1
|
Ogawa Y, Katsuyama Y, Ohnishi Y. Engineering of the Ligand Specificity of Transcriptional Regulator XylS by Deep Mutational Scanning. ACS Synth Biol 2022; 11:473-485. [PMID: 34964613 DOI: 10.1021/acssynbio.1c00564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Deep mutational scanning is a method for protein engineering. Here, we applied it to alter the ligand specificity of the transcriptional regulator XylS from Pseudomonas putida to recognize p-toluic acid instead of the native ligand m-toluic acid. For this purpose, we used an antibiotic resistance gene-based dual screening system, which was constructed for the directed evolution of XylS toward the above-mentioned ligand specificity. We constructed a xylS mutant library in which each codon for the amino acid residue of the putative ligand-binding domain (residues 1-213, except 7th residue) was randomized to generate all possible single amino acid-substituted XylS variants and introduced it into Escherichia coli harboring the selection plasmid for the screening system. The cells were cultured in the presence of appropriate antibiotics and m-toluic acid or p-toluic acid, and the frequency of each mutation present in the library was examined using a next-generation sequencer before and after cultivation. Heatmaps showing the enrichment score of each XylS variant were obtained. By searching for a p-toluic-acid-specific heatmap pattern, we focused on G71 and H77. Analysis of the ligand specificities of G71- or H77-substituted XylS variants revealed that several G71-substituted XylS variants responded specifically to p-toluic acid. Thus, the 71st residue was found to be an unprecedented residue that is important for switching ligand specificity. Our study demonstrated the usefulness of deep mutational scanning in engineering the ligand specificity of a transcriptional regulator without structural information. We also discussed the advantages and disadvantages of deep mutational scanning compared with directed evolution.
Collapse
Affiliation(s)
- Yuki Ogawa
- Department of Biotechnology, The Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yohei Katsuyama
- Department of Biotechnology, The Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, The Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
2
|
Improved Dynamic Range of a Rhamnose-Inducible Promoter for Gene Expression in Burkholderia spp. Appl Environ Microbiol 2021; 87:e0064721. [PMID: 34190606 DOI: 10.1128/aem.00647-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A diverse genetic toolkit is critical for understanding bacterial physiology and genotype-phenotype relationships. Inducible promoter systems are an integral part of this toolkit. In Burkholderia and related species, the l-rhamnose-inducible promoter is among the first choices due to its tight control and the lack of viable alternatives. To improve upon its maximum activity and dynamic range, we explored the effect of promoter system modifications in Burkholderia cenocepacia with a LacZ-based reporter. By combining the bacteriophage T7 gene 10 stem-loop and engineered rhaI transcription factor-binding sites, we obtained a rhamnose-inducible system with a 6.5-fold and 3.0-fold increases in maximum activity and dynamic range, respectively, compared to the native promoter. We then added the modified promoter system to pSCrhaB2 and pSC201, common genetic tools used for plasmid-based and chromosome-based gene expression, respectively, in Burkholderia, creating pSCrhaB2plus and pSC201plus. We demonstrated the utility of pSCrhaB2plus for gene expression in B. thailandensis, B. multivorans, and B. vietnamiensis and used pSC201plus to control highly expressed essential genes from the chromosome of B. cenocepacia. The utility of the modified system was demonstrated as we recovered viable mutants to control ftsZ, rpoBC, and rpsF, whereas the unmodified promoter was unable to control rpsF. The modified expression system allowed control of an essential gene depletion phenotype at lower levels of l-rhamnose, the inducer. pSCRhaB2plus and pSC201plus are expected to be valuable additions to the genetic toolkit for Burkholderia and related species. IMPORTANCE Species of Burkholderia are dually recognized as being of attractive biotechnological potential but also opportunistic pathogens for immunocompromised individuals. Understanding the genotype-phenotype relationship is critical for synthetic biology approaches in Burkholderia to disentangle pathogenic from beneficial traits. A diverse genetic toolkit, including inducible promoters, is the foundation for these investigations. Thus, we sought to improve on the commonly used rhamnose-inducible promoter system. Our modifications resulted in both higher levels of heterologous protein expression and broader control over highly expressed essential genes in B. cenocepacia. The significance of our work is in expanding the genetic toolkit to enable more comprehensive studies into Burkholderia and related bacteria.
Collapse
|
3
|
Ritcharoon B, Sallabhan R, Toewiwat N, Mongkolsuk S, Loprasert S. Detection of 2,4-dichlorophenoxyacetic acid herbicide using a FGE-sulfatase based whole-cell Agrobacterium biosensor. J Microbiol Methods 2020; 175:105997. [PMID: 32645339 DOI: 10.1016/j.mimet.2020.105997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 11/29/2022]
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D) has been widely used as a herbicide for agricultural purposes. Currently, the available methods for detecting 2,4-D require multi-step sample preparations and expensive instruments. The use of a whole cell biosensor is an interesting approach that is straightforward and simple to use. In this study, we constructed a genetic-based Agrobacterium tumefaciens biosensor based on a cadA promoter and cadR regulator from Bradyrhizobium sp. strain HW13 (2,4-D degrader) with a formylglycine generating enzyme (FGE)-sulfatase as the reporter gene. The performance of the biosensor was further improved through direct evolution of the cadR activator. The detection limit of cadR mutants for phenoxyacetic acid herbicides including 2,4-D and 4-Chlorophenoxyacetic acid (4-CPAA) were 1.56 μM (an eight-fold improvement compared to wild-type CadR). The biosensor could detect 2,4-D contamination in environmental samples without encountering interference from other complex compounds. The Agrobacterium biosensor was also stable after storing in a simple Luria-Bertani (LB) medium at 4 °C for 30 days where the activity remained at 82% when exposed to 100 μM of 2,4-D. This novel biosensor, with its high stability under simple storage conditions, exhibits promising potential to be used as an inexpensive and easy-to-use tool to screen for 2,4-D contamination in environmental sources.
Collapse
Affiliation(s)
- Benjarat Ritcharoon
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Ratiboot Sallabhan
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Neal Toewiwat
- Applied Biological Sciences Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Skorn Mongkolsuk
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Applied Biological Sciences Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology, Ministry of Education, Bangkok 10400, Thailand
| | - Suvit Loprasert
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Applied Biological Sciences Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology, Ministry of Education, Bangkok 10400, Thailand.
| |
Collapse
|
4
|
Ogawa Y, Katsuyama Y, Ueno K, Ohnishi Y. Switching the Ligand Specificity of the Biosensor XylS from meta to para-Toluic Acid through Directed Evolution Exploiting a Dual Selection System. ACS Synth Biol 2019; 8:2679-2689. [PMID: 31689072 DOI: 10.1021/acssynbio.9b00237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Pseudomonas putida transcriptional activator XylS induces transcription from the Pm promoter in the presence of several benzoic acid effectors, with m-toluic acid being the most effective and p-toluic acid being much less effective. To alter the effector specificity of XylS, we developed a dual selection system in Escherichia coli, which consists of (i) an artificial operon of an ampicillin resistance gene and tetR under Pm promoter control and (ii) a chloramphenicol resistance gene under tetR promoter control. This system enabled both positive selection to concentrate XylS mutants recognizing a desired ligand and negative selection to exclude undesired XylS mutants such as those recognizing undesired ligands and those that are active without effectors. Application of a random mutagenesis library of xylS to directed evolution that exploited this selection system yielded two XylS mutants that recognize p-toluic acid more effectively. Analysis of each missense mutation indicated three amino acid residues (N7, T74, and I205) important for p-toluic acid recognition. Then, a codon-randomized xylS library at these three residues was similarly screened, resulting in three XylS mutants with increased p-toluic acid-recognition specificity. Analysis of each amino acid substitution revealed that T74P attributes to both m-toluic acid sensitivity loss and subtle p-toluic acid sensitivity acquisition, and that N7R increases the overall ligand-sensitivity. Finally, the combination of these two mutations generated a desirable XylS mutant, which has a high p-toluic acid sensitivity and scarcely responds to m-toluic acid. These results demonstrate the effectiveness of the dual selection system in the directed evolution of biosensors.
Collapse
Affiliation(s)
- Yuki Ogawa
- Department of Biotechnology, The Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yohei Katsuyama
- Department of Biotechnology, The Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kento Ueno
- Department of Biotechnology, The Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, The Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
5
|
Gawin A, Valla S, Brautaset T. The XylS/Pm regulator/promoter system and its use in fundamental studies of bacterial gene expression, recombinant protein production and metabolic engineering. Microb Biotechnol 2017; 10:702-718. [PMID: 28276630 PMCID: PMC5481539 DOI: 10.1111/1751-7915.12701] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/04/2017] [Accepted: 02/07/2017] [Indexed: 12/21/2022] Open
Abstract
The XylS/Pm regulator/promoter system originating from the Pseudomonas putida TOL plasmid pWW0 is widely used for regulated low‐ and high‐level recombinant expression of genes and gene clusters in Escherichia coli and other bacteria. Induction of this system can be graded by using different cheap benzoic acid derivatives, which enter cells by passive diffusion, operate in a dose‐dependent manner and are typically not metabolized by the host cells. Combinatorial mutagenesis and selection using the bla gene encoding β‐lactamase as a reporter have demonstrated that the Pm promoter, the DNA sequence corresponding to the 5′ untranslated end of its cognate mRNA and the xylS coding region can be modified and improved relative to various types of applications. By combining such mutant genetic elements, altered and extended expression profiles were achieved. Due to their unique properties, obtained systems serve as a genetic toolbox valuable for heterologous protein production and metabolic engineering, as well as for basic studies aiming at understanding fundamental parameters affecting bacterial gene expression. The approaches used to modify XylS/Pm should be adaptable for similar improvements also of other microbial expression systems. In this review, we summarize constructions, characteristics, refinements and applications of expression tools using the XylS/Pm system.
Collapse
Affiliation(s)
- Agnieszka Gawin
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Svein Valla
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Trygve Brautaset
- Department of Biotechnology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
6
|
Lan WS, Lu TK, Qin ZF, Shi XJ, Wang JJ, Hu YF, Chen B, Zhu YH, Liu Z. Genetically modified microorganism Spingomonas paucimobilis UT26 for simultaneously degradation of methyl-parathion and γ-hexachlorocyclohexane. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:840-850. [PMID: 24648032 DOI: 10.1007/s10646-014-1224-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/06/2014] [Indexed: 06/03/2023]
Abstract
Bioremediation of pesticide residues by bacteria is an efficient and environmentally friendly method to deal with environmental pollution. In this study, a genetically modified microorganism (GMM) named UT26XEGM was constructed by introducing a parathion hydrolase gene into an initially γ-hexachlorocyclohexane (γ-HCH) degrading bacterium Spingomonas paucimobilis UT26. In order to reduce its potential risk of gene escaping into the environment for the public concern on biosafety, a suicide system was also designed that did not interfere with the performance of the GMM until its physiological function was activated by specific signal. The system was designed with circuiting suicide cassettes consisting of killing genes gef and ecoRIR from Escherichia coli controlled by Pm promoter and the xylS gene. The cell viability and original degradation characteristics were not affected by the insertion of exogenous genes. The novel GMM was capable of degrading methyl-parathion and γ-HCH simultaneously. In laboratory scale testing, the recombinant bacteria were successfully applied to the bioremediation of mixed pesticide residues with the activity of self-destruction after 3-methylbenzoate induction.
Collapse
Affiliation(s)
- Wen S Lan
- Shenzhen R&D Key Laboratory of Alien Pest Detection Technology, Animal & Plant Inspection and Quarantine Technical Center, Shenzhen Entry-Exit Inspection and Quarantine Bureau, 1011 Fuqiang Road, Shenzhen, 518045, People's Republic of China,
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Zwick F, Lale R, Valla S. Regulation of the expression level of transcription factor XylS reveals new functional insight into its induction mechanism at the Pm promoter. BMC Microbiol 2013; 13:262. [PMID: 24252441 PMCID: PMC4225500 DOI: 10.1186/1471-2180-13-262] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 11/18/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND XylS is the positive regulator of the inducible Pm promoter, originating from Pseudomonas putida, where the system controls a biochemical pathway involved in degradation of aromatic hydrocarbons, which also act as inducers. The XylS/Pm positive regulator/promoter system is used for recombinant gene expression and the output from Pm is known to be sensitive to the intracellular XylS concentration. RESULTS By constructing a synthetic operon consisting of xylS and luc, the gene encoding luciferase, relative XylS expression levels could be monitored indirectly at physiological concentrations. Expression of XylS from inducible promoters allowed control over a more than 800-fold range, however, the corresponding output from Pm covered only an about five-fold range. The maximum output from Pm could not be increased by introducing more copies of the promoter in the cells. Interestingly, a previously reported XylS variant (StEP-13), known to strongly stimulate expression from Pm, caused the same maximum activity from Pm as wild-type XylS at high XylS expression levels. Under uninduced conditions expression from Pm also increased as a function of XylS expression levels, and at very high concentrations the maximum activity from Pm was the same as in the presence of inducer. CONCLUSION According to our proposed model, which is in agreement with current knowledge, the regulator, XylS, can exist in three states: monomers, dimers, and aggregates. Only the dimers are active and able to induce expression from Pm. Their maximum intracellular concentration and the corresponding output from Pm are limited by the concentration-dependent conversion into inactive aggregates. Maximization of the induction ratio at Pm can be obtained by expression of XylS at the level where aggregation occurs, which might be exploited for recombinant gene expression. The results described here also indicate that there might exist variants of XylS which can exist at higher active dimer concentrations and thus lead to increased expression levels from Pm.
Collapse
Affiliation(s)
- Friederike Zwick
- Department of Biotechnology, Norwegian University of Science and Technology, Sem Sælands Vei 6/8, Trondheim N-7491, Norway.
| | | | | |
Collapse
|
8
|
Finely tuned regulation of the aromatic amine degradation pathway in Escherichia coli. J Bacteriol 2013; 195:5141-50. [PMID: 24013633 DOI: 10.1128/jb.00837-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
FeaR is an AraC family regulator that activates transcription of the tynA and feaB genes in Escherichia coli. TynA is a periplasmic topaquinone- and copper-containing amine oxidase, and FeaB is a cytosolic NAD-linked aldehyde dehydrogenase. Phenylethylamine, tyramine, and dopamine are oxidized by TynA to the corresponding aldehydes, releasing one equivalent of H2O2 and NH3. The aldehydes can be oxidized to carboxylic acids by FeaB, and (in the case of phenylacetate) can be further degraded to enter central metabolism. Thus, phenylethylamine can be used as a carbon and nitrogen source, while tyramine and dopamine can be used only as sources of nitrogen. Using genetic, biochemical and computational approaches, we show that the FeaR binding site is a TGNCA-N8-AAA motif that occurs in 2 copies in the tynA and feaB promoters. We show that the coactivator for FeaR is the product rather than the substrate of the TynA reaction. The feaR gene is upregulated by carbon or nitrogen limitation, which we propose reflects regulation of feaR by the cyclic AMP receptor protein (CRP) and the nitrogen assimilation control protein (NAC), respectively. In carbon-limited cells grown in the presence of a TynA substrate, tynA and feaB are induced, whereas in nitrogen-limited cells, only the tynA promoter is induced. We propose that tynA and feaB expression is finely tuned to provide the FeaB activity that is required for carbon source utilization and the TynA activity required for nitrogen and carbon source utilization.
Collapse
|
9
|
Mahon V, Fagan RP, Smith SGJ. Snap denaturation reveals dimerization by AraC-like protein Rns. Biochimie 2012; 94:2058-61. [PMID: 22627379 DOI: 10.1016/j.biochi.2012.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/14/2012] [Indexed: 11/19/2022]
Abstract
Here we show that the Rns regulator of Escherichia coli dimerises in vivo and in vitro. Furthermore, we demonstrate that Rns forms aggregates in vitro and describe a methodology to ameliorate aggregation thus permitting the analysis of Rns by cross-linking.
Collapse
Affiliation(s)
- Vivienne Mahon
- Department of Clinical Microbiology, School of Medicine, Trinity College Dublin, St. James's Hospital, Dublin, Ireland
| | | | | |
Collapse
|
10
|
Zeinoddini M, Khajeh K, Behzadian F, Hosseinkhani S, Saeedinia AR, Barjesteh H. Design and characterization of an aequorin-based bacterial biosensor for detection of toluene and related compounds. Photochem Photobiol 2011; 86:1071-5. [PMID: 20663082 DOI: 10.1111/j.1751-1097.2010.00775.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An aequorin-based Escherichia coli strain JM109 biosensor was constructed and characterized for its potential to detect toluene and related compounds in aqueous solutions. The biosensor was constructed based on a PGL2 plasmid carrying the lower pathway promoter (Pu) of the xyl operon of Pseudomonas putida mt-2, which was incorporated with transcriptional activator xylR and fused to aequorin cDNA named pGL2-aequorin. Binding of xylR protein to a subset of toluene-like compounds activates transcription at the Pu promoter, thus expression of aequorin is controlled by xylR and Pu. In this work we have compared the effect of Shine-Dalgarno (SD) and T2 rrnβ terminator sequence in the expression of aequorin. According to the sensitivity of aequorin and increase in the signal-to-noise ratio, this reporter enzyme has reasonable sensitivity compared with other reporter systems. The results indicate higher expression of aequorin in the presence of SD and T2 rrnβ. The activity of aequorin in recombinant whole-cell biosensor was linear from 1 to 500 μm of toluene. The bioluminescence response was specific for toluene-like molecules, so this biosensor cells would be able to detect toluene derivative contamination in environmental samples, accurately.
Collapse
Affiliation(s)
- Mehdi Zeinoddini
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
11
|
Sequential XylS-CTD binding to the Pm promoter induces DNA bending prior to activation. J Bacteriol 2010; 192:2682-90. [PMID: 20363935 DOI: 10.1128/jb.00165-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
XylS protein, a member of the AraC family of transcriptional regulators, comprises a C-terminal domain (CTD) involved in DNA binding and an N-terminal domain required for effector binding and protein dimerization. In the absence of benzoate effectors, the N-terminal domain behaves as an intramolecular repressor of the DNA binding domain. To date, the poor solubility properties of the full-length protein have restricted XylS analysis to genetic approaches in vivo. To characterize the molecular consequences of XylS binding to its operator, we used a recombinant XylS-CTD variant devoid of the N-terminal domain. The resulting protein was soluble and monomeric in solution and activated transcription from its cognate promoter in an effector-independent manner. XylS binding sites in the Pm promoter present an intrinsic curvature of 35 degrees centered at position -42 within the proximal site. Gel retardation and DNase footprint analysis showed XylS-CTD binding to Pm occurred sequentially: first a XylS-CTD monomer binds to the proximal site overlapping the RNA polymerase binding sequence to form complex I. This first event increased Pm bending to 50 degrees and was followed by the binding of the second monomer, which further increased the observed global curvature to 98 degrees. This generated a concomitant shift in the bending center to a region centered at position -51 when the two sites were occupied (complex II). We propose a model in which DNA structure and binding sequences strongly influence XylS binding events previous to transcription activation.
Collapse
|
12
|
Vee Aune TE, Bakke I, Drabløs F, Lale R, Brautaset T, Valla S. Directed evolution of the transcription factor XylS for development of improved expression systems. Microb Biotechnol 2010; 3:38-47. [PMID: 21255304 PMCID: PMC3815945 DOI: 10.1111/j.1751-7915.2009.00126.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 04/29/2009] [Accepted: 05/03/2009] [Indexed: 11/28/2022] Open
Abstract
The inducible Pm promoter together with its cognate positive transcription regulator XylS has been shown to be useful for recombinant protein production under high cell density conditions. Here we report directed evolution of XylS resulting in mutant proteins with increased ability to stimulate transcription in Escherichia coli from Pm. A first round of mutagenesis using error-prone PCR on xylS was used to construct a library consisting of about 430,000 clones, and this library could be efficiently screened with respect to stimulation of expression from Pm due to a positive correlation between the level of expression of the reporter gene, bla (encoding β-lactamase), and the ampicillin tolerance of the corresponding host cells. Fourteen different amino acid substitutions in XylS were found to separately lead to up to nearly a threefold stimulation of expression under induced conditions, relative to wild type. These mutations were all located in the part corresponding to the N-terminal half of the protein. Varying combinations of the mutations resulted in further stimulation, and the best results (about 10-fold stimulation under induced conditions) were obtained by using a random shuffling procedure followed by a new round of screening. The uninduced levels of expression for the same mutants also increased, but only about four times. Through in silico 3D modelling of the N-terminal domain of XylS, it was observed that the evolved mutant proteins contained substitutions that were positioned in different parts of the predicted structure, including a β-barrel putatively responsible for effector binding and a coiled coil probably important for dimerization. The total production of the host-toxic antibody fragment scFv-phOx expressed from Pm with the evolved XylS mutant protein StEP-13 was about ninefold higher than with wild-type XylS, demonstrating that directed evolution of transcription factors can be an important new tool to achieve high-level recombinant protein production.
Collapse
Affiliation(s)
- Trond Erik Vee Aune
- Department of Biotechnology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Ingrid Bakke
- Department of Biotechnology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Finn Drabløs
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7006 Trondheim, Norway
| | - Rahmi Lale
- Department of Biotechnology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Trygve Brautaset
- SINTEF Materials and Chemistry, Department of Biotechnology, SINTEF, 7465 Trondheim, Norway
| | - Svein Valla
- Department of Biotechnology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
13
|
Functional domains of ExsA, the transcriptional activator of the Pseudomonas aeruginosa type III secretion system. J Bacteriol 2009; 191:3811-21. [PMID: 19376850 DOI: 10.1128/jb.00002-09] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa utilizes a type III secretion system (T3SS) to evade phagocytosis and damage eukaryotic cells. Transcription of the T3SS regulon is controlled by ExsA, a member of the AraC/XylS family of transcriptional regulators. These family members generally consist of an approximately 100-amino acid carboxy-terminal domain (CTD) with two helix-turn-helix DNA binding motifs and an approximately 200-amino acid amino-terminal domain (NTD) with known functions including oligomerization and ligand binding. In the present study, we show that the CTD of ExsA binds to ExsA-dependent promoters in vitro and activates transcription from ExsA-dependent promoters both in vitro and in vivo. Despite possessing these activities, the CTD lacks the cooperative binding properties observed for full-length ExsA at the P(exsC) promoter. In addition, the CTD is unaffected by the negative regulatory activity of ExsD, an inhibitor of ExsA activity. Binding studies confirm that ExsD interacts directly with the NTD of ExsA. Our data are consistent with a model in which a single ExsA molecule first binds to a high-affinity site on the P(exsC) promoter. Protein-protein interactions mediated by the NTD then recruit an additional ExsA molecule to a second site on the promoter to form a complex capable of stimulating wild-type levels of transcription. These findings provide important insight into the mechanisms of transcriptional activation by ExsA and inhibition of ExsA activity by ExsD.
Collapse
|
14
|
Gonçalves V, Matos P, Jordan P. The beta-catenin/TCF4 pathway modifies alternative splicing through modulation of SRp20 expression. RNA (NEW YORK, N.Y.) 2008; 14:2538-49. [PMID: 18952824 PMCID: PMC2590949 DOI: 10.1261/rna.1253408] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2008] [Accepted: 09/15/2008] [Indexed: 05/24/2023]
Abstract
Gene expression programs can become activated in response to extracellular signals. One evolutionarily conserved example is binding of Wnt glycoproteins to their receptor, which triggers a signal transduction cascade that stabilizes cytoplasmic beta-catenin protein, allowing it to translocate into the nucleus. There, beta-catenin binds to TCF/Lef family transcription factors and promotes the expression of target genes. Mutations in either the beta-catenin gene itself or its partner protein APC are responsible for the oncogenic activation of this pathway in colorectal tumors. Here we report the splicing factor SRp20 as a novel target gene of beta-catenin/TCF4 signaling. Transfection of activated beta-catenin mutants into colorectal cells increased expression of endogenous SRp20 transcript and protein and also stimulated a luciferase reporter construct containing the SRp20 gene promoter. In contrast, inhibition of endogenous beta-catenin signaling by a dominant-negative TCF4 construct down-regulated both luciferase reporter and SRp20 expression. We further demonstrate that the beta-catenin/TCF4-mediated increase in SRp20 protein levels is sufficient to modulate alternative splicing decisions in the cells. In particular, we observed a change in the alternative splicing pattern in a control minigene reporter as well as in the endogenous SRp20-regulated CD44 cell adhesion protein. These results demonstrate that the beta-catenin/TCF4 pathway not only stimulates gene transcription, but also promotes the generation of transcript variants through alternative splicing. Our data support the recent notion that transcription and alternative splicing represent two different layers of gene expression and that signaling pathways act upon a coordinated network of transcripts in each layer.
Collapse
Affiliation(s)
- Vânia Gonçalves
- Centro de Genética Humana, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | | | | |
Collapse
|
15
|
Abstract
Regulated promoters are useful tools for many aspects related to recombinant gene expression in bacteria, including for high‐level expression of heterologous proteins and for expression at physiological levels in metabolic engineering applications. In general, it is common to express the genes of interest from an inducible promoter controlled either by a positive regulator or by a repressor protein. In this review, we discuss established and potentially useful positively regulated bacterial promoter systems, with a particular emphasis on those that are controlled by the AraC‐XylS family of transcriptional activators. The systems function in a wide range of microorganisms, including enterobacteria, soil bacteria, lactic bacteria and streptomycetes. The available systems that have been applied to express heterologous genes are regulated either by sugars (l‐arabinose, l‐rhamnose, xylose and sucrose), substituted benzenes, cyclohexanone‐related compounds, ε‐caprolactam, propionate, thiostrepton, alkanes or peptides. It is of applied interest that some of the inducers require the presence of transport systems, some are more prone than others to become metabolized by the host and some have been applied mainly in one or a limited number of species. Based on bioinformatics analyses, the AraC‐XylS family of regulators contains a large number of different members (currently over 300), but only a small fraction of these, the XylS/Pm, AraC/PBAD, RhaR‐RhaS/rhaBAD, NitR/PnitA and ChnR/Pb regulator/promoter systems, have so far been explored for biotechnological applications.
Collapse
Affiliation(s)
- Trygve Brautaset
- Department of Biotechnology, Sintef Materials and Chemistry, Sintef, Trondheim, Norway.
| | | | | |
Collapse
|
16
|
Kolin A, Balasubramaniam V, Skredenske JM, Wickstrum JR, Egan SM. Differences in the mechanism of the allosteric l-rhamnose responses of the AraC/XylS family transcription activators RhaS and RhaR. Mol Microbiol 2008; 68:448-61. [PMID: 18366439 DOI: 10.1111/j.1365-2958.2008.06164.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proteins in the largest subset of AraC/XylS family transcription activators, including RhaS and RhaR, have C-terminal domains (CTDs) that mediate DNA-binding and transcription activation, and N-terminal domains (NTDs) that mediate dimerization and effector binding. The mechanism of the allosteric effector response in this family has been identified only for AraC. Here, we investigated the mechanism by which RhaS and RhaR respond to their effector, l-rhamnose. Unlike AraC, N-terminal truncations suggested that RhaS and RhaR do not use an N-terminal arm to inhibit activity in the absence of effector. We used random mutagenesis to isolate RhaS and RhaR variants with enhanced activation in the absence of l-rhamnose. NTD substitutions largely clustered around the predicted l-rhamnose-binding pockets, suggesting that they mimic the structural outcome of effector binding to the wild-type proteins. RhaS-CTD substitutions clustered in the first HTH motif, and suggested that l-rhamnose induces improved DNA binding. In contrast, RhaR-CTD substitutions clustered at a single residue in the second HTH motif, at a position consistent with improved RNAP contacts. We propose separate allosteric mechanisms for the two proteins: Without l-rhamnose, RhaS does not effectively bind DNA while RhaR does not effectively contact RNAP. Upon l-rhamnose binding, both proteins undergo structural changes that enable transcription activation.
Collapse
Affiliation(s)
- Ana Kolin
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | | | | | | | | |
Collapse
|
17
|
Roles of effectors in XylS-dependent transcription activation: intramolecular domain derepression and DNA binding. J Bacteriol 2008; 190:3118-28. [PMID: 18296514 DOI: 10.1128/jb.01784-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
XylS, an AraC family protein, activates transcription from the benzoate degradation pathway Pm promoter in the presence of a substrate effector such as 3-methylbenzoate (3MB). We developed a procedure to obtain XylS-enriched preparations which proved suitable to analyze its activation mechanism. XylS showed specific 3MB-independent binding to its target operator, which became strictly 3MB dependent in a dimerization-defective mutant. We demonstrated that the N-terminal domain of the protein can make linker-independent interactions with the C-terminal domain and inhibit its capacity to bind DNA. Interactions are hampered in the presence of 3MB effector. We propose two independent roles for 3MB in XylS activation: in addition to its known influence favoring protein dimerization, the effector is able to modify XylS conformation to trigger N-terminal domain intramolecular derepression. We also show that activation by XylS involves RNA polymerase recruitment to the Pm promoter as demonstrated by chromatin immunoprecipitation assays. RNA polymerase switching in Pm transcription was reproduced in in vitro transcription assays. All sigma(32)-, sigma(38)-, and sigma(70)-dependent RNA polymerases were able to carry out Pm transcription in a rigorous XylS-dependent manner, as demonstrated by the formation of open complexes only in the presence of the regulator.
Collapse
|
18
|
Residues near the amino terminus of Rns are essential for positive autoregulation and DNA binding. J Bacteriol 2008; 190:2279-85. [PMID: 18223083 DOI: 10.1128/jb.01705-07] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most members of the AraC/XylS family contain a conserved carboxy-terminal DNA binding domain and a less conserved amino-terminal domain involved in binding small-molecule effectors and dimerization. However, there is no evidence that Rns, a regulator of enterotoxigenic Escherichia coli virulence genes, responds to an effector ligand, and in this study we found that the amino-terminal domain of Rns does not form homodimers in vivo. Exposure of Rns to the chemical cross-linker glutaraldehyde revealed that the full-length protein is also a monomer in vitro. Nevertheless, deletion analysis of Rns demonstrated that the first 60 amino acids of the protein are essential for the activation and repression of Rns-regulated promoters in vivo. Amino-terminal truncation of Rns abolished DNA binding in vitro, and two randomly generated mutations, I14T and N16D, that independently abolished Rns autoregulation were isolated. Further analysis of these mutations revealed that they have disparate effects at other Rns-regulated promoters and suggest that they may be involved in an interaction with the carboxy-terminal domain of Rns. Thus, evolution may have preserved the amino terminus of Rns because it is essential for the regulator's activity even though it apparently lacks the two functions, dimerization and ligand binding, usually associated with the amino-terminal domains of AraC/XylS family members.
Collapse
|
19
|
Domínguez-Cuevas P, Marín P, Marqués S, Ramos JL. XylS-Pm promoter interactions through two helix-turn-helix motifs: identifying XylS residues important for DNA binding and activation. J Mol Biol 2007; 375:59-69. [PMID: 18005985 DOI: 10.1016/j.jmb.2007.10.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 10/15/2007] [Accepted: 10/16/2007] [Indexed: 11/25/2022]
Abstract
The XylS protein is the positive transcription regulator of the TOL plasmid meta-cleavage pathway operon Pm. XylS belongs to the AraC family of transcriptional regulators and exhibits an N-terminal domain involved in effector recognition, and a C-terminal domain, made up of seven alpha-helices conforming two helix-turn-helix DNA-binding domains. alpha-Helix 3 and alpha-helix 6 are the recognition helices. In consonance with XylS structural organization, Pm exhibits a bipartite DNA-binding motif consisting of two boxes, called A and B, whose sequences are TGCA and GGNTA, respectively. This bipartite motif is repeated at the Pm promoter so that one of the XylS monomers binds to each of the repeats. An extensive series of genetic epistasis assays combining mutant Pm promoters and XylS single substitution mutant proteins revealed that alpha-helix 3 contacts A box nucleotides, whereas alpha-helix 6 residues contact B box nucleotides. In alpha-helix 3, Asn246 and Arg242 are involved in specific contacts with the TG dinucleotide at box A, whereas Arg296 and Glu299 contact the second G and T nucleotides at box B. On the basis of our results and of the three-dimensional model of the XylS C-terminal domain, we propose that Ser243, Glu249 and Lys250 in alpha-helix 3, and Asn299 and Arg302 in alpha-helix 6 contact the phosphate backbones. Alanine substitutions at the predicted phosphate backbone-contacting residues yielded mutants with low levels of activity, suggesting that XylS-Pm binding specificity not only involves specific amino acid-base interactions, but also relies on secondary DNA structure, which, although at another level, also comes into play. We propose a model in which a XylS dimer binds to the direct repeats in Pm in a head-to-tail conformation that allows the direct interaction of the XylS proximal subunit with the RNA polymerase sigma factor.
Collapse
Affiliation(s)
- Patricia Domínguez-Cuevas
- Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Department of Environmental Protection, E-18008 Granada, Spain
| | | | | | | |
Collapse
|
20
|
Wickstrum JR, Skredenske JM, Kolin A, Jin DJ, Fang J, Egan SM. Transcription activation by the DNA-binding domain of the AraC family protein RhaS in the absence of its effector-binding domain. J Bacteriol 2007; 189:4984-93. [PMID: 17513476 PMCID: PMC1951867 DOI: 10.1128/jb.00530-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli L-rhamnose-responsive transcription activators RhaS and RhaR both consist of two domains, a C-terminal DNA-binding domain and an N-terminal dimerization domain. Both function as dimers and only activate transcription in the presence of L-rhamnose. Here, we examined the ability of the DNA-binding domains of RhaS (RhaS-CTD) and RhaR (RhaR-CTD) to bind to DNA and activate transcription. RhaS-CTD and RhaR-CTD were both shown by DNase I footprinting to be capable of binding specifically to the appropriate DNA sites. In vivo as well as in vitro transcription assays showed that RhaS-CTD could activate transcription to high levels, whereas RhaR-CTD was capable of only very low levels of transcription activation. As expected, RhaS-CTD did not require the presence of L-rhamnose to activate transcription. The upstream half-site at rhaBAD and the downstream half-site at rhaT were found to be the strongest of the known RhaS half-sites, and a new putative RhaS half-site with comparable strength to known sites was identified. Given that cyclic AMP receptor protein (CRP), the second activator required for full rhaBAD expression, cannot activate rhaBAD expression in a DeltarhaS strain, it was of interest to test whether CRP could activate transcription in combination with RhaS-CTD. We found that RhaS-CTD allowed significant activation by CRP, both in vivo and in vitro, although full-length RhaS allowed somewhat greater CRP activation. We conclude that RhaS-CTD contains all of the determinants necessary for transcription activation by RhaS.
Collapse
Affiliation(s)
- Jason R Wickstrum
- Department of Molecular Biosciences, 1200 Sunnyside Ave., University of Kansas, Lawrence, KS 66045, USA
| | | | | | | | | | | |
Collapse
|
21
|
Carl B, Fetzner S. Transcriptional activation of quinoline degradation operons of Pseudomonas putida 86 by the AraC/XylS-type regulator OxoS and cross-regulation of the PqorM promoter by XylS. Appl Environ Microbiol 2006; 71:8618-26. [PMID: 16332855 PMCID: PMC1317402 DOI: 10.1128/aem.71.12.8618-8626.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The quinoline-degradative gene cluster (oxoO, open reading frames 1 to 6 [ORF1 to -6], qorMSL, ORF7 to -9, oxoR) of Pseudomonas putida 86 consists of several overlapping operons controlled in response to quinoline by the master promoter PoxoO and internal promoters Porf3, PqorM, and PoxoR. ORF7 to -9, presumed to be important for maturation of the molybdenum hydroxylase quinoline 2-oxidoreductase, are also weakly transcribed independently of quinoline. Expression of the oxoS gene, located upstream of oxoO, is not influenced by the carbon source. OxoS shows 26% amino acid sequence identity to XylS, the transcriptional regulator of the meta pathway promoter Pm of TOL plasmid pWW0, and is required for quinoline-dependent transcription from PoxoO, Porf3, PqorM, and PoxoR. 5' deletion analysis of PoxoO and PqorM suggested that a 5'-TGCPuCT-N3-GGGATA-3' motif, which resembles the distal 5'-TGCA-N6-GGNTA-3' half-site of the tandem XylS binding site, is essential for oxoS-dependent transcriptional activation. PqorM, which shows similarity to the tandem XylS recognition site of Pm, was cross-activated by the xylS gene product in response to benzoate. The distal half-site of PqorM is necessary, but probably not sufficient, for transcriptional activation by XylS. Despite conservation in PoxoO of a distal 5'-TGCA-N6-GGNTA-3' sequence, cross-activation of PoxoO by XylS and benzoate was not observed. The oxoS gene product in the presence of quinoline weakly stimulated transcription from the Pm promoter. Involvement of an XylS-type protein in the regulation of genes encoding synthesis of a molybdenum hydroxylase is without precedent and may reflect the evolutionary origin of this pathway in the metabolism of aromatic compounds.
Collapse
Affiliation(s)
- Birgit Carl
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, D-48149 Münster, Germany
| | | |
Collapse
|
22
|
Galvão TC, de Lorenzo V. Transcriptional regulators à la carte: engineering new effector specificities in bacterial regulatory proteins. Curr Opin Biotechnol 2006; 17:34-42. [PMID: 16359854 DOI: 10.1016/j.copbio.2005.12.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 11/15/2005] [Accepted: 12/05/2005] [Indexed: 11/27/2022]
Abstract
For many regulators of bacterial biodegradation pathways, small molecule/effector binding is the signal for triggering transcriptional activation. Thus, regulation results from a cross-talk between chemicals sensed by transcriptional factors and operon expression status. These features can be utilised in the construction of biosensors for a wide range of target compounds as, in principle, any regulatory protein whose activity is modulated by binding to a small molecule can have its effector/inducer profile artificially altered. The cognate specificities of a number of regulatory proteins have been modified as an astute approach to developing, among others, bacterial biosensors for environmentally relevant compounds.
Collapse
Affiliation(s)
- Teca Calcagno Galvão
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología-CSIC, Madrid 28049, Spain.
| | | |
Collapse
|
23
|
Prieto MA, Galán B, Torres B, Ferrández A, Fernández C, Miñambres B, García JL, Díaz E. Aromatic metabolism versus carbon availability: the regulatory network that controls catabolism of less-preferred carbon sources in Escherichia coli. FEMS Microbiol Rev 2004; 28:503-18. [PMID: 15374664 DOI: 10.1016/j.femsre.2004.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Revised: 04/13/2004] [Accepted: 04/13/2004] [Indexed: 10/26/2022] Open
Abstract
The current knowledge on the genetics and biochemistry of the catabolism of aromatic compounds in Escherichia coli settles the basis to consider these pathways as a model system to study the complex molecular mechanisms that control the expression of the genes involved in the metabolism of less-preferred carbon sources in this paradigmatic organism. Two different levels of regulation are reviewed: (i) the specific regulatory mechanisms that drive the expression of the catabolic genes when the cognate inducer, i.e., the substrate of the pathway or an intermediate metabolite, is available, and (ii) the global or superimposed regulation that adjust the expression of the catabolic clusters to the general physiological status of the cell.
Collapse
Affiliation(s)
- María A Prieto
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Tropel D, van der Meer JR. Bacterial transcriptional regulators for degradation pathways of aromatic compounds. Microbiol Mol Biol Rev 2004; 68:474-500, table of contents. [PMID: 15353566 PMCID: PMC515250 DOI: 10.1128/mmbr.68.3.474-500.2004] [Citation(s) in RCA: 295] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human activities have resulted in the release and introduction into the environment of a plethora of aromatic chemicals. The interest in discovering how bacteria are dealing with hazardous environmental pollutants has driven a large research community and has resulted in important biochemical, genetic, and physiological knowledge about the degradation capacities of microorganisms and their application in bioremediation, green chemistry, or production of pharmacy synthons. In addition, regulation of catabolic pathway expression has attracted the interest of numerous different groups, and several catabolic pathway regulators have been exemplary for understanding transcription control mechanisms. More recently, information about regulatory systems has been used to construct whole-cell living bioreporters that are used to measure the quality of the aqueous, soil, and air environment. The topic of biodegradation is relatively coherent, and this review presents a coherent overview of the regulatory systems involved in the transcriptional control of catabolic pathways. This review summarizes the different regulatory systems involved in biodegradation pathways of aromatic compounds linking them to other known protein families. Specific attention has been paid to describing the genetic organization of the regulatory genes, promoters, and target operon(s) and to discussing present knowledge about signaling molecules, DNA binding properties, and operator characteristics, and evidence from regulatory mutants. For each regulator family, this information is combined with recently obtained protein structural information to arrive at a possible mechanism of transcription activation. This demonstrates the diversity of control mechanisms existing in catabolic pathways.
Collapse
Affiliation(s)
- David Tropel
- Swiss Federal Institute for Environmental Science and Technology (EAWAG), Dübendorf, Switzerland
| | | |
Collapse
|
25
|
Wickstrum JR, Egan SM. Amino acid contacts between sigma 70 domain 4 and the transcription activators RhaS and RhaR. J Bacteriol 2004; 186:6277-85. [PMID: 15342598 PMCID: PMC515164 DOI: 10.1128/jb.186.18.6277-6285.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The RhaS and RhaR proteins are transcription activators that respond to the availability of L-rhamnose and activate transcription of the operons in the Escherichia coli L-rhamnose catabolic regulon. RhaR activates transcription of rhaSR, and RhaS activates transcription of the operon that encodes the L-rhamnose catabolic enzymes, rhaBAD, as well as the operon that encodes the L-rhamnose transport protein, rhaT. RhaS is 30% identical to RhaR at the amino acid level, and both are members of the AraC/XylS family of transcription activators. The RhaS and RhaR binding sites overlap the -35 hexamers of the promoters they regulate, suggesting they may contact the sigma70 subunit of RNA polymerase as part of their mechanisms of transcription activation. In support of this hypothesis, our lab previously identified an interaction between RhaS residue D241 and sigma70 residue R599. In the present study, we first identified two positively charged amino acids in sigma70, K593 and R599, and three negatively charged amino acids in RhaR, D276, E284, and D285, that were important for RhaR-mediated transcription activation of the rhaSR operon. Using a genetic loss-of-contact approach we have obtained evidence for a specific contact between RhaR D276 and sigma70 R599. Finally, previous results from our lab separately showed that RhaS D250A and sigma70 K593A were defective at the rhaBAD promoter. Our genetic loss-of-contact analysis of these residues indicates that they identify a second site of contact between RhaS and sigma70.
Collapse
Affiliation(s)
- Jason R Wickstrum
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | | |
Collapse
|
26
|
Shingler V. Integrated regulation in response to aromatic compounds: from signal sensing to attractive behaviour. Environ Microbiol 2004; 5:1226-41. [PMID: 14641570 DOI: 10.1111/j.1462-2920.2003.00472.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deciphering the complex interconnecting bacterial responses to the presence of aromatic compounds is required to gain an integrated understanding of how aromatic catabolic processes function in relation to their genome and environmental context. In addition to the properties of the catabolic enzymes themselves, regulatory responses on at least three different levels are important. At a primary level, aromatic compounds control the activity of specific members of many families of transcriptional regulators to direct the expression of the specialized enzymes for their own catabolism. At a second level, dominant global regulation in response to environmental and physiological cues is incorporated to subvert and couple transcription levels to the energy status of the bacteria. Mediators of these global regulatory responses include the alarmone (p)ppGpp, the DNA-bending protein IHF and less well-defined systems that probably sense the energy status through the activity of the electron transport chain. At a third level, aromatic compounds can also impact on catabolic performance by provoking behavioural responses that allow the bacteria to seek out aromatic growth substrates in their environment.
Collapse
Affiliation(s)
- Victoria Shingler
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden.
| |
Collapse
|
27
|
Chang HK, Mohseni P, Zylstra GJ. Characterization and regulation of the genes for a novel anthranilate 1,2-dioxygenase from Burkholderia cepacia DBO1. J Bacteriol 2003; 185:5871-81. [PMID: 13129960 PMCID: PMC193950 DOI: 10.1128/jb.185.19.5871-5881.2003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anthranilate (2-aminobenzoate) is an important intermediate in tryptophan metabolism. In order to investigate the degradation of tryptophan through anthranilate by Burkholderia cepacia, several plasposon mutations were constructed of strain DBO1 and one mutant with the plasposon insertion in the anthranilate dioxygenase (AntDO) genes was chosen for further study. The gene sequence obtained from flanking DNA of the plasposon insertion site revealed unexpected information. B. cepacia DBO1 AntDO (designated AntDO-3C) is a three-component Rieske-type [2Fe-2S] dioxygenase composed of a reductase (AndAa), a ferredoxin (AndAb), and a two-subunit oxygenase (AndAcAd). This is in contrast to the two-component (an oxygenase and a reductase) AntDO enzyme from Acinetobacter sp. strain ADP1, P. aeruginosa PAO1, and P. putida P111. AntDO from strains ADP1, PAO1, and P111 are closely related to benzoate dioxygenase, while AntDO-3C is closely related to aromatic hydrocarbon dioxygenases from Novosphingobium aromaticivorans F199 and Sphingomonas yanoikuyae B1 and 2-chlorobenzoate dioxygenase from P. aeruginosa strains 142 and JB2. Escherichia coli cells expressing the functional AntDO-3C genes transform anthranilate and salicylate (but not 2-chlorobenzoate) to catechol. The enzyme includes a novel reductase whose absence results in less efficient transformation of anthranilate by the oxygenase and ferredoxin. AndR, a possible AraC/XylS-type transcriptional regulator, was shown to positively regulate expression of the andAcAdAbAa genes. Anthranilate was the only effector (of 12 aromatic compounds tested) that was able to induce expression of the genes.
Collapse
Affiliation(s)
- Hung-Kuang Chang
- Biotechnology Center for Agriculture and the Environment, Cook College, Rutgers University, New Brunswick, New Jersey 08901-8520, USA.
| | | | | |
Collapse
|
28
|
Howard VJ, Belyaeva TA, Busby SJW, Hyde EI. DNA binding of the transcription activator protein MelR from Escherichia coli and its C-terminal domain. Nucleic Acids Res 2002; 30:2692-700. [PMID: 12060687 PMCID: PMC117283 DOI: 10.1093/nar/gkf370] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2001] [Revised: 03/11/2002] [Accepted: 04/19/2002] [Indexed: 11/14/2022] Open
Abstract
MelR is an Escherichia coli transcription factor belonging to the AraC family. It activates expression of the melAB operon in response to melibiose. Full-length MelR (MelR303) binds to two pairs of sites upstream of the melAB transcription start site, denoted sites 1' and 1 and sites 2 and 2', and to a fifth site, R, which overlaps the divergent melR promoter. The C-terminal domain of MelR (MelR173) does not activate transcription. Here we show that, like MelR303, when MelR173 binds to sites 1 and 2 it recruits CRP to bind between these sites. Hence, the C-terminal domain is involved in heterologous interactions. MelR173 binds to the R site, which has 11 of 18 bp identical to sites 1 and 2 but, surprisingly, does not bind to site 1', which has 12 of 18 bp identical, nor to site 2'. Using electrophoretic mobility shift assays, we show that the binding of MelR303 to sites 1' and 2' is due to cooperative binding with the adjacent site. This homologous cooperativity requires the N-terminal domain of the protein. Activation of the melAB promoter requires MelR to occupy site 2', which overlaps the -35 hexamer. Hence, both domains of MelR are required for transcription activation.
Collapse
Affiliation(s)
- Victoria J Howard
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | |
Collapse
|
29
|
González-Pérez MM, Marqués S, Domínguez-Cuevas P, Ramos JL. XylS activator and RNA polymerase binding sites at the Pm promoter overlap. FEBS Lett 2002; 519:117-22. [PMID: 12023029 DOI: 10.1016/s0014-5793(02)02730-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Transcription from the TOL plasmid meta-cleavage pathway operon, Pm, depends on the XylS protein being activated by a benzoate effector. The XylS binding sites are two imperfect 5'-TGCAN(6)GGNTA-3' direct repeats located between positions -70/-56 and -49/-35 [González-Pérez et al. (1999) J. Biol. Chem. 274, 2286-2290]. An intrinsic bending of 40 degrees, which is not essential for transcription, is centered at position -43. We have determined the potential overlap between the XylS and RNA polymerase binding sites. The insertion of 2 or more bp between C and T at positions -37 and -36 abolished transcription activation by the wild-type XylS and by XylSS229I, a mutant with increased affinity for the XylS binding sites. In contrast, a 1-bp insertion at -37 was permissible, although when in addition to the 1-bp insertion at -37 the mutant promoter had a point mutation at the XylS binding site (C-47-->T), transcription was abolished with the wild-type XylS protein, but not with XylSS229I. The overlap between the proximal XylS binding site and the -35 region recognized by RNA polymerase at positions -35 and -36 appears to be critical for transcription.
Collapse
Affiliation(s)
- M Mar González-Pérez
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Profesor Albareda 1, Granada, Spain
| | | | | | | |
Collapse
|
30
|
Díaz E, Ferrández A, Prieto MA, García JL. Biodegradation of aromatic compounds by Escherichia coli. Microbiol Mol Biol Rev 2001; 65:523-69, table of contents. [PMID: 11729263 PMCID: PMC99040 DOI: 10.1128/mmbr.65.4.523-569.2001] [Citation(s) in RCA: 252] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although Escherichia coli has long been recognized as the best-understood living organism, little was known about its abilities to use aromatic compounds as sole carbon and energy sources. This review gives an extensive overview of the current knowledge of the catabolism of aromatic compounds by E. coli. After giving a general overview of the aromatic compounds that E. coli strains encounter and mineralize in the different habitats that they colonize, we provide an up-to-date status report on the genes and proteins involved in the catabolism of such compounds, namely, several aromatic acids (phenylacetic acid, 3- and 4-hydroxyphenylacetic acid, phenylpropionic acid, 3-hydroxyphenylpropionic acid, and 3-hydroxycinnamic acid) and amines (phenylethylamine, tyramine, and dopamine). Other enzymatic activities acting on aromatic compounds in E. coli are also reviewed and evaluated. The review also reflects the present impact of genomic research and how the analysis of the whole E. coli genome reveals novel aromatic catabolic functions. Moreover, evolutionary considerations derived from sequence comparisons between the aromatic catabolic clusters of E. coli and homologous clusters from an increasing number of bacteria are also discussed. The recent progress in the understanding of the fundamentals that govern the degradation of aromatic compounds in E. coli makes this bacterium a very useful model system to decipher biochemical, genetic, evolutionary, and ecological aspects of the catabolism of such compounds. In the last part of the review, we discuss strategies and concepts to metabolically engineer E. coli to suit specific needs for biodegradation and biotransformation of aromatics and we provide several examples based on selected studies. Finally, conclusions derived from this review may serve as a lead for future research and applications.
Collapse
Affiliation(s)
- E Díaz
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain.
| | | | | | | |
Collapse
|
31
|
Abstract
The AraC family of bacterial transcriptional activators regulate diverse genetic systems. Recent X-ray diffraction studies show that the monomeric MarA and Rob activators bind to their asymmetric degenerate DNA sites via two different helix-turn-helix elements. Activation by MarA, SoxS or Rob requires a particular orientation of the asymmetric binding sequence (and hence the activator), depending on its distance from the -10 RNAP signal. Genetic studies are beginning to clarify how the activators interact with RNAP. Growing evidence suggests that for the sugar metabolism activators, multiple binding sites upstream of the promoter anchor the activator in a repressing or nonactivating configuration. By interaction with the sugar and/or CRP, the activator is allosterically altered so it can bind a new set of sites that enable it to activate the promoter. Surprisingly, the virulence activator, Rns, must bind to both upstream and downstream sites in order to activate the rns promoter.
Collapse
Affiliation(s)
- R G Martin
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0560, USA.
| | | |
Collapse
|
32
|
Suzuki K, Ogawa N, Miyashita K. Expression of 2-halobenzoate dioxygenase genes (cbdSABC) involved in the degradation of benzoate and 2-halobenzoate in Burkholderia sp. TH2. Gene 2001; 262:137-45. [PMID: 11179677 DOI: 10.1016/s0378-1119(00)00542-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Burkholderia sp. TH2, isolated from soil, utilizes 2-chlorobenzoate (2CB) and benzoate (BA) as its sole source of carbon and energy. The genes for 2-halobenzoate dioxygenase (cbdABC) from Burkholderia sp. TH2 were cloned and sequenced. The predicted amino acid sequences of all the gene products are highly similar to the cbd gene products of Pseudomonas sp. 2CBS. Disruption of the promoter region of cbdA resulted in loss of growth on 2CB and BA, indicating that these genes are involved in the growth of TH2 on these substrates. Expression of the cbd genes was analyzed by transcriptional fusion assay. The cbdS gene, a possible araC/xylS-type transcriptional regulatory gene, was shown to positively regulate the expression of cbdA. In addition, the effectors of CbdS were shown to be 2CB, 2-bromobenzoate, o-toluate (2-methylbenzoate), 2-iodobenzoate, and BA. Primer extension analysis showed that the cbdA mRNA started at two positions, 14 and 15 nucleotides upstream from the cbdA start codon, ATG. A pair of direct repeats, identical to that of the Pm promoter of the TOL plasmid, was found upstream of -35 hexamer of the cbdA promoter.
Collapse
Affiliation(s)
- K Suzuki
- National Institute of Agro-Environmental Sciences, 3-1-1 Kan-nondai, Tsukuba, 305-8604, Ibaraki, Japan.
| | | | | |
Collapse
|
33
|
Cowles CE, Nichols NN, Harwood CS. BenR, a XylS homologue, regulates three different pathways of aromatic acid degradation in Pseudomonas putida. J Bacteriol 2000; 182:6339-46. [PMID: 11053377 PMCID: PMC94779 DOI: 10.1128/jb.182.22.6339-6346.2000] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida converts benzoate to catechol using two enzymes that are encoded on the chromosome and whose expression is induced by benzoate. Benzoate also binds to the regulator XylS to induce expression of the TOL (toluene degradation) plasmid-encoded meta pathway operon for benzoate and methylbenzoate degradation. Finally, benzoate represses the ability of P. putida to transport 4-hydroxybenzoate (4-HBA) by preventing transcription of pcaK, the gene encoding the 4-HBA permease. Here we identified a gene, benR, as a regulator of benzoate, methylbenzoate, and 4-HBA degradation genes. A benR mutant isolated by random transposon mutagenesis was unable to grow on benzoate. The deduced amino acid sequence of BenR showed high similarity (62% identity) to the sequence of XylS, a member of the AraC family of regulators. An additional seven genes located adjacent to benR were inferred to be involved in benzoate degradation based on their deduced amino acid sequences. The benABC genes likely encode benzoate dioxygenase, and benD likely encodes 2-hydro-1,2-dihydroxybenzoate dehydrogenase. benK and benF were assigned functions as a benzoate permease and porin, respectively. The possible function of a final gene, benE, is not known. benR activated expression of a benA-lacZ reporter fusion in response to benzoate. It also activated expression of a meta cleavage operon promoter-lacZ fusion inserted in an E. coli chromosome. Third, benR was required for benzoate-mediated repression of pcaK-lacZ fusion expression. The benA promoter region contains a direct repeat sequence that matches the XylS binding site previously defined for the meta cleavage operon promoter. It is likely that BenR binds to the promoter region of chromosomal benzoate degradation genes and plasmid-encoded methylbenzoate degradation genes to activate gene expression in response to benzoate. The action of BenR in repressing 4-HBA uptake is probably indirect.
Collapse
Affiliation(s)
- C E Cowles
- Department of Microbiology, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
34
|
Abstract
Unraveling the complex transcriptional regulation of bacterial catabolism of aromatic pollutants is a prerequisite for engineering efficient biological systems for many biotechnological applications. A first level of regulation relies on specific regulator-promoter pairs. There have been new insights into the molecular mechanisms that regulatory proteins use to sense a given signal and to activate transcription initiation from the cognate promoters. A second level of regulation allows adjustment of the expression of the particular catabolic operons in response to the global environmental conditions of the cells, and recent findings provide some clues about the mechanisms underlying such complex regulatory checkpoints.
Collapse
Affiliation(s)
- E Díaz
- Department of Molecular Microbiology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Velázquez 144, 28006, Madrid, Spain.
| | | |
Collapse
|
35
|
Manzanera M, Marqués S, Ramos JL. Mutational analysis of the highly conserved C-terminal residues of the XylS protein, a member of the AraC family of transcriptional regulators. FEBS Lett 2000; 476:312-7. [PMID: 10913634 DOI: 10.1016/s0014-5793(00)01749-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The XylS protein of the TOL plasmid of Pseudomonas putida belongs to the so-called AraC/XylS family of regulators, that includes more than 100 different bacterial proteins. A conserved stretch of about 100 amino acids is present at the C-terminal end. This conserved region is believed to contain seven alpha-helices, including two helix-turn-helix (HTH) DNA binding motifs (alpha(2)-T-alpha(3) and alpha(5)-Talpha-(6)), connected by a linker alpha-helix (alpha(4)), and two flanking alpha-helices (alpha(1) and alpha(7)). The second HTH motif is the region with the highest homology in the proteins of the family, with certain residues showing almost 90% identity. We have constructed XylS single mutants in the most conserved residues and have analysed their ability to stimulate transcription from its cognate promoter, Pm, fused to 'lacZ. The analysis revealed that mutations in the alpha(5)-helix conserved residues had little effect on the XylS transcriptional activity, whereas the distribution of polarity in the alpha(6)-helix was important for the activity. The strongest effect of the mutations was observed in conserved residues located outside the DNA binding domain, namely, Gly-290 in the turn between the two helices, Pro-309 located downstream of alpha(6), and Leu-313, in the small last helix alpha(7), that seems to play an important role in the activation of RNA-polymerase. Our analysis shows that conservation of amino acids in the family reflects structural requirements rather than functionality in specific DNA interactions.
Collapse
Affiliation(s)
- M Manzanera
- CSIC, Estación Experimental del Zaidín, Departamento de Bioquímica y Biología Molecular y Celular de Plantas, Apdo. 419, 18080, Granada, Spain
| | | | | |
Collapse
|