1
|
Yu J, Wu B, Dong Y, Lin Z, Yao H. Genome-Wide Identification and Expression Analysis of the ALDH Gene Family in Sinonovacula constricta Bivalve in Response to Acute Hypersaline Stress. Animals (Basel) 2024; 15:64. [PMID: 39795007 PMCID: PMC11718799 DOI: 10.3390/ani15010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/12/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
The razor clam Sinonovacula constricta, a significant marine bivalve species, inhabits estuaries and encounters salinity stress. Despite its commercial importance, there is limited understanding of its adaptive mechanisms to high salinity. Aldehyde dehydrogenases (ALDHs), which belong to the NAD(P)+-dependent superfamily, play a crucial role in stress resilience by participating in catabolic and anabolic pathways, such as carnitine synthesis, glycolysis, and amino acid metabolism. This study presents the first comprehensive analysis of the ALDH family in S. constricta under acute high salt stress conditions and identifies 16 ScALDH genes across 10 subfamilies. These genes are located on eight chromosomes, with tandem duplications observed on chromosome 10; they encode mostly acidic and hydrophilic proteins. Among them, ScALDH18A1 contains a conserved P5CS domain that is implicated in proline synthesis and osmotic regulation. The expression of 14 ScALDH members were significantly altered under acute salt stress conditions, with ScALDH8 and ScALDH18A1 showing increased expression levels, suggesting their involvement in osmotic pressure regulation. This research provides insights into the characteristics, evolution, and response to salinity stress of the ScALDH gene family while shedding light on ALDH function in bivalves, as well as serving as a foundation for further studies on osmotic stress regulation.
Collapse
Affiliation(s)
- Jianing Yu
- College of Advanced Agricultural Sciences, Zhejiang Wanli University, Ningbo 315101, China; (J.Y.); (Y.D.)
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Biao Wu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
| | - Yinghui Dong
- College of Advanced Agricultural Sciences, Zhejiang Wanli University, Ningbo 315101, China; (J.Y.); (Y.D.)
| | - Zhihua Lin
- College of Advanced Agricultural Sciences, Zhejiang Wanli University, Ningbo 315101, China; (J.Y.); (Y.D.)
| | - Hanhan Yao
- College of Advanced Agricultural Sciences, Zhejiang Wanli University, Ningbo 315101, China; (J.Y.); (Y.D.)
| |
Collapse
|
2
|
Assessment of the requirements for magnesium transporters in Bacillus subtilis. J Bacteriol 2014; 196:1206-14. [PMID: 24415722 DOI: 10.1128/jb.01238-13] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Magnesium is the most abundant divalent metal in cells and is required for many structural and enzymatic functions. For bacteria, at least three families of proteins function as magnesium transporters. In recent years, it has been shown that a subset of these transport proteins is regulated by magnesium-responsive genetic control elements. In this study, we investigated the cellular requirements for magnesium homeostasis in the model microorganism Bacillus subtilis. Putative magnesium transporter genes were mutationally disrupted, singly and in combination, in order to assess their general importance. Mutation of only one of these genes resulted in strong dependency on supplemental extracellular magnesium. Notably, this transporter gene, mgtE, is known to be under magnesium-responsive genetic regulatory control. This suggests that the identification of magnesium-responsive genetic mechanisms may generally denote primary transport proteins for bacteria. To investigate whether B. subtilis encodes yet additional classes of transport mechanisms, suppressor strains that permitted the growth of a transporter-defective mutant were identified. Several of these strains were sequenced to determine the genetic basis of the suppressor phenotypes. None of these mutations occurred in transport protein homologues; instead, they affected housekeeping functions, such as signal recognition particle components and ATP synthase machinery. From these aggregate data, we speculate that the mgtE protein provides the primary route of magnesium import in B. subtilis and that the other putative transport proteins are likely to be utilized for more-specialized growth conditions.
Collapse
|
3
|
Ca2+-citrate uptake and metabolism in Lactobacillus casei ATCC 334. Appl Environ Microbiol 2013; 79:4603-12. [PMID: 23709502 DOI: 10.1128/aem.00925-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The putative citrate metabolic pathway in Lactobacillus casei ATCC 334 consists of the transporter CitH, a proton symporter of the citrate-divalent metal ion family of transporters CitMHS, citrate lyase, and the membrane-bound oxaloacetate decarboxylase complex OAD-ABDH. Resting cells of Lactobacillus casei ATCC 334 metabolized citrate in complex with Ca(2+) and not as free citrate or the Mg(2+)-citrate complex, thereby identifying Ca(2+)-citrate as the substrate of the transporter CitH. The pathway was induced in the presence of Ca(2+) and citrate during growth and repressed by the presence of glucose and of galactose, most likely by a carbon catabolite repression mechanism. The end products of Ca(2+)-citrate metabolism by resting cells of Lb. casei were pyruvate, acetate, and acetoin, demonstrating the activity of the membrane-bound oxaloacetate decarboxylase complex OAD-ABDH. Following pyruvate, the pathway splits into two branches. One branch is the classical citrate fermentation pathway producing acetoin by α-acetolactate synthase and α-acetolactate decarboxylase. The other branch yields acetate, for which the route is still obscure. Ca(2+)-citrate metabolism in a modified MRS medium lacking a carbohydrate did not significantly affect the growth characteristics, and generation of metabolic energy in the form of proton motive force (PMF) was not observed in resting cells. In contrast, carbohydrate/Ca(2+)-citrate cometabolism resulted in a higher biomass yield in batch culture. However, also with these cells, no generation of PMF was associated with Ca(2+)-citrate metabolism. It is concluded that citrate metabolism in Lb. casei is beneficial when it counteracts acidification by carbohydrate metabolism in later growth stages.
Collapse
|
4
|
Complex transcriptional regulation of citrate metabolism in Clostridium perfringens. Anaerobe 2011; 18:48-54. [PMID: 21945821 DOI: 10.1016/j.anaerobe.2011.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/26/2011] [Accepted: 09/12/2011] [Indexed: 11/23/2022]
Abstract
A Gram-positive, spore-forming bacterium, Clostridium perfringens, possesses genes for citrate metabolism, which might play an important role in the utilization of citrate as a sole carbon source. In this study, we identified a chromosomal citCDEFX-mae-citS operon in C. perfringens strain 13, which is transcribed on three mRNAs of different sizes. Expression of the cit operon was significantly induced when 5 mM extracellular citrate was added to the growth medium. Most interestingly, three regulatory systems were found to be involved in the regulation of the expression of cit genes: 1) the two upstream divergent genes citG and citI; 2) two different two-component regulatory systems, CitA/CitB (TCS6 consisted of CPE0531/CPE0532) and TCS5 (CPE0518/CPE0519); and 3) the global two-component VirR/VirS-VR-RNA regulatory system known to regulate various genes for toxins and degradative enzymes. Our results suggest that in C. perfringens the citrate metabolism might be strictly controlled by a complex regulatory system.
Collapse
|
5
|
Lensbouer JJ, Doyle RP. Secondary transport of metal-citrate complexes: the CitMHS family. Crit Rev Biochem Mol Biol 2011; 45:453-62. [PMID: 20735204 DOI: 10.3109/10409238.2010.504701] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Primary and secondary transport of citrate has been extensively studied in pathogenic and non-pathogenic bacteria. Primary transporters of citrate complexed with metal ions, particularly Fe, have also garnered attention, with the fec system of E. coli being a classic example. In contrast, little is known about secondary transporters of metal-citrate complexes. Recently, a family of proteins responsible for secondary metal-citrate transport in bacteria was discovered and designated as the CitMHS transporter family. Several members have been functionally characterized to date and serve as the foundation for understanding this family. Three subfamilies have been categorized, depending on the main metal ion transported. These subfamilies are the Mg(2+)-citrate transporter, the Ca(2+)-citrate transporter, and the Fe(3+)-citrate transporter. Each subfamily is believed to be substrate-selective due to the metal-citrate complexes being abundantly present in their environment and/or the ability of the complex to be metabolized by the organism. The implication of this family in the pathogenic access to Fe, information about transcriptional control, putative structure, predicted family members, members characterized to date and potential use in bioremediation are discussed.
Collapse
Affiliation(s)
- Joshua J Lensbouer
- Department of Chemistry, Center for Science and Technology, Syracuse University, Syracuse, NY 13244-4100, USA
| | | |
Collapse
|
6
|
Kleijn RJ, Buescher JM, Le Chat L, Jules M, Aymerich S, Sauer U. Metabolic fluxes during strong carbon catabolite repression by malate in Bacillus subtilis. J Biol Chem 2009; 285:1587-96. [PMID: 19917605 DOI: 10.1074/jbc.m109.061747] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Commonly glucose is considered to be the only preferred substrate in Bacillus subtilis whose presence represses utilization of other alternative substrates. Because recent data indicate that malate might be an exception, we quantify here the carbon source utilization hierarchy. Based on physiology and transcriptional data during co-utilization experiments with eight carbon substrates, we demonstrate that malate is a second preferred carbon source for B. subtilis, which is rapidly co-utilized with glucose and strongly represses the uptake of alternative substrates. From the different hierarchy and degree of catabolite repression exerted by glucose and malate, we conclude that both substrates might act through different molecular mechanisms. To obtain a quantitative and functional network view of how malate is (co)metabolized, we developed a novel approach to metabolic flux analysis that avoids error-prone, intuitive, and ad hoc decisions on (13)C rearrangements. In particular, we developed a rigorous approach for deriving reaction reversibilities by combining in vivo intracellular metabolite concentrations with a thermodynamic feasibility analysis. The thus-obtained analytical model of metabolism was then used for network-wide isotopologue balancing to estimate the intracellular fluxes. These (13)C-flux data revealed an extraordinarily high malate influx that is primarily catabolized via the gluconeogenic reactions and toward overflow metabolism. Furthermore, a considerable NADPH-producing malic enzyme flux is required to supply the biosynthetically required NADPH in the presence of malate. Co-utilization of glucose and malate resulted in a synergistic decrease of the respiratory tricarboxylic acid cycle flux.
Collapse
Affiliation(s)
- Roelco J Kleijn
- Institute of Molecular System Biology, ETH Zürich, CH-8093 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
7
|
Citrate utilization by Corynebacterium glutamicum is controlled by the CitAB two-component system through positive regulation of the citrate transport genes citH and tctCBA. J Bacteriol 2009; 191:3869-80. [PMID: 19376865 DOI: 10.1128/jb.00113-09] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this work, the molecular basis of aerobic citrate utilization by the gram-positive bacterium Corynebacterium glutamicum was studied. Genome analysis revealed the presence of two putative citrate transport systems. The permease encoded by citH belongs to the citrate-Mg(2+):H(+)/citrate-Ca(2+):H(+) symporter family, whereas the permease encoded by the tctCBA operon is a member of the tripartite tricarboxylate transporter family. The expression of citH or tctCBA in Escherichia coli enabled this species to utilize citrate aerobically, indicating that both CitH and TctABC are functional citrate transporters. Growth tests with the recombinant E. coli strains indicated that CitH is active with Ca(2+) or Sr(2+) but not with Mg(2+) and that TctABC is active with Ca(2+) or Mg(2+) but not with Sr(2+). We could subsequently show that, with 50 mM citrate as the sole carbon and energy source, the C. glutamicum wild type grew best when the minimal medium was supplemented with CaCl(2) but that MgCl(2) and SrCl(2) also supported growth. Each of the two transporters alone was sufficient for growth on citrate. The expression of citH and tctCBA was activated by citrate in the growth medium, independent of the presence or absence of glucose. This activation was dependent on the two-component signal transduction system CitAB, composed of the sensor kinase CitA and the response regulator CitB. CitAB belongs to the CitAB/DcuSR family of two-component systems, whose members control the expression of genes that are involved in the transport and catabolism of tricarboxylates or dicarboxylates. C. glutamicum CitAB is the first member of this family studied in Actinobacteria.
Collapse
|
8
|
Pan Z, Zhu T, Domagalski N, Khan S, Koepsel RR, Domach MM, Ataai MM. Regulating Expression of Pyruvate Kinase in Bacillus subtilis for Control of Growth Rate and Formation of Acidic Byproducts. Biotechnol Prog 2008; 22:1451-5. [PMID: 17022686 DOI: 10.1021/bp060049u] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Our prior work has shown that a pyk mutant of Bacillus subtilis exhibited diminished acidic byproduct accumulation, dramatically elevated phosphoenolpyruvate (PEP) pool, and reduced growth rate. To determine if a low acetate-producing but fast-growing strain of B. subtilis could be developed, we placed the expression of the pyk gene under the control of an inducible promoter. Enzyme measurements proved that PYK activity of the inducible PYK mutant (iPYK) increases with the isopropyl-beta-d-thiogalactopyranoside concentration. Batch growth experiments showed that growth rate and acid formation are closely related to the induction level of pyk. Measurements of cell growth rate and acetate formation of the iPYK mutant at different induction levels revealed that a PYK activity of about 12% of wild-type allows for good growth rate (0.4 h(-)(1) versus 0.63 h(-)(1) of wild-type) and low acetate production (0.26 g/L versus 1.05 g/L of wild-type). This is the first report to our knowledge of a metabolically engineered B. subtilis strain that allows good growth rate and low acid production in batch cultures. Finally, it was found that, by varying the pyk induction level, intracellular PEP concentration can be controlled over a wide range. The intracellular PEP concentration is intimately connected to the regulation of the transport of phosphotransferase system (PTS) sugars in the presence of glucose. Because there is no other method for modulating intracellular PEP levels, this finding represents a major advance in one's ability to dissect the function of the PTS and sugar metabolism in bacteria.
Collapse
Affiliation(s)
- Zhiwei Pan
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Horstmann N, Seidel G, Aung-Hilbrich LM, Hillen W. Residues His-15 and Arg-17 of HPr participate differently in catabolite signal processing via CcpA. J Biol Chem 2006; 282:1175-82. [PMID: 17085448 DOI: 10.1074/jbc.m605854200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The carbon catabolite control protein A (CcpA) senses the physiological state of the cell by binding several effectors and responds with differential regulation of many genes in Bacilli. HPr-Ser46-P or Crh-Ser46-P interact with CcpA and stimulate binding to catabolite responsive elements. In addition, the glycolytic intermediates fructose 1,6-bisphosphate (FBP) and glucose 6-phosphate (Glc-6-P) stimulate HPr-Ser46-P but not Crh-Ser46-P binding to CcpA. The mechanisms by which coeffector binding to CcpA is linked to differential gene expression are unclear. To address this question we mutated residues participating in the interaction between HPr-Ser46-P or Crh-Ser46-P and CcpA and analyzed their effects on CcpA binding and stimulation of cre binding by surface plasmon resonance. The HPrH15A and CcpAD297A mutations do not affect complex formation but abolish FBP and Glc-6-P stimulation. Likewise, the CrhQ15H mutant becomes sensitive to these glycolytic intermediates. Hence, the contact of HPrHis-15 to Asp-297 in CcpA is a determinant for HPr specific FBP and Glc-6-P stimulation. The HPrR17A and -K mutants are both strongly impaired in stimulation of CcpA binding to cre, but only HPrR17A is defect in binding to CcpA indicating that these residues affect allostery of CcpA. Mutations of the residues of CcpA, which contact Arg-17 of HPr, exhibit differential effects on regulation of catabolic genes. Taken together, His-15 of HPr processes sensing information, while Arg-17 is involved in determining the genetic output.
Collapse
Affiliation(s)
- Nicola Horstmann
- Lehrstuhl für Mikrobiologie, Universität Erlangen-Nürnberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | | | | | | |
Collapse
|
10
|
Blancato VS, Magni C, Lolkema JS. Functional characterization and Me2+ion specificity of a Ca2+?citrate transporter from Enterococcus faecalis. FEBS J 2006; 273:5121-30. [PMID: 17042778 DOI: 10.1111/j.1742-4658.2006.05509.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Secondary transporters of the bacterial CitMHS family transport citrate in complex with a metal ion. Different members of the family are specific for the metal ion in the complex and have been shown to transport Mg(2+)-citrate, Ca(2+)-citrate or Fe(3+)-citrate. The Fe(3+)-citrate transporter of Streptococcus mutans clusters on the phylogenetic tree on a separate branch with a group of transporters found in the phylum Firmicutes which are believed to be involved in anaerobic citrate degradation. We have cloned and characterized the transporter from Enterococcus faecalis EfCitH in this cluster. The gene was functionally expressed in Escherichia coli and studied using right-side-out membrane vesicles. The transporter catalyzes proton-motive-force-driven uptake of the Ca(2+)-citrate complex with an affinity constant of 3.5 microm. Homologous exchange is catalyzed with a higher efficiency than efflux down a concentration gradient. Analysis of the metal ion specificity of EfCitH activity in right-side-out membrane vesicles revealed a specificity that was highly similar to that of the Bacillus subtilis Ca(2+)-citrate transporter in the same family. In spite of the high sequence identity with the S. mutans Fe(3+)-citrate transporter, no transport activity with Fe(3+) (or Fe(2+)) could be detected. The transporter of E. faecalis catalyzes translocation of citrate in complex with Ca(2+), Sr(2+), Mn(2+), Cd(2+) and Pb(2+) and not with Mg(2+), Zn(2+), Ni(2+) and Co(2+). The specificity appears to correlate with the size of the metal ion in the complex.
Collapse
Affiliation(s)
- Victor S Blancato
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
| | | | | |
Collapse
|
11
|
Repizo GD, Blancato VS, Sender PD, Lolkema J, Magni C. Catabolite repression of the citST two-component system in Bacillus subtilis. FEMS Microbiol Lett 2006; 260:224-31. [PMID: 16842348 DOI: 10.1111/j.1574-6968.2006.00318.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In Bacillus subtilis, expression of the citrate transporter CitM is under strict control. Transcription of the citM gene is induced by citrate in the medium mediated by the CitS-CitT two-component system and repressed by rapidly degraded carbon sources mediated by carbon catabolite repression (CCR). In this study, we demonstrate that citST genes are part of a bicistronic operon. The promoter region was localized in a stretch of 58 base pairs upstream of the citS gene by deletion experiments. Transcription of the operon was repressed in the presence of glucose by the general transcription factor CcpA. A distal consensus cre site in the citS-coding sequence was implicated in the mechanism of repression. Furthermore, this repression was relieved in Bacillus subtilis mutants deficient in CcpA or Hpr/Crh, components essential to CCR. Thus, we demonstrate that CCR represses the expression of the citST operon, which is responsible for the induction of citM, through the cre site located 1326 bp from transcriptional start site of citST.
Collapse
Affiliation(s)
- Guillermo D Repizo
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET) and Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | | | | | | | | |
Collapse
|
12
|
Puri-Taneja A, Paul S, Chen Y, Hulett FM. CcpA causes repression of the phoPR promoter through a novel transcription start site, P(A6). J Bacteriol 2006; 188:1266-78. [PMID: 16452408 PMCID: PMC1367233 DOI: 10.1128/jb.188.4.1266-1278.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 11/23/2005] [Indexed: 11/20/2022] Open
Abstract
The Bacillus subtilis PhoPR two-component system is directly responsible for activation or repression of Pho regulon genes in response to phosphate deprivation. The response regulator, PhoP, and the histidine kinase, PhoR, are encoded in a single operon with a complex promoter region that contains five known transcription start sites, which respond to at least two regulatory proteins. We report here the identification of another direct regulator of phoPR transcription, carbon catabolite protein A, CcpA. This regulator functions in the presence of glucose or other readily metabolized carbon sources. The maximum derepression of phoPR expression in a ccpA mutant compared to a wild-type stain was observed under excess phosphate conditions with glucose either throughout growth in a high-phosphate defined medium or in a low-phosphate defined medium during exponential growth, a growth condition when phoPR transcription is low in a wild-type strain due to the absence of autoinduction. Either HPr or Crh were sufficient to cause CcpA dependent repression of the phoPR promoter in vivo. A ptsH1 (Hpr) crh double mutant completely relieves phoPR repression during phosphate starvation but not during phosphate replete growth. In vivo and in vitro studies showed that CcpA repressed phoPR transcription by binding directly to the cre consensus sequence present in the promoter. Primer extension and in vitro transcription studies revealed that the CcpA regulation of phoPR transcription was due to repression of P(A6), a previously unidentified promoter positioned immediately upstream of the cre box. Esigma(A) was sufficient for transcription of P(A6), which was repressed by CcpA in vitro. These studies showed direct repression by CcpA of a newly discovered Esigma(A)-responsive phoPR promoter that required either Hpr or Crh in vivo for direct binding to the putative consensus cre sequence located between P(A6) and the five downstream promoters characterized previously.
Collapse
Affiliation(s)
- Ankita Puri-Taneja
- Laboratory for Molecular Biology, Department of Biological Sciences, University of Illinois at Chicago, 900 S. Ashland Ave. (M/C 567), Chicago, Illinois 60607, USA
| | | | | | | |
Collapse
|
13
|
Iyer R, Baliga NS, Camilli A. Catabolite control protein A (CcpA) contributes to virulence and regulation of sugar metabolism in Streptococcus pneumoniae. J Bacteriol 2006; 187:8340-9. [PMID: 16321938 PMCID: PMC1317011 DOI: 10.1128/jb.187.24.8340-8349.2005] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We characterized the role of catabolite control protein A (ccpA) in the physiology and virulence of Streptococcus pneumoniae. S. pneumoniae has a large percentage of its genome devoted to sugar uptake and metabolism, and therefore, regulation of these processes is likely to be crucial for fitness in the nasopharynx and may play a role during invasive disease. In many bacteria, carbon catabolite repression (CCR) is central to such regulation, influencing hierarchical sugar utilization and growth rates. CcpA is the major transcriptional regulator in CCR in several gram-positive bacteria. We show that CcpA functions in CCR of lactose-inducible beta-galactosidase activity in S. pneumoniae. CCR of maltose-inducible alpha-glucosidase, raffinose-inducible alpha-galactosidase, and cellobiose-inducible beta-glucosidase is unaffected in the ccpA strain, suggesting that other regulators, possibly redundant with CcpA, control these systems. The ccpA strain is severely attenuated for nasopharyngeal colonization and lung infection in the mouse, establishing its role in fitness on these mucosal surfaces. Comparison of the cell wall fraction of the ccpA and wild-type strains shows that CcpA regulates many proteins in this compartment that are involved in central and intermediary metabolism, a subset of which are required for survival and multiplication in vivo. Both in vitro and in vivo defects were complemented by providing ccpA in trans. Our results demonstrate that CcpA, though not a global regulator of CCR in S. pneumoniae, is required for colonization of the nasopharynx and survival and multiplication in the lung.
Collapse
Affiliation(s)
- Ramkumar Iyer
- Department of Molecular Biology and Microbiology, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA
| | | | | |
Collapse
|
14
|
Martin MG, Magni C, de Mendoza D, López P. CitI, a transcription factor involved in regulation of citrate metabolism in lactic acid bacteria. J Bacteriol 2005; 187:5146-55. [PMID: 16030208 PMCID: PMC1196025 DOI: 10.1128/jb.187.15.5146-5155.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A large variety of lactic acid bacteria (LAB) can utilize citrate under fermentative conditions. Although much information concerning the metabolic pathways leading to citrate utilization by LAB has been gathered, the mechanisms regulating these pathways are obscure. In Weissella paramesenteroides (formerly called Leuconostoc paramesenteroides), transcription of the citMDEFCGRP citrate operon and the upstream divergent gene citI is induced by the presence of citrate in the medium. Although genetic experiments have suggested that CitI is a transcriptional activator whose activity can be modulated in response to citrate availability, specific details of the interaction between CitI and DNA remained unknown. In this study, we show that CitI recognizes two A+T-rich operator sites located between citI and citM and that the DNA-binding affinity of CitI is increased by citrate. Subsequently, this citrate signal propagation leads to the activation of the cit operon through an enhanced recruitment of RNA polymerase to its promoters. Our results indicate that the control of CitI by the cellular pools of citrate provides a mechanism for sensing the availability of citrate and adjusting the expression of the cit operon accordingly. In addition, this is the first reported example of a transcription factor directly functioning as a citrate-activated switch allowing the cell to optimize the generation of metabolic energy.
Collapse
Affiliation(s)
- Mauricio G Martin
- Centro de Investigaciones Biológicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
15
|
Servant P, Le Coq D, Aymerich S. CcpN (YqzB), a novel regulator for CcpA-independent catabolite repression of Bacillus subtilis gluconeogenic genes. Mol Microbiol 2005; 55:1435-51. [PMID: 15720552 DOI: 10.1111/j.1365-2958.2005.04473.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In Bacillus subtilis, the NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase (GapB) and the phosphoenolpyruvate carboxykinase (PckA) enzymes are necessary for efficient gluconeogenesis from Krebs cycle intermediates. gapB and pckA transcription is repressed in the presence of glucose but not via CcpA, the major transcriptional regulator for catabolite repression in B. subtilis. A B. subtilis mini-Tn10 transposant library was screened for clones affected in catabolite repression of gapB. Inactivation of a previously unknown gene, yqzB (renamed ccpN for control catabolite protein of gluconeogenic genes), was found to relieve not only gapB but also pckA transcription from catabolite repression. Purified CcpN specifically bound to the gapB and pckA promoters. ccpN is co-transcribed constitutively with another unknown gene, yqfL. A yqfL deletion lowers the level of gapB and pckA transcription threefold under both glycolytic and gluconeogenic conditions and a ccpN deletion is epistatic over a yqfL deletion. YqfL is thus a positive regulator of the expression of gapB and pckA, the effect of which is not influenced by the metabolic regime of the cell but appears to be mediated by CcpN. ccpN has homologues in many Firmicutes, but not all, while yqfL homologues are widely distributed in Eubacteria and also present in some plants. In all analysed bacterial genomes, ccpN and yqfL are physically linked together or to putative gluconeogenic genes. CcpN thus orchestrates a novel CcpA-independent mechanism for catabolite repression of gluconeogenic genes highly conserved in Firmicutes and appears as a functional analogue of FruR in Enterobacteria. The physiological significance of the regulation mediated via the three B. subtilis global transcription regulators, CcpA, CggR and CcpN, is discussed.
Collapse
Affiliation(s)
- Pascale Servant
- Microbiologie et Génétique Moléculaire, INRA (UMR1238) and CNRS (UMR2585), Institut National Agronomique Paris-Grignon, F-78850 Thiverval-Grignon, France
| | | | | |
Collapse
|
16
|
Abstract
Carbon catabolite repression (CCR) by transcriptional regulators follows different mechanisms in gram-positive and gram-negative bacteria. In gram-positive bacteria, CcpA-dependent CCR is mediated by phosphorylation of the phosphoenolpyruvate:sugar phosphotransferase system intermediate HPr at a serine residue at the expense of ATP. The reaction is catalyzed by HPr kinase, which is activated by glycolytic intermediates. In this review, the distribution of CcpA-dependent CCR among bacteria is investigated by searching the public databases for homologues of HPr kinase and HPr-like proteins throughout the bacterial kingdom and by analyzing their properties. Homologues of HPr kinase are commonly observed in the phylum Firmicutes but are also found in the phyla Proteobacteria, Fusobacteria, Spirochaetes, and Chlorobi, suggesting that CcpA-dependent CCR is not restricted to gram-positive bacteria. In the alpha and beta subdivisions of the Proteobacteria, the presence of HPr kinase appears to be common, while in the gamma subdivision it is more of an exception. The genes coding for the HPr kinase homologues of the Proteobacteria are in a gene cluster together with an HPr-like protein, termed XPr, suggesting a functional relationship. Moreover, the XPr proteins contain the serine phosphorylation sequence motif. Remarkably, the analysis suggests a possible relation between CcpA-dependent gene regulation and the nitrogen regulation system (Ntr) found in the gamma subdivision of the Proteobacteria. The relation is suggested by the clustering of CCR and Ntr components on the genome of members of the Proteobacteria and by the close phylogenetic relationship between XPr and NPr, the HPr-like protein in the Ntr system. In bacteria in the phylum Proteobacteria that contain HPr kinase and XPr, the latter may be at the center of a complex regulatory network involving both CCR and the Ntr system.
Collapse
Affiliation(s)
- Jessica B Warner
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
| | | |
Collapse
|
17
|
Warner JB, Lolkema JS. A Crh-specific function in carbon catabolite repression in Bacillus subtilis. FEMS Microbiol Lett 2003; 220:277-80. [PMID: 12670692 DOI: 10.1016/s0378-1097(03)00126-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Carbon catabolite repression in Bacillus subtilis is mediated by phosphorylation of the phosphoenolpyruvate:carbohydrate phosphotransferase system intermediate HPr at a serine residue catalyzed by HPr kinase. The orthologous protein Crh functions in a similar way, but, unlike HPr, it is not functional in carbohydrate uptake. A specific function for Crh is not known. The role of HPr and Crh in repressing the citM gene encoding the Mg(2+)-citrate transporter was investigated during growth of B. subtilis on different carbon sources. In glucose minimal medium, full repression was supported by both HPr and Crh. Strains deficient in Crh or the regulatory function of HPr revealed the same repression as the wild-type strain. In contrast, in a medium containing succinate and glutamate, repression was specifically mediated via Crh. Repression was relieved in the Crh-deficient strain, but still present in the HPr mutant strain. The data are the first demonstration of a Crh-specific function in B. subtilis and suggest a role for Crh in regulation of expression during growth on substrates other than carbohydrates.
Collapse
Affiliation(s)
- Jessica B Warner
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Biological Center, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | |
Collapse
|
18
|
Kim HJ, Kim SI, Ratnayake-Lecamwasam M, Tachikawa K, Sonenshein AL, Strauch M. Complex regulation of the Bacillus subtilis aconitase gene. J Bacteriol 2003; 185:1672-80. [PMID: 12591885 PMCID: PMC148081 DOI: 10.1128/jb.185.5.1672-1680.2003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The roles of the CcpC, CodY, and AbrB proteins in regulation of the Bacillus subtilis aconitase (citB) gene were found to be distinct and to vary with the conditions and phase of growth. CcpC, a citrate-inhibited repressor that is the primary factor regulating citB expression in minimal-glucose-glutamine medium, also contributed to repression of citB during exponential-phase growth in broth medium. A null mutation in codY had no effect on citB expression during growth in minimal medium even when combined with ccpC and abrB mutations. However, a codY mutation slightly relieved repression during exponential growth in broth medium and completely derepressed citB expression when combined with a ccpC mutation. An abrB mutation led to decreased expression of citB during stationary phase in both broth and minimal medium. All three proteins bound in vitro to specific and partially overlapping sites within the citB regulatory region. Interaction of CcpC and CodY with the citB promoter region was partially competitive.
Collapse
Affiliation(s)
- Hyun-Jin Kim
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | | | |
Collapse
|
19
|
Warner JB, Magni C, Lolkema JS. CcpA-independent regulation of expression of the Mg2+ -citrate transporter gene citM by arginine metabolism in Bacillus subtilis. J Bacteriol 2003; 185:854-9. [PMID: 12533460 PMCID: PMC142827 DOI: 10.1128/jb.185.3.854-859.2003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2002] [Accepted: 11/02/2002] [Indexed: 11/20/2022] Open
Abstract
Transcriptional regulation of the Mg(2+)-citrate transporter, CitM, the main citrate uptake system of Bacillus subtilis, was studied during growth in rich medium. Citrate in the growth medium was required for induction under all growth conditions. In Luria-Bertani medium containing citrate, citM expression was completely repressed during the exponential growth phase, marginally expressed in the transition phase, and highly expressed in the stationary growth phase. The repression was relieved when the cells were grown in spent Luria-Bertani medium. The addition of a mixture of 18 amino acids restored repression. L-Arginine in the mixture appeared to be solely responsible for the repression, and ornithine appeared to be an equally potent repressor of citM expression. Studies of mutant strains deficient in RocR and SigL, proteins required for the expression of the enzymes of the arginase pathway, confirmed that uptake into the cell and, most likely, conversion of arginine to ornithine were required for repression. Arginine-mediated repression was independent of a functional CcpA, the global regulator protein in carbon catabolite repression (CCR). Nevertheless, CCR-mediated repression was the major mechanism controlling the expression during exponential growth, while the newly described, CcpA-independent arginine-mediated repression was specifically apparent during the transition phase of growth.
Collapse
Affiliation(s)
- Jessica B Warner
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | |
Collapse
|
20
|
Abstract
The Bacillus subtilis zinc uptake repressor (Zur) regulates genes involved in zinc uptake. We have used DNA microarrays to identify genes that are derepressed in a zur mutant. In addition to members of the two previously identified Zur-regulated operons (yciC and ycdHI-yceA), we identified two other genes, yciA and yciB, as targets of Zur regulation. Electrophoretic mobility shift experiments demonstrated that all three operons are direct targets of Zur regulation. Zur binds to an approximately 28-bp operator upstream of the yciA gene, as judged by DNase I footprinting, and similar operator sites are found preceding each of the previously described target operons, yciC and ycdHI-yceA. Analysis of a yciA-lacZ fusion indicates that this operon is induced under zinc starvation conditions and derepressed in the zur mutant. Phenotypic analyses suggest that the YciA, YciB, and YciC proteins may function as part of the same Zn(II) transport pathway. Mutation of yciA or yciC, singly or in combination, had little effect on growth of the wild-type strain but significantly impaired the growth of the ycdH mutant under conditions of zinc limitation. Since the YciA, YciB, and YciC proteins are not obviously related to any known transporter family, they may define a new class of metal ion uptake system. Mutant strains lacking all three identified zinc uptake systems (yciABC, ycdHI-yceA, and zosA) are dependent on micromolar levels of added zinc for optimal growth.
Collapse
Affiliation(s)
- Ahmed Gaballa
- Department of Microbiology, Cornell University, Ithaca, New York 14853-8101, USA
| | | | | | | |
Collapse
|
21
|
Warner JB, Lolkema JS. Growth of Bacillus subtilis on citrate and isocitrate is supported by the Mg2+-citrate transporter CitM. MICROBIOLOGY (READING, ENGLAND) 2002; 148:3405-3412. [PMID: 12427932 DOI: 10.1099/00221287-148-11-3405] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacillus subtilis 168 was assayed for its growth on tricarboxylic acid (TCA) cycle intermediates and related compounds as the sole carbon sources. Growth of the organism was supported by citrate, D-isocitrate, succinate, fumarate and L-malate, whereas no growth was observed in the presence of cis-aconitate,2-oxoglutarate, D-malate, oxaloacetate and tricarballylate. Growth of the organism on the tricarboxylates citrate and D-isocitrate required the presence of functional CitM, an Mg(2+)-citrate transporter, whereas its growth on succinate, fumarate and L-malate appeared to be CitM-independent. Interestingly, the naturally occurring enantiomer D-isocitrate was favoured over L-isocitrate by the organism. Like citrate, D-isocitrate was shown to be an inducer of citM expression in B. subtilis. The addition of 1 mM Mg(2+) to the growth medium improved growth of the organism on both citrate and D-isocitrate, suggesting that D-isocitrate was taken up by CitM in complex with divalent metal ions. Subsequently, the ability of CitM to transport D-isocitrate was demonstrated by competition experiments and by heterologous exchange in right-side-out membrane vesicles prepared from E. coli cells expressing citM. None of the other TCA cycle intermediates and related compounds tested were recognized by CitM. Uptake experiments using radioactive (63)Ni(2+) provided direct evidence that D-isocitrate is transported in complex with divalent metal ions.
Collapse
Affiliation(s)
- Jessica B Warner
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands1
| | - Juke S Lolkema
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands1
| |
Collapse
|
22
|
Kim HJ, Roux A, Sonenshein AL. Direct and indirect roles of CcpA in regulation of Bacillus subtilis Krebs cycle genes. Mol Microbiol 2002; 45:179-90. [PMID: 12100558 DOI: 10.1046/j.1365-2958.2002.03003.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Carbon catabolite repression of the Bacillus subtilis citrate synthase (citZ) and aconitase (citB) genes, previously known to be regulated by CcpC, was shown to depend on CcpA as well. Transcription of the citZ gene was partially derepressed in ccpA and ccpC single mutants and fully derepressed in a ccpA ccpC double mutant. DNase I footprinting studies showed that CcpA binds to a catabolite-responsive element (cre) site located at positions +80 to +97 with respect to the transcription start site, whereas CcpC binds at positions -14 to +6 and +16 to +36. Mutations in the citZ cre site greatly altered CcpA binding and repression. A ccpA null mutation also caused partial derepression of citB. Disruption of citrate synthase activity, however, suppressed the effect of the ccpA mutation, suggesting that increased citrate accumulation in a ccpA mutant partially inactivates CcpC and causes partial derepression of citB. Therefore, CcpA controls expression of Krebs cycle genes directly by regulating transcription of citZ and in-directly by regulating availability of citrate, the inducer for CcpC.
Collapse
Affiliation(s)
- Hyun-Jin Kim
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
23
|
Krom BP, Aardema R, Lolkema JS. Bacillus subtilis YxkJ is a secondary transporter of the 2-hydroxycarboxylate transporter family that transports L-malate and citrate. J Bacteriol 2001; 183:5862-9. [PMID: 11566984 PMCID: PMC99663 DOI: 10.1128/jb.183.20.5862-5869.2001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of Bacillus subtilis contains two genes that code for membrane proteins that belong to the 2-hydroxycarboxylate transporter family. Here we report the functional characterization of one of the two, yxkJ, which codes for a transporter protein named CimHbs. The gene was cloned and expressed in Escherichia coli and complemented the citrate-negative phenotype of wild-type E. coli and the malate-negative phenotype of the E. coli strain JRG4008, which is defective in malate uptake. Subsequent uptake studies in whole cells expressing CimHbs clearly demonstrated the citrate and malate transport activity of the protein. Immunoblot analysis showed that CimHbs is a 48-kDa protein that is well expressed in E. coli. Studies with right-side-out membrane vesicles demonstrated that CimHbs is an electroneutral proton-solute symporter. No indications were found for the involvement of Na(+) ions in the transport process. Inhibition of the uptake catalyzed by CimHbs by divalent metal ions, together with the lack of effect on transport by the chelator EDTA, showed that CimHbs translocates the free citrate and malate anions. Among a large set of substrates tested, only malate, citramalate, and citrate competitively inhibited citrate transport catalyzed by CimHbs. The transporter is strictly stereoselective, recognizing only the S enantiomers of malate and citramalate. Remarkably, though citramalate binds to the transporter, it is not translocated.
Collapse
Affiliation(s)
- B P Krom
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
| | | | | |
Collapse
|
24
|
Krom BP, Warner JB, Konings WN, Lolkema JS. Complementary metal ion specificity of the metal-citrate transporters CitM and CitH of Bacillus subtilis. J Bacteriol 2000; 182:6374-81. [PMID: 11053381 PMCID: PMC94783 DOI: 10.1128/jb.182.22.6374-6381.2000] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Citrate uptake in Bacillus subtilis is stimulated by a wide range of divalent metal ions. The metal ions were separated into two groups based on the expression pattern of the uptake system. The two groups correlated with the metal ion specificity of two homologous B. subtilis secondary citrate transporters, CitM and CitH, upon expression in Escherichia coli. CitM transported citrate in complex with Mg(2+), Ni(2+), Mn(2+), Co(2+), and Zn(2+) but not in complex with Ca(2+), Ba(2+), and Sr(2+). CitH transported citrate in complex with Ca(2+), Ba(2+), and Sr(2+) but not in complex with Mg(2+), Ni(2+), Mn(2+), Co(2+), and Zn(2+). Both transporters did not transport free citrate. Nevertheless, free citrate uptake could be demonstrated in B. subtilis, indicating the expression of at least a third citrate transporter, whose identity is not known. For both the CitM and CitH transporters it was demonstrated that the metal ion promoted citrate uptake and, vice versa, that citrate promoted uptake of the metal ion, indicating that the complex is the transported species. The results indicate that CitM and CitH are secondary transporters that transport complexes of divalent metal ions and citrate but with a complementary metal ion specificity. The potential physiological function of the two transporters is discussed.
Collapse
Affiliation(s)
- B P Krom
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
| | | | | | | |
Collapse
|