an Actinoplanes sp. SE50/110 expression strain for the alternative sigma factor gene ACSP50_0507 (sigHAs) achieved a two-fold increased acarbose yield with acarbose production extending into the stationary growth phase. Transcriptome sequencing revealed upregulation of acarbose biosynthesis genes during growth and at the late stationary growth phase. Genes that are transcriptionally activated by σHAs frequently code for secreted or membrane-associated proteins. This is also mirrored by the severely affected cell morphology, with hyperbranching, deformed and compartmentalized hyphae. The dehydrated cell morphology and upregulation of further genes point to a putative involvement in osmotic stress response, similar to its S. coelicolor homolog. The DNA-binding motif of σHAs was determined based on transcriptome sequencing data and shows high motif similarity to that of its homolog. The motif was confirmed by in vitro binding of recombinantly expressed σHAs to the upstream sequence of a strongly upregulated gene. Autoregulation of σHAs was observed, and binding to its own gene promoter region was also confirmed.
Collapse
Affiliation(s)
- Laura Schlüter
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, 33594 Bielefeld, Germany; (L.S.); (S.S.-B.)
| | - Tobias Busche
- Technology Platform Genomics, Center for Biotechnology, Bielefeld University, 33594 Bielefeld, Germany;
- Medical School East Westphalia-Lippe, Bielefeld University, 33594 Bielefeld, Germany
| | - Laila Bondzio
- Faculty of Physics, Bielefeld University, 33594 Bielefeld, Germany; (L.B.); (A.H.)
| | - Andreas Hütten
- Faculty of Physics, Bielefeld University, 33594 Bielefeld, Germany; (L.B.); (A.H.)
| | - Karsten Niehaus
- Proteome and Metabolome Research, Faculty of Biology, Bielefeld University, 33594 Bielefeld, Germany;
| | - Susanne Schneiker-Bekel
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, 33594 Bielefeld, Germany; (L.S.); (S.S.-B.)
- Genome Research of Industrial Microorganisms, Center for Biotechnology (CeBiTec), Bielefeld University, 33594 Bielefeld, Germany;
| | - Alfred Pühler
- Genome Research of Industrial Microorganisms, Center for Biotechnology (CeBiTec), Bielefeld University, 33594 Bielefeld, Germany;
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, 33594 Bielefeld, Germany; (L.S.); (S.S.-B.)
- Technology Platform Genomics, Center for Biotechnology, Bielefeld University, 33594 Bielefeld, Germany;
| |
Collapse
|
3
|
Hu S, Maeda S, Tezuka T, Ohnishi Y. Involvement of a putative acyltransferase gene in sporangium formation in Actinoplanes missouriensis. Microbiol Spectr 2024; 12:e0401023. [PMID: 38501822 PMCID: PMC11064477 DOI: 10.1128/spectrum.04010-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/25/2024] [Indexed: 03/20/2024] Open
Abstract
The actinomycete Actinoplanes missouriensis forms branched substrate mycelia during vegetative growth and produces terminal sporangia, each of which contains a few hundred spherical flagellated spores, from the substrate mycelia through short sporangiophores. Based on the observation that remodeling of membrane lipid composition is involved in the morphological development of Streptomyces coelicolor A3(2), we hypothesized that remodeling of membrane lipid composition is also involved in sporangium formation in A. missouriensis. Because some acyltransferases are presumably involved in the remodeling of membrane lipid composition, we disrupted each of the 22 genes annotated as encoding putative acyltransferases in the A. missouriensis genome and evaluated their effects on sporangium formation. The atsA (AMIS_52390) null mutant (ΔatsA) strain formed irregular sporangia of various sizes. Transmission electron microscopy revealed that some ΔatsA sporangiospores did not mature properly. Phase-contrast microscopy revealed that sporangium dehiscence did not proceed properly in the abnormally small sporangia of the ΔatsA strain, whereas apparently normal sporangia opened to release the spores. Consistently, the number of spores released from ΔatsA sporangia was lower than that released from wild-type sporangia. These phenotypic changes were recovered by introducing atsA with its own promoter into the ΔatsA strain. These results demonstrate that AtsA is required for normal sporangium formation in A. missouriensis, although the involvement of AtsA in the remodeling of membrane lipid composition is unlikely because AtsA is an acyltransferase_3 (AT3) protein, which is an integral membrane protein that usually catalyzes the acetylation of cell surface structures.IMPORTANCEActinoplanes missouriensis goes through a life cycle involving complex morphological development, including mycelial growth, sporangium formation and dehiscence, swimming as zoospores, and germination to mycelial growth. In this study, we carried out a comprehensive gene disruption experiment of putative acyltransferase genes to search for acyltransferases involved in the morphological differentiation of A. missouriensis. We revealed that a stand-alone acyltransferase_3 domain-containing protein, named AtsA, is required for normal sporangium formation. Although the molecular mechanism of AtsA in sporangium formation, as well as the enzymatic activity of AtsA, remains to be elucidated, the identification of a putative acyltransferase involved in sporangium formation is significant in the study of morphological development of A. missouriensis. This finding will contribute to our understanding of a complex system for producing sporangia, a rare multicellular organism in bacteria.
Collapse
Affiliation(s)
- Shixuan Hu
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Satoshi Maeda
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takeaki Tezuka
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Graduate School of Infection Control Sciences, Kitasato University, Minato-ku, Tokyo, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
4
|
Tan Z, Tezuka T, Ohnishi Y. Identification of a putative cell wall-hydrolyzing amidase involved in sporangiospore maturation in Actinoplanes missouriensis. J Bacteriol 2024; 206:e0045623. [PMID: 38426722 PMCID: PMC10955841 DOI: 10.1128/jb.00456-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Actinoplanes missouriensis is a filamentous bacterium that differentiates into terminal sporangia, each containing a few hundred spores. Previously, we reported that a cell wall-hydrolyzing N-acetylglucosaminidase, GsmA, is required for the maturation process of sporangiospores in A. missouriensis; sporangia of the gsmA null mutant (ΔgsmA) strain released chains of 2-20 spores under sporangium dehiscence-inducing conditions. In this study, we identified and characterized a putative cell wall hydrolase (AsmA) that is also involved in sporangiospore maturation. AsmA was predicted to have a signal peptide for the general secretion pathway and an N-acetylmuramoyl-l-alanine amidase domain. The transcript level of asmA increased during the early stages of sporangium formation. The asmA null mutant (ΔasmA) strain showed phenotypes similar to those of the wild-type strain, but sporangia of the ΔgsmAΔasmA double mutant released longer spore chains than those from the ΔgsmA sporangia. Furthermore, a weak interaction between AsmA and GsmA was detected in a bacterial two-hybrid assay using Escherichia coli as the host. Based on these results, we propose that AsmA is an enzyme that hydrolyzes peptidoglycan at septum-forming sites to separate adjacent spores during sporangiospore maturation in cooperation with GsmA in A. missouriensis.IMPORTANCEActinoplanes missouriensis produces sporangiospores as dormant cells. The spores inside the sporangia are assumed to be formed from prespores generated by the compartmentalization of intrasporangium hyphae via septation. Previously, we identified GsmA as a cell wall hydrolase responsible for the separation of adjacent spores inside sporangia. However, we predicted that an additional cell wall hydrolase(s) is inevitably involved in the maturation process of sporangiospores because the sporangia of the gsmA null mutant strain released not only tandemly connected spore chains (2-20 spores) but also single spores. In this study, we successfully identified a putative cell wall hydrolase (AsmA) that is involved in sporangiospore maturation in A. missouriensis.
Collapse
Affiliation(s)
- Zhuwen Tan
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takeaki Tezuka
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Akutsu T, Tezuka T, Maruko M, Hirata A, Ohnishi Y. The ssgB gene is required for the early stages of sporangium formation in Actinoplanes missouriensis. J Bacteriol 2024; 206:e0042823. [PMID: 38353530 PMCID: PMC10956132 DOI: 10.1128/jb.00428-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/26/2024] [Indexed: 03/22/2024] Open
Abstract
In Streptomyces, multiple paralogs of SsgA-like proteins (SALPs) are involved in spore formation from aerial hyphae. However, the functions of SALPs have not yet been elucidated in other actinobacterial genera. Here, we report the primary function of an SsgB ortholog (AmSsgB) in Actinoplanes missouriensis, which develops terminal sporangia on the substrate mycelia via short sporangiophores. Importantly, AmSsgB is the sole SALP in A. missouriensis. The transcription of AmssgB was upregulated during sporangium formation, consistent with our previous findings that AmssgB is a member of the AmBldD regulon. The AmssgB null mutant (ΔAmssgB) strain formed non-globose irregular structures on the substrate mycelium. Transmission electron microscopy revealed that the irregular structures contained abnormally septate hypha-like cells, without an intrasporangial matrix. These phenotypic changes were restored by complementation with AmssgB. Additionally, analysis of the heterologous expression of seven SALP-encoding genes from Streptomyces coelicolor A3(2) (ssgA-G) in the ΔAmssgB strain revealed that only ssgB could compensate for AmSsgB deficiency. This indicated that SsgB of S. coelicolor A3(2) and AmSsgB have comparable functions in A. missouriensis. In contrast to the ΔAmssgB strain, the ftsZ-disrupted strain showed a severe growth defect and produced small sporangium-like structures that swelled to some extent. These findings indicate that AmSsgB is crucial for the early stages of sporangium formation, not for spore septum formation in the late stages. We propose that AmSsgB is involved in sporangium formation by promoting the expansion of the "presporangium" structures formed on the tips of the substrate hyphae. IMPORTANCE SsgB has been proposed as an archetypical SsgA-like protein with an evolutionarily conserved function in the morphological development of spore-forming actinomycetes. SsgB in Streptomyces coelicolor A3(2) is involved in spore septum formation. However, it is unclear whether this is the primary function of SsgBs in actinobacteria. This study demonstrated that the SsgB ortholog (AmSsgB) in Actinoplanes missouriensis is essential for sporangium expansion, which does not seem to be related to spore septum formation. However, the heterologous expression of ssgB from S. coelicolor A3(2) restored morphological abnormalities in the ΔAmssgB mutant. We propose that the primary function of SsgB is to initiate sporulation in differentiating cells (e.g., aerial hyphae in Streptomyces and "presporangium" cells in A. missouriensis) although its molecular mechanism remains unknown.
Collapse
Affiliation(s)
- Takuya Akutsu
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takeaki Tezuka
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan
| | - Manato Maruko
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Aiko Hirata
- Bioimaging Center, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Tezuka T, Mitsuyama K, Date R, Ohnishi Y. A unique sigma/anti-sigma system in the actinomycete Actinoplanes missouriensis. Nat Commun 2023; 14:8483. [PMID: 38123564 PMCID: PMC10733313 DOI: 10.1038/s41467-023-44291-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
Bacteria of the genus Actinoplanes form sporangia that contain dormant sporangiospores which, upon contact with water, release motile spores (zoospores) through a process called sporangium dehiscence. Here, we set out to study the molecular mechanisms behind sporangium dehiscence in Actinoplanes missouriensis and discover a sigma/anti-sigma system with unique features. Protein σSsdA contains a functional sigma factor domain and an anti-sigma factor antagonist domain, while protein SipA contains an anti-sigma factor domain and an anti-sigma factor antagonist domain. Remarkably, the two proteins interact with each other via the anti-sigma factor antagonist domain of σSsdA and the anti-sigma factor domain of SipA. Although it remains unclear whether the SipA/σSsdA system plays direct roles in sporangium dehiscence, the system seems to modulate oxidative stress responses in zoospores. In addition, we identify a two-component regulatory system (RsdK-RsdR) that represses initiation of sporangium dehiscence.
Collapse
Affiliation(s)
- Takeaki Tezuka
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Graduate School of Infection Control Sciences, Kitasato University, Minato-ku, Tokyo, Japan.
| | - Kyota Mitsuyama
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Risa Date
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
7
|
Liu X, Wang D, Zhang Y, Zhuang X, Bai L. Identification of multiple regulatory genes involved in TGase production in Streptomyces mobaraensis DSM 40587. ENGINEERING MICROBIOLOGY 2023; 3:100098. [PMID: 39628909 PMCID: PMC11611014 DOI: 10.1016/j.engmic.2023.100098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 12/06/2024]
Abstract
Microbial transglutaminase (TGase) is a protein that is secreted in a mature form and finds wide applications in meat products, tissue scaffold crosslinking, and textile engineering. Streptomyces mobaraensis is the only licensed producer of TGase. However, increasing the production of TGase using metabolic engineering and heterologous expression approaches has encountered challenges in meeting industrial demands. Therefore, it is necessary to identify the regulatory networks involved in TGase biosynthesis to establish a stable and highly efficient TGase cell factory. In this study, we employed a DNA-affinity capture assay and mass spectrometry analysis to discover several transcription factors. Among the candidates, eight were selected and found to impact TGase biosynthesis. Notably, SMDS_4150, an AdpA-family regulator, exhibited a significant influence and was hence named AdpA Sm . Through electrophoretic mobility shift assays, we determined that AdpA Sm regulates TGase biosynthesis by directly repressing the transcription of tg and indirectly inhibiting the transcription of SMDS_3961. The latter gene encodes a LytR-family positive regulator of TGase biosynthesis. Additionally, AdpA Sm exhibited negative regulation of its own transcription. To further enhance TGase production, we combined the overexpression of SMDS_3961 with the repression of SMDS_4150, resulting in a remarkable improvement in TGase titer from 28.67 to 52.0 U/mL, representing an 81.37% increase. This study establishes AdpA as a versatile regulator involved in coordinating enzyme biosynthesis in Streptomyces species. Furthermore, we elucidated a cascaded regulatory network governing TGase production.
Collapse
Affiliation(s)
- Xian Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dan Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuru Zhang
- Taixing Dongsheng Bio-Tech Co., Ltd., Taixing 225411, China
| | - Xiaoxin Zhuang
- Taixing Dongsheng Bio-Tech Co., Ltd., Taixing 225411, China
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
8
|
Abstract
Streptomycetes are highly metabolically gifted bacteria with the abilities to produce bioproducts that have profound economic and societal importance. These bioproducts are produced by metabolic pathways including those for the biosynthesis of secondary metabolites and catabolism of plant biomass constituents. Advancements in genome sequencing technologies have revealed a wealth of untapped metabolic potential from Streptomyces genomes. Here, we report the largest Streptomyces pangenome generated by using 205 complete genomes. Metabolic potentials of the pangenome and individual genomes were analyzed, revealing degrees of conservation of individual metabolic pathways and strains potentially suitable for metabolic engineering. Of them, Streptomyces bingchenggensis was identified as a potent degrader of plant biomass. Polyketide, non-ribosomal peptide, and gamma-butyrolactone biosynthetic enzymes are primarily strain specific while ectoine and some terpene biosynthetic pathways are highly conserved. A large number of transcription factors associated with secondary metabolism are strain-specific while those controlling basic biological processes are highly conserved. Although the majority of genes involved in morphological development are highly conserved, there are strain-specific varieties which may contribute to fine tuning the timing of cellular differentiation. Overall, these results provide insights into the metabolic potential, regulation and physiology of streptomycetes, which will facilitate further exploitation of these important bacteria.
Collapse
|
9
|
Involvement of BldC in the Formation of Physiologically Mature Sporangium in Actinoplanes missouriensis. J Bacteriol 2022; 204:e0018922. [PMID: 36005811 PMCID: PMC9487487 DOI: 10.1128/jb.00189-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AmBldD is a global transcriptional regulator that represses the transcription of several genes required for sporangium formation in Actinoplanes missouriensis. Here, we characterized one of the AmBldD regulons: AMIS_1980, encoding an ortholog of BldC, which is a transcriptional regulator involved in the morphological development of Streptomyces. We determined the transcriptional start point of the bldC ortholog by high-resolution S1 nuclease mapping and found an AmBldD box in its 5'-untranslated region. Reverse transcription-quantitative PCR analysis revealed that the transcription of bldC is activated during sporangium formation. A bldC null mutant (ΔbldC) strain formed normally shaped sporangia, but they exhibited defective sporangium dehiscence; under a dehiscence-inducing condition, the number of spores released from the sporangia of the ΔbldC strain was 2 orders of magnitude lower than that from the sporangia of the wild-type strain. RNA sequencing analysis indicated that BldC functions as a transcriptional activator of several developmental genes, including tcrA, which encodes a key transcriptional activator that regulates sporangium formation, sporangium dehiscence, and spore dormancy. Using electrophoretic mobility shift assay (EMSA), we showed that a recombinant BldC protein directly binds to upstream regions of at least 18 genes, the transcription of which is downregulated in the ΔbldC strain. Furthermore, using DNase I footprinting and EMSA, we demonstrated that BldC binds to the direct repeat sequences containing an AT-rich motif. Thus, BldC is a global regulator that activates the transcription of several genes, some of which are likely to be required for sporangium dehiscence. IMPORTANCE BldC is a global transcriptional regulator that acts as a "brake" in the morphological differentiation of Streptomyces. BldC-like proteins are widely distributed throughout eubacteria, but their orthologs have not been studied outside streptomycetes. Here, we revealed that the BldC ortholog in Actinoplanes missouriensis is essential for sporangium dehiscence and that its regulon is different from the BldC regulon in Streptomyces venezuelae, suggesting that BldC has evolved to play different roles in morphological differentiation between the two genera of filamentous actinomycetes.
Collapse
|
10
|
Zong G, Cao G, Fu J, Zhang P, Chen X, Yan W, Xin L, Zhang W, Xu Y, Zhang R. MacRS Controls Morphological Differentiation and Natamycin Biosynthesis in Streptomyces gilvosporeus F607. Microbiol Res 2022; 262:127077. [DOI: 10.1016/j.micres.2022.127077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/10/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
|
11
|
Tezuka T, Ohnishi Y. Surface structure and nanomechanical properties of Actinoplanes missouriensis sporangia analyzed via atomic force microscopy. Biosci Biotechnol Biochem 2022; 86:552-556. [PMID: 35142339 DOI: 10.1093/bbb/zbac002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022]
Abstract
The surface structures of the sporangia produced by Actinoplanes missouriensis were analyzed at high resolution in air and liquid via atomic force microscopy. Results revealed a dynamic change in sporangium surface structure in response to the amount of moisture. Furthermore, the Young's modulus of the sporangium surface (1.95 ± 0.92 GPa) was calculated by analyzing the force-distance curves in air.
Collapse
Affiliation(s)
- Takeaki Tezuka
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
12
|
A comparative metabologenomic approach reveals mechanistic insights into Streptomyces antibiotic crypticity. Proc Natl Acad Sci U S A 2021; 118:2103515118. [PMID: 34326261 PMCID: PMC8346890 DOI: 10.1073/pnas.2103515118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Streptomyces genomes harbor numerous, biosynthetic gene clusters (BGCs) encoding for drug-like compounds. While some of these BGCs readily yield expected products, many do not. Biosynthetic crypticity represents a significant hurdle to drug discovery, and the biological mechanisms that underpin it remain poorly understood. Polycyclic tetramate macrolactam (PTM) antibiotic production is widespread within the Streptomyces genus, and examples of active and cryptic PTM BGCs are known. To reveal further insights into the causes of biosynthetic crypticity, we employed a PTM-targeted comparative metabologenomics approach to analyze a panel of S. griseus clade strains that included both poor and robust PTM producers. By comparing the genomes and PTM production profiles of these strains, we systematically mapped the PTM promoter architecture within the group, revealed that these promoters are directly activated via the global regulator AdpA, and discovered that small promoter insertion-deletion lesions (indels) differentiate weaker PTM producers from stronger ones. We also revealed an unexpected link between robust PTM expression and griseorhodin pigment coproduction, with weaker S. griseus-clade PTM producers being unable to produce the latter compound. This study highlights promoter indels and biosynthetic interactions as important, genetically encoded factors that impact BGC outputs, providing mechanistic insights that will undoubtedly extend to other Streptomyces BGCs. We highlight comparative metabologenomics as a powerful approach to expose genomic features that differentiate strong, antibiotic producers from weaker ones. This should prove useful for rational discovery efforts and is orthogonal to current engineering and molecular signaling approaches now standard in the field.
Collapse
|
13
|
Hashiguchi Y, Tezuka T, Mouri Y, Konishi K, Fujita A, Hirata A, Ohnishi Y. Regulation of Sporangium Formation, Spore Dormancy, and Sporangium Dehiscence by a Hybrid Sensor Histidine Kinase in Actinoplanes missouriensis: Relationship with the Global Transcriptional Regulator TcrA. J Bacteriol 2020; 202:e00228-20. [PMID: 32839172 PMCID: PMC7549356 DOI: 10.1128/jb.00228-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/17/2020] [Indexed: 11/20/2022] Open
Abstract
The rare actinomycete Actinoplanes missouriensis forms terminal sporangia containing a few hundred flagellated spores. In response to water, the sporangia open and release the spores into external environments. The orphan response regulator TcrA functions as a global transcriptional activator during sporangium formation and dehiscence. Here, we report the characterization of an orphan hybrid histidine kinase, HhkA. Sporangia of an hhkA deletion mutant contained many distorted or ectopically germinated spores and scarcely opened to release the spores under sporangium dehiscence-inducing conditions. These phenotypic changes are quite similar to those observed in a tcrA deletion mutant. Comparative RNA sequencing analysis showed that genes controlled by HhkA mostly overlap TcrA-regulated genes. The direct interaction between HhkA and TcrA was suggested by a bacterial two-hybrid assay, but this was not conclusive. The phosphorylation of TcrA using acetyl phosphate as a phosphate donor markedly enhanced its affinity for the TcrA box sequences in the electrophoretic mobility shift assay. Taking these observations together with other results, we proposed that HhkA and TcrA compose a cognate two-component regulatory system, which controls the transcription of the genes involved in many aspects of morphological development, including sporangium formation, spore dormancy, and sporangium dehiscence in A. missouriensisIMPORTANCEActinoplanes missouriensis goes through complex morphological differentiation, including formation of flagellated spore-containing sporangia, sporangium dehiscence, swimming of zoospores, and germination of zoospores to filamentous growth. Although the orphan response regulator TcrA globally activates many genes required for sporangium formation, spore dormancy, and sporangium dehiscence, its partner histidine kinase remained unknown. Here, we analyzed the function of an orphan hybrid histidine kinase, HhkA, and proposed that HhkA constitutes a cognate two-component regulatory system with TcrA. That HhkA and TcrA homologues are highly conserved among the genus Actinoplanes and several closely related rare actinomycetes indicates that this possible two-component regulatory system is employed for complex morphological development in sporangium- and/or zoospore-forming rare actinomycetes.
Collapse
Affiliation(s)
- Yuichiro Hashiguchi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takeaki Tezuka
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Yoshihiro Mouri
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kenji Konishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Azusa Fujita
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Aiko Hirata
- Bioimaging Center, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Hashiguchi Y, Tezuka T, Ohnishi Y. Involvement of three FliA-family sigma factors in the sporangium formation, spore dormancy and sporangium dehiscence in Actinoplanes missouriensis. Mol Microbiol 2020; 113:1170-1188. [PMID: 32052506 DOI: 10.1111/mmi.14485] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/08/2020] [Accepted: 02/09/2020] [Indexed: 12/27/2022]
Abstract
The rare actinomycete Actinoplanes missouriensis forms sporangia, which open up and release zoospores in response to water. Here, we report a genetic and functional analysis of four FliA-family sigma factors, FliA1, FliA2, FliA3 and FliA4. Transcription of fliA1, fliA2 and fliA3 was directly activated by the global transcriptional activator TcrA during sporangium formation and dehiscence, while fliA4 was almost always transcribed at low levels. Gene disruption analysis showed that (a) deletion of fliA2 reduced the zoospore swimming speed by half, (b) the fliA1-fliA2 double-deletion mutant formed abnormal sporangia in which mutant spores ectopically germinated and (c) deletion of fliA3 induced no phenotypic changes in the wild-type and mutant strains of fliA1 and/or fliA2. Comparative RNA-Seq analyses among the wild-type and gene deletion mutant strains showed probable targets of each FliA-family sigma factor, indicating that FliA1- and FliA2-dependent promoters are quite similar to each other, while the FliA3-dependent promoter is somewhat different. Gene complementation experiments also indicated that the FliA1 regulon overlaps with the FliA2 regulon. These results demonstrate that A. missouriensis has developed a complex transcriptional regulatory network involving multiple FliA-family sigma factors for the accomplishment of its characteristic reproduction process, including sporangium formation, spore dormancy and sporangium dehiscence.
Collapse
Affiliation(s)
- Yuichiro Hashiguchi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takeaki Tezuka
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
Identification and Characterization of a Cell Wall Hydrolase for Sporangiospore Maturation in Actinoplanes missouriensis. J Bacteriol 2019; 201:JB.00519-19. [PMID: 31570527 DOI: 10.1128/jb.00519-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/23/2019] [Indexed: 11/20/2022] Open
Abstract
The rare actinomycete Actinoplanes missouriensis grows as substrate mycelium and forms terminal sporangia containing a few hundred spores as dormant cells. Upon contact with water, the sporangia open up and release spores to external environments. Here, we report a cell wall hydrolase, GsmA, that is required for sporangiospore maturation in A. missouriensis The gsmA gene is conserved among Actinoplanes species and several species of other rare actinomycetes. Transcription of gsmA is activated in the late stage of sporangium formation by the global transcriptional activator TcrA, which is involved in sporangium formation and dehiscence. GsmA is composed of an N-terminal signal peptide for the twin arginine translocation pathway, two tandem bacterial SH3-like domains, and a glucosaminidase domain. Zymographic analysis using a recombinant C-terminal glucosaminidase domain protein showed that GsmA is a hydrolase able to digest cell walls extracted from the vegetative mycelia of A. missouriensis and Streptomyces griseus A gsmA deletion mutant (ΔgsmA) formed apparently normal sporangia, but they released chains of 2 to 20 spores under sporangium dehiscence-inducing conditions, indicating that spores did not completely mature in the mutant sporangia. From these results, we concluded that GsmA is a cell wall hydrolase for digesting peptidoglycan at septum-forming sites to separate adjacent spores during sporangiospore maturation in A. missouriensis Unexpectedly, flagella were observed around the spore chains of the ΔgsmA mutant by transmission electron microscopy. The flagellar formation was strictly restricted to cell-cell interfaces, giving an important insight into the polarity of the flagellar biogenesis in a spherical spore.IMPORTANCE In streptomycetes, an aerial hypha is compartmentalized by multiple septations into prespores, which become spores through a series of maturation processes. However, little is known about these maturation processes. The rare actinomycete Actinoplanes missouriensis produces sporangiospores, which are assumed to be formed also from prespores generated by the compartmentalization of intrasporangium hyphae via septation. The identification of GsmA as a cell wall hydrolase for the separation of adjacent spores sheds light on the almost unknown processes of sporangiospore formation in A. missouriensis Furthermore, the fact that GsmA orthologues are conserved within the genus Actinoplanes but not in streptomycetes indicates that Actinoplanes has developed an original strategy for the spore maturation in a specific environment, that is, inside a sporangium.
Collapse
|
16
|
Nindita Y, Cao Z, Fauzi AA, Teshima A, Misaki Y, Muslimin R, Yang Y, Shiwa Y, Yoshikawa H, Tagami M, Lezhava A, Ishikawa J, Kuroda M, Sekizuka T, Inada K, Kinashi H, Arakawa K. The genome sequence of Streptomyces rochei 7434AN4, which carries a linear chromosome and three characteristic linear plasmids. Sci Rep 2019; 9:10973. [PMID: 31358803 PMCID: PMC6662830 DOI: 10.1038/s41598-019-47406-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022] Open
Abstract
Streptomyces rochei 7434AN4 produces two structurally unrelated polyketide antibiotics, lankacidin and lankamycin, and carries three linear plasmids, pSLA2-L (211 kb), -M (113 kb), and -S (18 kb), whose nucleotide sequences were previously reported. The complete nucleotide sequence of the S. rochei chromosome has now been determined using the long-read PacBio RS-II sequencing together with short-read Illumina Genome Analyzer IIx sequencing and Roche 454 pyrosequencing techniques. The assembled sequence revealed an 8,364,802-bp linear chromosome with a high G + C content of 71.7% and 7,568 protein-coding ORFs. Thus, the gross genome size of S. rochei 7434AN4 was confirmed to be 8,706,406 bp including the three linear plasmids. Consistent with our previous study, a tap-tpg gene pair, which is essential for the maintenance of a linear topology of Streptomyces genomes, was not found on the chromosome. Remarkably, the S. rochei chromosome contains seven ribosomal RNA (rrn) operons (16S-23S-5S), although Streptomyces species generally contain six rrn operons. Based on 2ndFind and antiSMASH platforms, the S. rochei chromosome harbors at least 35 secondary metabolite biosynthetic gene clusters, including those for the 28-membered polyene macrolide pentamycin and the azoxyalkene compound KA57-A.
Collapse
Affiliation(s)
- Yosi Nindita
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan.,Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Zhisheng Cao
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Amirudin Akhmad Fauzi
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Aiko Teshima
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Yuya Misaki
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan.,Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Rukman Muslimin
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Yingjie Yang
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Yuh Shiwa
- NODAI Genome Research Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Hirofumi Yoshikawa
- NODAI Genome Research Center, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan.,Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Michihira Tagami
- Omics Science Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Alexander Lezhava
- Omics Science Center, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Jun Ishikawa
- Department of Bioactive Molecules, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Kuninobu Inada
- Natural Science Center for Basic Research and Development, Hiroshima University, 1-4-2 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Haruyasu Kinashi
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Kenji Arakawa
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan. .,Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan.
| |
Collapse
|
17
|
Mouri Y, Jang MS, Konishi K, Hirata A, Tezuka T, Ohnishi Y. Regulation of sporangium formation by the orphan response regulator TcrA in the rare actinomycete Actinoplanes missouriensis. Mol Microbiol 2018; 107:718-733. [PMID: 29363196 DOI: 10.1111/mmi.13910] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2018] [Indexed: 11/28/2022]
Abstract
The rare actinomycete Actinoplanes missouriensis forms terminal sporangia containing a few hundred flagellated spores, which can swim in aquatic environments after release from sporangium. However, gene regulation for its characteristic morphological development is largely unknown. Here, we report the functional analysis of an orphan response regulator, TcrA, which is encoded next to the chemotaxis-flagellar gene cluster. The tcrA null (ΔtcrA) mutant formed sporangium, in which sporulation proceeded. However, many distorted spores were produced and some spores ectopically germinated in the mutant sporangia. In addition, spores were hardly released from the mutant sporangia. A comparative RNA-Seq analysis between the wild-type and ΔtcrA strains showed that TcrA upregulated the transcription of more than 263 genes, which were integrated into 185 transcriptional units. In silico searches identified a 21-bp direct repeat sequence, 5'-nnGCA(A/C)CCG-n4 -GCA(A/C)CCGn-3', as the TcrA box, which was confirmed by electrophoretic mobility shift assays. Finally, we identified 34 transcriptional units as the TcrA regulon. TcrA seems to regulate a few hundred genes through the transcriptional activation of three FliA-family sigma factor genes besides its own regulon. We concluded that TcrA is a global transcriptional activator that controls many aspects of sporangium formation, including flagellar biogenesis, spore dormancy and sporangium dehiscence.
Collapse
Affiliation(s)
- Yoshihiro Mouri
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Moon-Sun Jang
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kenji Konishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Aiko Hirata
- Bioimaging Center, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Takeaki Tezuka
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
18
|
Xu J, Zhang J, Zhuo J, Li Y, Tian Y, Tan H. Activation and mechanism of a cryptic oviedomycin gene cluster via the disruption of a global regulatory gene, adpA, in Streptomyces ansochromogenes. J Biol Chem 2017; 292:19708-19720. [PMID: 28972184 DOI: 10.1074/jbc.m117.809145] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 09/13/2017] [Indexed: 11/06/2022] Open
Abstract
Genome sequencing analysis has revealed at least 35 clusters of likely biosynthetic genes for secondary metabolites in Streptomyces ansochromogenes. Disruption of adpA encoding a global regulator (AdpA) resulted in the failure of nikkomycin production, whereas other antibacterial activities against Staphylococcus aureus, Bacillus cereus, and Bacillus subtilis were observed with the fermentation broth of ΔadpA but not with that of the wild-type strain. Transcriptional analysis showed that a cryptic gene cluster (pks7), which shows high identity with an oviedomycin biosynthetic gene cluster (ovm), was activated in ΔadpA. The corresponding product of pks7 was characterized as oviedomycin by MS and NMR spectroscopy. To understand the molecular mechanism of ovm activation, the roles of six regulatory genes situated in the ovm cluster were investigated. Among them, proteins encoded by co-transcribed genes ovmZ and ovmW are positive regulators of ovm AdpA directly represses the transcription of ovmZ and ovmW Co-overexpression of ovmZ and ovmW can relieve the repression of AdpA on ovm transcription and effectively activate oviedomycin biosynthesis. The promoter of ovmOI-ovmH is identified as the direct target of OvmZ and OvmW. This is the first report that AdpA can simultaneously activate nikkomycin biosynthesis but repress oviedomycin biosynthesis in one strain. Our findings provide an effective strategy that is able to activate cryptic secondary metabolite gene clusters by genetic manipulation of global regulatory genes.
Collapse
Affiliation(s)
- Jingjing Xu
- From the State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China and.,the University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Jihui Zhang
- From the State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China and
| | - Jiming Zhuo
- From the State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China and.,the University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Yue Li
- From the State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China and
| | - Yuqing Tian
- From the State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China and .,the University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Huarong Tan
- From the State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China and .,the University of the Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
19
|
Ray S, Maitra A, Biswas A, Panjikar S, Mondal J, Anand R. Functional insights into the mode of DNA and ligand binding of the TetR family regulator TylP from Streptomyces fradiae. J Biol Chem 2017; 292:15301-15311. [PMID: 28739805 DOI: 10.1074/jbc.m117.788000] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/21/2017] [Indexed: 01/18/2023] Open
Abstract
Tetracycline repressors (TetRs) modulate multidrug efflux pathways in several pathogenic bacteria. In Streptomyces, they additionally regulate secondary metabolic pathways like antibiotic production. For instance, in the antibiotic producer Streptomyces fradiae, a layered network of TetRs regulates the levels of the commercially important antibiotic tylosin, with TylP occupying the top of this cascading network. TetRs exist in two functional states, the DNA-bound and the ligand-bound form, which are allosterically regulated. Here, to develop deeper insights into the factors that govern allostery, the crystal structure of TylP was solved to a resolution of 2.3 Å. The structure revealed that TylP possesses several unique features; notably, it harbors a unique C-terminal helix-loop extension that spans the entire length of the structure. This anchor connects the DNA-binding domain (DBD) with the ligand-binding domain (LBD) via a mix of positively charged and hydrogen-bonding interactions. Supporting EMSA studies with a series of ΔC truncated versions show that a systematic deletion of this region results in complete loss of DNA binding. The structure additionally revealed that TylP is markedly different in the orientation of its DBD and LBD architecture and the dimeric geometry from its hypothesized Streptomyces homologue CprB, which is a γ-butyrolactone regulator. Rather, TylP is closer in structural design to macrolide-binding TetRs found in pathogens. Supporting molecular dynamic studies suggested that TylP binds a macrolide intermediate in the tylosin pathway. Collectively, the structure along with corroborating biochemical studies provided insights into the novel mode of regulation of TetRs in antibiotic-producing organisms.
Collapse
Affiliation(s)
- Shamayeeta Ray
- From the Department of Chemistry, Indian Institute of Technology Bombay, Mumbai-400076, India.,the IITB-Monash Research Academy, Mumbai-400076, India
| | - Anwesha Maitra
- From the Department of Chemistry, Indian Institute of Technology Bombay, Mumbai-400076, India
| | - Anwesha Biswas
- From the Department of Chemistry, Indian Institute of Technology Bombay, Mumbai-400076, India
| | - Santosh Panjikar
- the Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia.,the Australian Synchrotron, Victoria 3168, Australia, and
| | - Jagannath Mondal
- the Tata Institute of Fundamental Research (TIFR) Centre for Interdisciplinary Sciences, Hyderabad-500075, India
| | - Ruchi Anand
- From the Department of Chemistry, Indian Institute of Technology Bombay, Mumbai-400076, India,
| |
Collapse
|
20
|
|
21
|
Regulation of Sporangium Formation by BldD in the Rare Actinomycete Actinoplanes missouriensis. J Bacteriol 2017; 199:JB.00840-16. [PMID: 28348024 DOI: 10.1128/jb.00840-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/19/2017] [Indexed: 11/20/2022] Open
Abstract
The rare actinomycete Actinoplanes missouriensis forms sporangia, including hundreds of flagellated spores that start swimming as zoospores after their release. Under conditions suitable for vegetative growth, zoospores stop swimming and germinate. A comparative proteome analysis between zoospores and germinating cells identified 15 proteins that were produced in larger amounts in germinating cells. They include an orthologue of BldD (herein named AmBldD [BldD of A. missouriensis]), which is a transcriptional regulator involved in morphological development and secondary metabolism in Streptomyces AmBldD was detected in mycelia during vegetative growth but was barely detected in mycelia during the sporangium-forming phase, in spite of the constant transcription of AmbldD throughout growth. An AmbldD mutant started to form sporangia much earlier than the wild-type strain, and the resulting sporangia were morphologically abnormal. Recombinant AmBldD bound a palindromic sequence, the AmBldD box, located upstream from AmbldD 3',5'-Cyclic di-GMP significantly enhanced the in vitro DNA-binding ability of AmBldD. A chromatin immunoprecipitation-sequencing analysis and an in silico search for AmBldD boxes revealed that AmBldD bound 346 genomic loci that contained the 19-bp inverted repeat 5'-NN(G/A)TNACN(C/G)N(G/C)NGTNA(C/T)NN-3' as the consensus AmBldD-binding sequence. The transcriptional analysis of 27 selected AmBldD target gene candidates indicated that AmBldD should repress 12 of the 27 genes, including bldM, ssgB, whiD, ddbA, and wblA orthologues. These genes are involved in morphological development in Streptomyces coelicolor A3(2). Thus, AmBldD is a global transcriptional regulator that seems to repress the transcription of tens of genes during vegetative growth, some of which are likely to be required for sporangium formation.IMPORTANCE The rare actinomycete Actinoplanes missouriensis undergoes complex morphological differentiation, including sporangium formation. However, almost no molecular biological studies have been conducted on this bacterium. BldD is a key global regulator involved in the morphological development of streptomycetes. BldD orthologues are highly conserved among sporulating actinomycetes, but no BldD orthologues, except one in Saccharopolyspora erythraea, have been studied outside the streptomycetes. Here, it was revealed that the BldD orthologue AmBldD is essential for normal developmental processes in A. missouriensis The AmBldD regulon seems to be different from the BldD regulon in Streptomyces coelicolor A3(2), but they share four genes that are involved in morphological differentiation in S. coelicolor A3(2).
Collapse
|
22
|
van der Meij A, Worsley SF, Hutchings MI, van Wezel GP. Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiol Rev 2017; 41:392-416. [DOI: 10.1093/femsre/fux005] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/02/2017] [Indexed: 12/13/2022] Open
|
23
|
|
24
|
Ferguson NL, Peña-Castillo L, Moore MA, Bignell DRD, Tahlan K. Proteomics analysis of global regulatory cascades involved in clavulanic acid production and morphological development in Streptomyces clavuligerus. ACTA ACUST UNITED AC 2016; 43:537-55. [DOI: 10.1007/s10295-016-1733-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/02/2016] [Indexed: 12/11/2022]
Abstract
Abstract
The genus Streptomyces comprises bacteria that undergo a complex developmental life cycle and produce many metabolites of importance to industry and medicine. Streptomyces clavuligerus produces the β-lactamase inhibitor clavulanic acid, which is used in combination with β-lactam antibiotics to treat certain β-lactam resistant bacterial infections. Many aspects of how clavulanic acid production is globally regulated in S. clavuligerus still remains unknown. We conducted comparative proteomics analysis using the wild type strain of S. clavuligerus and two mutants (ΔbldA and ΔbldG), which are defective in global regulators and vary in their ability to produce clavulanic acid. Approximately 33.5 % of the predicted S. clavuligerus proteome was detected and 192 known or putative regulatory proteins showed statistically differential expression levels in pairwise comparisons. Interestingly, the expression of many proteins whose corresponding genes contain TTA codons (predicted to require the bldA tRNA for translation) was unaffected in the bldA mutant.
Collapse
Affiliation(s)
- Nicole L Ferguson
- grid.25055.37 0000000091306822 Department of Biology Memorial University of Newfoundland A1B 3X9 St. John’s NL Canada
| | - Lourdes Peña-Castillo
- grid.25055.37 0000000091306822 Department of Biology Memorial University of Newfoundland A1B 3X9 St. John’s NL Canada
- grid.25055.37 0000000091306822 Department of Computer Science Memorial University of Newfoundland A1B 3X5 St. John’s NL Canada
| | - Marcus A Moore
- grid.25055.37 0000000091306822 Department of Biology Memorial University of Newfoundland A1B 3X9 St. John’s NL Canada
| | - Dawn R D Bignell
- grid.25055.37 0000000091306822 Department of Biology Memorial University of Newfoundland A1B 3X9 St. John’s NL Canada
| | - Kapil Tahlan
- grid.25055.37 0000000091306822 Department of Biology Memorial University of Newfoundland A1B 3X9 St. John’s NL Canada
| |
Collapse
|
25
|
Bignell DRD, Francis IM, Fyans JK, Loria R. Thaxtomin A production and virulence are controlled by several bld gene global regulators in Streptomyces scabies. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:875-85. [PMID: 24678834 DOI: 10.1094/mpmi-02-14-0037-r] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Streptomyces scabies is the main causative agent of common scab disease, which leads to significant annual losses to potato growers worldwide. The main virulence factor produced by S. scabies is a phytotoxic secondary metabolite called thaxtomin A, which functions as a cellulose synthesis inhibitor. Thaxtomin A production is controlled by the cluster-situated regulator TxtR, which activates expression of the thaxtomin biosynthetic genes in response to cello-oligosaccharides. Here, we demonstrate that at least five additional regulatory genes are required for wild-type levels of thaxtomin A production and plant pathogenicity in S. scabies. These regulatory genes belong to the bld gene family of global regulators that control secondary metabolism or morphological differentiation in Streptomyces spp. Quantitative reverse-transcriptase polymerase chain reaction showed that expression of the thaxtomin biosynthetic genes was significantly downregulated in all five bld mutants and, in four of these mutants, this downregulation was attributed to the reduction in expression of txtR. Furthermore, all of the mutants displayed reduced expression of other known or predicted virulence genes, suggesting that the bld genes may function as global regulators of virulence gene expression in S. scabies.
Collapse
|
26
|
Rabyk MV, Ostash BO, Fedorenko VO. Gene networks regulating secondary metabolism in actinomycetes: Pleiotropic regulators. CYTOL GENET+ 2014. [DOI: 10.3103/s0095452714010083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Yao MD, Ohtsuka J, Nagata K, Miyazono KI, Zhi Y, Ohnishi Y, Tanokura M. Complex structure of the DNA-binding domain of AdpA, the global transcription factor in Streptomyces griseus, and a target duplex DNA reveals the structural basis of its tolerant DNA sequence specificity. J Biol Chem 2013; 288:31019-29. [PMID: 24019524 DOI: 10.1074/jbc.m113.473611] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AdpA serves as the global transcription factor in the A-factor regulatory cascade, controlling the secondary metabolism and morphological differentiation of the filamentous bacterium Streptomyces griseus. AdpA binds to over 500 operator regions with the consensus sequence 5'-TGGCSNGWWY-3' (where S is G or C, W is A or T, Y is T or C, and N is any nucleotide). However, it is still obscure how AdpA can control hundreds of genes. To elucidate the structural basis of this tolerant DNA recognition by AdpA, we focused on the interaction between the DNA-binding domain of AdpA (AdpA-DBD), which consists of two helix-turn-helix motifs, and a target duplex DNA containing the consensus sequence 5'-TGGCGGGTTC-3'. The crystal structure of the AdpA-DBD-DNA complex and the mutant analysis of AdpA-DBD revealed its unique manner of DNA recognition, whereby only two arginine residues directly recognize the consensus sequence, explaining the strict recognition of G and C at positions 2 and 4, respectively, and the tolerant recognition of other positions of the consensus sequence. AdpA-DBD confers tolerant DNA sequence specificity to AdpA, allowing it to control hundreds of genes as a global transcription factor.
Collapse
Affiliation(s)
- Ming Dong Yao
- From the Departments of Applied Biological Chemistry and
| | | | | | | | | | | | | |
Collapse
|
28
|
Otani H, Higo A, Nanamiya H, Horinouchi S, Ohnishi Y. An alternative sigma factor governs the principal sigma factor inStreptomyces griseus. Mol Microbiol 2013; 87:1223-36. [DOI: 10.1111/mmi.12160] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Hiroshi Otani
- Department of Biotechnology; Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo; 113-8657; Japan
| | - Akiyoshi Higo
- Department of Biotechnology; Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo; 113-8657; Japan
| | - Hideaki Nanamiya
- Department of Biotechnology; Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo; 113-8657; Japan
| | - Sueharu Horinouchi
- Department of Biotechnology; Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo; 113-8657; Japan
| | - Yasuo Ohnishi
- Department of Biotechnology; Graduate School of Agricultural and Life Sciences; The University of Tokyo; Tokyo; 113-8657; Japan
| |
Collapse
|
29
|
Ng YK, Hewavitharana AK, Webb R, Shaw PN, Fuerst JA. Developmental cycle and pharmaceutically relevant compounds of Salinispora actinobacteria isolated from Great Barrier Reef marine sponges. Appl Microbiol Biotechnol 2012; 97:3097-108. [DOI: 10.1007/s00253-012-4479-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/16/2012] [Accepted: 09/29/2012] [Indexed: 10/27/2022]
|
30
|
Abstract
Background Streptomycetes are filamentous soil-dwelling bacteria. They are best known as the
producers of a great variety of natural products such as antibiotics, antifungals,
antiparasitics, and anticancer agents and the decomposers of organic substances
for carbon recycling. They are also model organisms for the studies of gene
regulatory networks, morphological differentiation, and stress response. The
availability of sets of genomes from closely related Streptomyces strains
makes it possible to assess the mechanisms underlying genome plasticity and
systems adaptation. Results We present the results of a comprehensive analysis of the genomes of five
Streptomyces species with distinct phenotypes. These streptomycetes
have a pan-genome comprised of 17,362 orthologous families which includes 3,096
components in the core genome, 5,066 components in the dispensable genome, and
9,200 components that are uniquely present in only one species. The core genome
makes up about 33%-45% of each genome repertoire. It contains important genes for
Streptomyces biology including those involved in gene regulation,
secretion, secondary metabolism and morphological differentiation. Abundant
duplicate genes have been identified, with 4%-11% of the whole genomes composed of
lineage-specific expansions (LSEs), suggesting that frequent gene duplication or
lateral gene transfer events play a role in shaping the genome diversification
within this genus. Two patterns of expansion, single gene expansion and chromosome
block expansion are observed, representing different scales of duplication. Conclusions Our results provide a catalog of genome components and their potential functional
roles in gene regulatory networks and metabolic networks. The core genome
components reveal the minimum requirement for streptomycetes to sustain a
successful lifecycle in the soil environment, reflecting the effects of both
genome evolution and environmental stress acting upon the expressed phenotypes. A
better understanding of the LSE gene families will, on the other hand, bring a
wealth of new insights into the mechanisms underlying strain-specific phenotypes,
such as the production of novel antibiotics, pathogenesis, and adaptive response
to environmental challenges.
Collapse
Affiliation(s)
- Zhan Zhou
- College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | | | | | | |
Collapse
|
31
|
Bibb MJ, Domonkos A, Chandra G, Buttner MJ. Expression of the chaplin and rodlin hydrophobic sheath proteins in Streptomyces venezuelae is controlled by σ(BldN) and a cognate anti-sigma factor, RsbN. Mol Microbiol 2012; 84:1033-49. [PMID: 22582857 DOI: 10.1111/j.1365-2958.2012.08070.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The chaplin and rodlin proteins together constitute the major components of the hydrophobic sheath that coats the aerial hyphae and spores in Streptomyces, and mutants lacking the chaplins are unable to erect aerial hyphae and differentiate on minimal media. We have gained insight into the developmental regulation of the chaplin (chp) and rodlin (rdl) genes by exploiting a new model species, Streptomyces venezuelae, which sporulates in liquid culture. Using microarrays, the chaplin and rodlin genes were found to be highly induced during submerged sporulation in a bldN-dependent manner. Using σ(BldN) ChIP-chip, we show that this dependence arises because the chaplin and rodlin genes are direct biochemical targets of σ(BldN) . sven3186 (here named rsbN for regulator of sigma BldN), the gene lying immediately downstream of bldN, was also identified as a target of σ(BldN) . Disruption of rsbN causes precocious sporulation and biochemical experiments demonstrate that RsbN functions as a σ(BldN) -specific anti-sigma factor.
Collapse
Affiliation(s)
- Maureen J Bibb
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK.
| | | | | | | |
Collapse
|
32
|
McCormick JR, Flärdh K. Signals and regulators that govern Streptomyces development. FEMS Microbiol Rev 2012; 36:206-31. [PMID: 22092088 PMCID: PMC3285474 DOI: 10.1111/j.1574-6976.2011.00317.x] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Revised: 10/29/2011] [Accepted: 10/30/2011] [Indexed: 12/16/2022] Open
Abstract
Streptomyces coelicolor is the genetically best characterized species of a populous genus belonging to the gram-positive Actinobacteria. Streptomycetes are filamentous soil organisms, well known for the production of a plethora of biologically active secondary metabolic compounds. The Streptomyces developmental life cycle is uniquely complex and involves coordinated multicellular development with both physiological and morphological differentiation of several cell types, culminating in the production of secondary metabolites and dispersal of mature spores. This review presents a current appreciation of the signaling mechanisms used to orchestrate the decision to undergo morphological differentiation, and the regulators and regulatory networks that direct the intriguing development of multigenomic hyphae first to form specialized aerial hyphae and then to convert them into chains of dormant spores. This current view of S. coelicolor development is destined for rapid evolution as data from '-omics' studies shed light on gene regulatory networks, new genetic screens identify hitherto unknown players, and the resolution of our insights into the underlying cell biological processes steadily improve.
Collapse
Affiliation(s)
| | - Klas Flärdh
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
33
|
Higo A, Horinouchi S, Ohnishi Y. Strict regulation of morphological differentiation and secondary metabolism by a positive feedback loop between two global regulators AdpA and BldA in Streptomyces griseus. Mol Microbiol 2011; 81:1607-22. [PMID: 21883521 DOI: 10.1111/j.1365-2958.2011.07795.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AdpA is a global transcriptional regulator that is induced by the microbial hormone A-factor and activates many genes required for morphological differentiation and secondary metabolism in Streptomyces griseus. We confirmed that the regulatory tRNA gene bldA was required for translation of TTA-containing adpA. We also demonstrated that AdpA bound two sites upstream of the bldA promoter and activated transcription of bldA. Thus, we revealed a unique positive feedback loop between AdpA and BldA in S. griseus. Forced expression of bldA in an A-factor-deficient mutant resulted in the partial restoration of aerial mycelium formation and streptomycin production, suggesting that the positive feedback loop could prevent premature transcriptional activation of the AdpA-target genes in the wild-type strain. We revealed that the morphological defect of the bldA mutant could be attributed mainly to the TTA codons of only two genes: adpA and amfR. amfR encodes a transcriptional activator essential for aerial mycelium formation and is a member of the AdpA regulon. Thus, amfR is regulated by a feedforward mechanism involving AdpA and BldA. We concluded that the central regulatory unit composed of AdpA and BldA plays important roles in the initiation of morphological differentiation and secondary metabolism triggered by A-factor.
Collapse
Affiliation(s)
- Akiyoshi Higo
- Department of Biotechnology, Graduate School of Agriculture and Life Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | |
Collapse
|
34
|
Chi WJ, Jin XM, Jung SC, Oh EA, Hong SK. Characterization of Sgr3394 produced only by the A-factor-producin Streptomyces griseus IFO 13350, not by the A-factor deficient mutant. J Microbiol 2011; 49:155-60. [DOI: 10.1007/s12275-011-0330-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 01/14/2011] [Indexed: 12/01/2022]
|
35
|
Akanuma G, Ueki M, Ishizuka M, Ohnishi Y, Horinouchi S. Control of aerial mycelium formation by the BldK oligopeptide ABC transporter in Streptomyces griseus. FEMS Microbiol Lett 2010; 315:54-62. [DOI: 10.1111/j.1574-6968.2010.02177.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
36
|
Pan Y, Liu G, Yang H, Tian Y, Tan H. The pleiotropic regulator AdpA-L directly controls the pathway-specific activator of nikkomycin biosynthesis in Streptomyces ansochromogenes. Mol Microbiol 2010; 72:710-23. [PMID: 19400773 DOI: 10.1111/j.1365-2958.2009.06681.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nikkomycin-producing strain Streptomyces ansochromogenes has a homologue (adpA-L) of the key pleiotropic Streptomyces regulatory gene adpA. Gene disruption and genetic complementation revealed that adpA-L was required for both nikkomycin biosynthesis and morphological differentiation. Transcriptional analysis suggested that the transcription of sanG, the specific activator gene for nikkomycin biosynthesis, was dependent on AdpA-L. In gel-shift and DNase 1 footprinting assays, the purified His(6)-tagged recombinant AdpA-L protein bound the upstream region of sanG at five sites, which are spread over more than one kilobase of DNA and most of which is inside the transcribed region. A consensus AdpA-L-binding sequence, 5'-TGGCNNVWHN-3' (V: C, A or G; W: A or T; H: A, T or C; N: any nucleotide) was found in these binding sites. Transcriptional analysis of sanG carrying mutated AdpA-L binding sites showed that transcription of sanG was eliminated when site I was mutated and its trascription was decreased when site V was mutated, whereas it was increased when the binding sites II, III or IV were mutated. Meanwhile, nikkomycin production of the mutated site III strain was enhanced comparing with the wild-type strain as control. This work highlights a new level of complexity in the regulation of nikkomycin biosynthesis.
Collapse
Affiliation(s)
- Yuanyuan Pan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Science, Beijing, China
| | | | | | | | | |
Collapse
|
37
|
Willey JM, Gaskell AA. Morphogenetic Signaling Molecules of the Streptomycetes. Chem Rev 2010; 111:174-87. [DOI: 10.1021/cr1000404] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joanne M. Willey
- Department of Biology, Hofstra University, Hempstead, New York 11549, United States, and Hofstra University-North Shore-Long Island Jewish School of Medicine, Hempstead, New York 11549, United States
| | - Alisa A. Gaskell
- Department of Biology, Hofstra University, Hempstead, New York 11549, United States, and Hofstra University-North Shore-Long Island Jewish School of Medicine, Hempstead, New York 11549, United States
| |
Collapse
|
38
|
Yu Z, Reichheld SE, Savchenko A, Parkinson J, Davidson AR. A comprehensive analysis of structural and sequence conservation in the TetR family transcriptional regulators. J Mol Biol 2010; 400:847-64. [PMID: 20595046 DOI: 10.1016/j.jmb.2010.05.062] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 05/21/2010] [Accepted: 05/25/2010] [Indexed: 11/17/2022]
Abstract
The tetracycline repressor family transcriptional regulators (TFRs) are homodimeric DNA-binding proteins that generally act as transcriptional repressors. Their DNA-binding activity is allosterically inactivated by the binding of small-molecule ligands. TFRs constitute the third most frequently occurring transcriptional regulator family found in bacteria with more than 10,000 representatives in the nonredundant protein database. In addition, more than 100 unique TFR structures have been solved by X-ray crystallography. In this study, we have used computational and experimental approaches to reveal the variations and conservation present within TFRs. Although TFR structures are very diverse, we were able to identify a conserved central triangle in their ligand-binding domains that forms the foundation of the structure and the framework for the ligand-binding cavity. While the sequences of DNA-binding domains of TFRs are highly conserved across the whole family, the sequences of their ligand-binding domains are so diverse that pairwise sequence similarity is often undetectable. Nevertheless, by analyzing subfamilies of TFRs, we were able to identify distinct regions of conservation in ligand-binding domains that may be important for allostery. To aid in large-scale analyses of TFR function, we have developed a simple and reliable computational approach to predict TFR operator sequences, a temperature melt-based assay to measure DNA binding, and a generic ligand-binding assay that will likely be applicable to most TFRs. Finally, our analysis of TFR structures highlights their flexibility and provides insight into a conserved allosteric mechanism for this family.
Collapse
Affiliation(s)
- Zhou Yu
- Department of Molecular Genetics, University of Toronto, 4285 Medical Sciences Building, 1 King's College Circle, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
39
|
Lopez-Garcia MT, Santamarta I, Liras P. Morphological differentiation and clavulanic acid formation are affected in a Streptomyces clavuligerus adpA-deleted mutant. Microbiology (Reading) 2010; 156:2354-2365. [DOI: 10.1099/mic.0.035956-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
40
|
SanG, a transcriptional activator, controls nikkomycin biosynthesis through binding to the sanN–sanO intergenic region in Streptomyces ansochromogenes. Microbiology (Reading) 2010; 156:828-837. [DOI: 10.1099/mic.0.033605-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Streptomyces ansochromogenes SanG is a pathway-specific regulator that mainly controls the transcription of two transcriptional units involved in nikkomycin biosynthesis. SanG consists of three major functional domains: an N-terminal Streptomyces antibiotic regulatory protein (SARP) domain, a central ATPase domain, and a C-terminal half homologous to guanylate cyclases belonging to the LuxR family. SanG was expressed in Escherichia coli as a C-terminally His6-tagged protein. The purified SanG-His6 was shown to be a dimer in solution by dynamic light scattering. An electrophoretic mobility-shift assay showed that the purified SanG protein could bind to the DNA fragment containing the bidirectional sanN–sanO promoter region. The SanG-binding sites within the bidirectional sanN–sanO promoter region were determined by footprinting analysis and identified a consensus-directed repeat sequence 5′-CGGCAAG-3′. SanG showed significant ATPase/GTPase activity in vitro, and addition of ATP/GTP enhanced the affinity of SanG for target DNA, but ATP/GTP hydrolysis was not essential for SanG binding to the target DNA. However, real-time reverse transcription PCR showed that mutation of the ATPase/GTPase domain of SanG significantly decreased the transcriptional level of sanN–I and sanO–V. These results indicated that the ATPase/GTPase activity of SanG modulated the transcriptional activation of SanG target genes during nikkomycin biosynthesis.
Collapse
|
41
|
Akanuma G, Hara H, Ohnishi Y, Horinouchi S. Dynamic changes in the extracellular proteome caused by absence of a pleiotropic regulator AdpA in Streptomyces griseus. Mol Microbiol 2009; 73:898-912. [PMID: 19678896 DOI: 10.1111/j.1365-2958.2009.06814.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In Streptomyces griseus, A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone) triggers morphological development and secondary metabolism by inducing a pleiotropic transcriptional regulator AdpA. Extracellular proteome analysis of the wild-type and DeltaadpA strains grown to the end of the exponential phase in liquid minimal medium revealed that 38 secreted proteins, including many catabolic enzymes, such as protease, glycosyl hydrolase and esterase, were produced in an AdpA-dependent manner. Transcriptome analysis showed that almost all of these AdpA-dependent secreted proteins were regulated at the transcriptional level. In vitro AdpA-binding assays and determination of transcriptional start sites led to identification of 11 promoters as novel targets of AdpA. Viability staining revealed that some hyphae lysed during the exponential growth phase, which could explain the detection of 3 and 23 cytoplasmic proteins in the culture media of the wild-type and DeltaadpA strains respectively. In the wild-type strain, due to high protease activity in the culture medium, cytoplasmic proteins that leaked from dead cells seemed to be degraded and reused for the further growth. The existence of many AdpA-dependent (i.e. A-factor-inducible) secreted catabolic enzymes, which are likely involved in the assimilation of material that leaked from dead cells, reemphasizes the importance of A-factor in the morphological differentiation of S. griseus.
Collapse
Affiliation(s)
- Genki Akanuma
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
42
|
CebR as a master regulator for cellulose/cellooligosaccharide catabolism affects morphological development in Streptomyces griseus. J Bacteriol 2009; 191:5930-40. [PMID: 19648249 DOI: 10.1128/jb.00703-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Streptomyces griseus mutants exhibiting deficient glucose repression of beta-galactosidase activity on lactose-containing minimal medium supplemented with a high concentration of glucose were isolated. One of these mutants had a 12-bp deletion in cebR, which encodes a LacI/GalR family regulator. Disruption of cebR in the wild-type strain caused the same phenotype as the mutant, indicating that CebR is required for glucose repression of beta-galactosidase activity. Recombinant CebR protein bound to a 14-bp inverted-repeat sequence (designated the CebR box) present in the promoter regions of cebR and the putative cellobiose utilization operon, cebEFG-bglC. The DNA-binding activity of CebR was impaired by cellooligosaccharides, including cellobiose, cellotriose, cellotetraose, cellopentaose, and cellohexaose. In agreement with this observation, transcription from the cebE and cebR promoters was greatly enhanced by the addition of cellobiose to the medium. Seven other genes containing one or two CebR boxes in their upstream regions were found in the S. griseus genome. Five of these genes encode putative secreted proteins: two cellulases, a cellulose-binding protein, a pectate lyase, and a protein of unknown function. These five genes and cebEFG-bglC were transcribed at levels 4 to 130 times higher in the DeltacebR mutant than in the wild-type strain, as determined by quantitative reverse transcription-PCR. These findings indicate that CebR is a master regulator of cellulose/cellooligosaccharide catabolism. Unexpectedly, the DeltacebR mutant formed very few aerial hyphae on lactose-containing medium, demonstrating a link between carbon source utilization and morphological development.
Collapse
|
43
|
Identification and gene disruption of small noncoding RNAs in Streptomyces griseus. J Bacteriol 2009; 191:4896-904. [PMID: 19465662 DOI: 10.1128/jb.00087-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Small noncoding RNAs (sRNAs) have been shown to control diverse cellular processes in prokaryotes. To identify and characterize novel bacterial sRNAs, a gram-positive, soil-inhabiting, filamentous bacterium, Streptomyces griseus, was examined, on the assumption that Streptomyces should express sRNAs as important regulators of morphological and physiological differentiation. By bioinformatics investigation, 54 sRNA candidates, which were encoded on intergenic regions of the S. griseus chromosome and were highly conserved in those of both Streptomyces coelicolor A3(2) and Streptomyces avermitilis, were selected. Of these 54 sRNA candidates, 17 transcripts were detected by Northern blot analysis of the total RNAs isolated from cells grown on solid medium. Then, the direction of transcription of each sRNA candidate gene was determined by S1 nuclease mapping, followed by exclusion of four sRNA candidates that were considered riboswitches of their downstream open reading frames (ORFs). Finally, a further sRNA candidate was excluded because it was cotranscribed with the upstream ORF determined by reverse transcription-PCR. Thus, 12 sRNAs ranging in size from 40 to 300 nucleotides were identified in S. griseus. Seven of them were apparently transcribed in a growth phase-dependent manner. Furthermore, of the 12 sRNAs, the expression profiles of 7 were significantly influenced by a mutation of adpA, which encodes the central transcriptional regulator of the A-factor regulatory cascade involved in both morphological differentiation and secondary metabolism in S. griseus. However, disruption of all 12 sRNA genes showed no detectable phenotypic changes; all the disruptants grew and formed aerial mycelium and spores with the same time course as the wild-type strain on various media and produced streptomycin similarly to the wild-type strain.
Collapse
|
44
|
Hara H, Ohnishi Y, Horinouchi S. DNA microarray analysis of global gene regulation by A-factor in Streptomyces griseus. MICROBIOLOGY-SGM 2009; 155:2197-2210. [PMID: 19389771 DOI: 10.1099/mic.0.027862-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone) is a microbial hormone that triggers morphological differentiation and secondary metabolism in Streptomyces griseus. The effects of A-factor on global gene expression were determined by DNA microarray analysis of transcriptomes obtained with the A-factor-deficient mutant DeltaafsA. A-factor was added at a concentration of 25 ng ml(-1) to mutant DeltaafsA at the middle of the exponential growth phase, and RNA samples were prepared from the cells grown after A-factor addition for a further 5, 15 and 30 min, and 1, 2, 4, 8 and 12 h. The effects of A-factor on transcription of all protein-coding genes of S. griseus were evaluated by comparison of the transcriptomes with those obtained from cells grown in the absence of A-factor. Analysis of variance among the transcriptomes revealed that 477 genes, which were dispersed throughout the chromosome, were differentially expressed during the 12 h after addition of A-factor, when evaluated by specific criteria. Quality threshold clustering analysis with regard to putative polycistronic transcriptional units and levels of upregulation predicted that 152 genes belonging to 74 transcriptional units were probable A-factor-inducible genes. Competitive electrophoretic mobility shift assays using DNA fragments including putative promoter regions of these 74 transcriptional units suggested that AdpA bound 37 regions to activate 72 genes in total. Many of these A-factor-inducible genes encoded proteins of unknown function, suggesting that the A-factor regulatory cascade of S. griseus affects gene expression at a specific time point more profoundly than expected.
Collapse
Affiliation(s)
- Hirofumi Hara
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Sueharu Horinouchi
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
45
|
Bibb M, Hesketh A. Chapter 4. Analyzing the regulation of antibiotic production in streptomycetes. Methods Enzymol 2009; 458:93-116. [PMID: 19374980 DOI: 10.1016/s0076-6879(09)04804-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This chapter outlines the approaches and techniques that can be used to analyze the regulation of antibiotic production in streptomycetes. It describes how to isolate antibiotic nonproducing and overproducing mutants by UV, nitrosoguanidine (NTG), transposon, and insertion mutagenesis, and then how to use those mutants to identify regulatory genes. Other approaches to identify both pathway-specific and pleiotropic regulatory genes include overexpression and genome scanning. A variety of methods used to characterize pathway-specific regulatory genes for antibiotic biosynthesis are then covered, including transcriptional analysis and techniques that can be used to distinguish between direct and indirect regulation. Finally, genome-wide approaches that can be taken to characterize pleiotropic regulatory genes, including microarray and ChIP-on-Chip technologies, are described.
Collapse
Affiliation(s)
- Mervyn Bibb
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | | |
Collapse
|
46
|
Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol 2009; 7:36-49. [DOI: 10.1038/nrmicro1968] [Citation(s) in RCA: 465] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Hirano S, Tanaka K, Ohnishi Y, Horinouchi S. Conditionally positive effect of the TetR-family transcriptional regulator AtrA on streptomycin production by Streptomyces griseus. MICROBIOLOGY-SGM 2008; 154:905-914. [PMID: 18310036 DOI: 10.1099/mic.0.2007/014381-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AtrA, a transcriptional activator for actII-ORF4, encoding the pathway-specific transcriptional activator of the actinorhodin biosynthetic gene cluster in Streptomyces coelicolor A3(2), has been shown to bind the region upstream from the promoter of strR, encoding the pathway-specific transcriptional activator of the streptomycin biosynthetic gene cluster in Streptomyces griseus [Uguru et al. (2005) Mol Microbiol 58, 131-150]. The atrA orthologue (atrA-g) in S. griseus was constitutively transcribed throughout growth from a promoter located about 250 nt upstream of the translational start codon, as determined by S1 nuclease mapping. DNase I footprinting showed that histidine-tagged AtrA-g bound an inverted repeat located upstream of strR at positions -117 to -142 relative to the transcriptional start point of strR as +1. This AtrA-g-binding site was between two AdpA-binding sites at approximately nucleotide positions -270 and -50. AdpA is a central transcriptional activator in the A-factor regulatory cascade and essential for the transcription of strR. AtrA-g and AdpA simultaneously bound the respective binding sites. In contrast to AdpA, AtrA-g was non-essential for strR transcription; an atrA-g-disrupted strain produced streptomycin on routine agar media to the same extent as the wild-type strain. However, the atrA-g-disrupted strain tended to produce a smaller amount of streptomycin than the wild-type strain under some conditions, for example, on Bennett agar containing 1 % maltose and on a minimal medium. Therefore, AtrA-g had a conditionally positive effect on streptomycin production, as a tuner, probably by enhancing the AdpA-dependent transcriptional activation of strR in a still unknown manner.
Collapse
Affiliation(s)
- Setsu Hirano
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Katsuyuki Tanaka
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Sueharu Horinouchi
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
48
|
The use of the rare UUA codon to define “Expression Space” for genes involved in secondary metabolism, development and environmental adaptation in Streptomyces. J Microbiol 2008; 46:1-11. [DOI: 10.1007/s12275-007-0233-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Horinouchi S, Beppu T. Hormonal control by A-factor of morphological development and secondary metabolism in Streptomyces. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2007; 83:277-295. [PMID: 24367152 PMCID: PMC3859367 DOI: 10.2183/pjab/83.277] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Accepted: 10/25/2007] [Indexed: 06/03/2023]
Abstract
Streptomyces griseus, a well-known industrial producer of streptomycin, is a member of the genus Streptomyces, which shows a complex life cycle resembling that of fungi. A-factor, a C13 γ-butyrolactone compound, was discovered as a self-regulatory factor or a bacterial hormone to induce morphological differentiation and production of secondary metabolites, including streptomycin, in this organism. Accumulating evidence has revealed an A-factor-triggered signal cascade, which is composed of several key steps or components. These include: (i) AfsA catalyzing a crucial step of A-factor biosynthesis, (ii) the A-factor-specific receptor (ArpA), which acts as a transcriptional repressor for adpA, (iii) adpA, a sole target of ArpA, which encodes a global transcriptional activator AdpA, and (iv) a variety of members of the AdpA regulon, a set of the genes regulated by AdpA. A-factor is biosynthesized via five reaction steps, in which AfsA catalyzes acyl transfer between a β-ketoacyl-acyl carrier protein and the hydroxyl group of dihydroxyacetone phosphate. The receptor ArpA, belonging to the TetR family, is a homodimer, each subunit of which contains a helix-turn-helix DNA-binding motif and an A-factor-binding pocket. The three-dimensional structure and conformational change upon binding A-factor are elucidated, on the basis of X-ray crystallography of CprB, an ArpA homologue. AdpA, belonging to the AraC/XylS transcriptional activator family, binds operators upstream from the promoters of a variety of the target genes and activates their transcription, thus forming the AdpA regulon. Members of the AdpA regulon includes the pathway-specific transcriptional activator gene strR that activates the whole streptomycin biosynthesis gene cluster, in addition to a number of genes that direct the multiple cellular functions required for cellular differentiation in a concerted manner. A variety of A-factor homologues as well as homologues of afsA/arpA are distributed widely among Streptomyces, indicating the significant role of this type of molecular signaling in the ecosystem and evolutional processes.
Collapse
Affiliation(s)
- Sueharu Horinouchi
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo,
Japan
| | - Teruhiko Beppu
- Advanced Research Institute for the Science and Humanities, Nihon University, Tokyo,
Japan
| |
Collapse
|
50
|
Arakawa K, Mochizuki S, Yamada K, Noma T, Kinashi H. gamma-Butyrolactone autoregulator-receptor system involved in lankacidin and lankamycin production and morphological differentiation in Streptomyces rochei. MICROBIOLOGY-SGM 2007; 153:1817-1827. [PMID: 17526839 DOI: 10.1099/mic.0.2006/002170-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An afsA homologue (srrX) and three gamma-butyrolactone receptor gene homologues (srrA, srrB and srrC) are coded on the giant linear plasmid pSLA2-L in Streptomyces rochei 7434AN4, a producer of two polyketide antibiotics, lankacidin and lankamycin. Construction of gene disruptants and their phenotypic study revealed that srrX and srrA make a gamma-butyrolactone receptor system in this strain. Addition of a gamma-butyrolactone fraction to an srrX-deficient mutant restored the production of lankacidin and lankamycin, indicating that the SrrX protein is not necessary for this event. In addition to a positive effect on antibiotic production, srrX showed a negative effect on morphological differentiation. The receptor gene srrA reversed both effects of srrX, while the second receptor gene homologue srrC had only a positive function in spore formation. Furthermore, disruption of the third homologue srrB greatly increased the production of lankacidin and lankamycin. Electron microscopic analysis showed that aerial mycelium formation stopped at a different stage in the srrA and srrC mutants. Overall, these results indicated that srrX, srrA, srrB and srrC constitute a complex regulatory system for antibiotic production and morphological differentiation in S. rochei.
Collapse
Affiliation(s)
- Kenji Arakawa
- Department of Molecular Biotechnology, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Susumu Mochizuki
- Department of Molecular Biotechnology, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Kohei Yamada
- Department of Molecular Biotechnology, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Takenori Noma
- Department of Molecular Biotechnology, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Haruyasu Kinashi
- Department of Molecular Biotechnology, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| |
Collapse
|