1
|
Luge T, Kube M, Freiwald A, Meierhofer D, Seemüller E, Sauer S. Transcriptomics assisted proteomic analysis of Nicotiana occidentalis infected by Candidatus Phytoplasma mali strain AT. Proteomics 2014; 14:1882-9. [PMID: 24920314 DOI: 10.1002/pmic.201300551] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 05/20/2014] [Accepted: 06/04/2014] [Indexed: 12/11/2022]
Abstract
Phytoplasmas are pathogenic bacteria within the class of Mollicutes, which are associated with more than 1000 plant diseases. In this study, we applied quantitative mass spectrometry to analyse affected pathways of the model plant tobacco (Nicotiana occidentalis) upon Candidatus Phytoplasma mali strain AT infection. Using tissue obtained from leaf midribs, 1466 plant-assigned proteins were identified. For 1019 of these proteins, we could reproducibly quantify the expression changes of infected versus noninfected plants, of which 157 proteins were up- and 173 proteins were downregulated. Differential expression took place in a number of pathways, among others strong downregulation of porphyrin and chlorophyll metabolism and upregulation of alpha-linolenic acid metabolism, which was consistent with observed increased levels of jasmonic acid, a key signal molecule of plant defence. Our data shed light on the molecular networks that are involved in defence of plants against phytoplasma infection and provide a resource for further studies.
Collapse
Affiliation(s)
- Toni Luge
- Otto Warburg Laboratory, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
2
|
Marcone C. Pulsed-field gel electrophoresis for isolation of full-length phytoplasma chromosomes from plants. Methods Mol Biol 2013; 938:395-403. [PMID: 22987433 DOI: 10.1007/978-1-62703-089-2_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Pulsed-field gel electrophoresis (PFGE) is a powerful technique for genomic studies of unculturable plant-pathogenic phytoplasmas, which enables separation of full-length phytoplasma chromosomes from contaminating host plant nucleic acids. The PFGE method described here involves isolation of phytoplasmal DNA from high-titer phytoplasma-infected herbaceous plants using a phytoplasma enrichment procedure, embedding of phytoplasma chromosomes in agarose blocks, and separation of entire phytoplasma chromosomes from contaminating host plant nucleic acids by electrophoresis. Full-length phytoplasma chromosomes are resolved as single, discrete bands in the gel. The identity of these bands can be confirmed by Southern blot hybridization using a ribosomal DNA fragment as a probe. The method does not utilize gamma-irradiation to linearize phytoplasma chromosomes prior to electrophoresis.
Collapse
Affiliation(s)
- Carmine Marcone
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Salerno, Italy.
| |
Collapse
|
3
|
Mapping the phytoplasma chromosome. Methods Mol Biol 2012. [PMID: 22987434 DOI: 10.1007/978-1-62703-089-2_34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Physical and genetic mapping of the phytoplasma chromosome can be a useful tool in a genome sequencing project in order to assemble the in silico-predicted contigs robustly. Mapping consists of four distinct steps: preparation of phytoplasma chromosomes from infected plants, single- and double-digestion of chromosomes with rare-cutting restriction enzymes, separation of large DNA fragments by pulsed-field gel electrophoresis, and hybridization with various genetic markers. Materials and methods needed for each step are described and the technique is illustrated using the flavescence dorée phytoplasma genome map as an example.
Collapse
|
4
|
Laimer M. Detection of phytoplasmas of temperate fruit trees. Methods Mol Biol 2009; 508:267-288. [PMID: 19301762 DOI: 10.1007/978-1-59745-062-1_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Phytoplasmas are associated with hundreds of plant diseases globally. Many fruit tree phytoplasmas are transmitted by insect vectors or grafting, are considered quarantine organisms and a major economic threat to orchards. Diagnosis can be difficult, but immunochemical and molecular methods have been developed.
Collapse
Affiliation(s)
- Margit Laimer
- Plant Biotechnology Unit, IAM, Department of Biotechnology, BOKU, Vienna, Austria
| |
Collapse
|
5
|
Wei W, Lee IM, Davis RE, Suo X, Zhao Y. Automated RFLP pattern comparison and similarity coefficient calculation for rapid delineation of new and distinct phytoplasma 16Sr subgroup lineages. Int J Syst Evol Microbiol 2008; 58:2368-77. [DOI: 10.1099/ijs.0.65868-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
6
|
Malembic-Maher S, Constable F, Cimerman A, Arnaud G, Carle P, Foissac X, Boudon-Padieu E. A chromosome map of the Flavescence doree phytoplasma. MICROBIOLOGY-SGM 2008; 154:1454-1463. [PMID: 18451054 DOI: 10.1099/mic.0.2007/013888-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Flavescence dorée phytoplasma (FD-P), a non-cultivable, plant-pathogenic bacterium of the class Mollicutes, is the causal agent of a quarantine disease affecting vineyards of southern Europe, mainly in southern France and northern Italy. To investigate FD-P diversity and phytoplasma genetic determinants governing the FD-P life cycle, a genome project has been initiated. A physical map of the chromosome of FD-P strain FD92, purified from infected broad beans, was constructed by performing restriction digests of the chromosome and resolving the fragments by PFGE. Single and double digestions of the chromosome with the enzymes SalI, BssHII, MluI and EagI were performed and used to map 13 restriction sites on the FD-P chromosome. The size of the chromosome was calculated to be 671 kbp. Southern blot analyses using cloned phytoplasma probes were carried out to assist in the arrangement of contiguous restriction fragments and to map eight genetic loci, including the two rRNA operons, the tuf, uvrB-degV and secY-map (FD9) genes, the FD2 marker and two orphan sequences (FDDH29 and FDSH05) isolated through subtractive suppression hybridization.
Collapse
Affiliation(s)
- Sylvie Malembic-Maher
- Université Bordeaux 2, UMR1090 Génomique Diversité Pouvoir Pathogène, F-33076 Bordeaux, France.,INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, F-33883 Villenave d'Ornon, France
| | - Fiona Constable
- INRA, UMR1088 Plante Microbe Environnement, F-21065 Dijon, France.,Université de Bourgogne, UMR1088 Plante Microbe Environnement, F-21000 Dijon, France.,CNRS, UMR1088 Plante Microbe Environnement, F-21000 Dijon, France
| | - Agnès Cimerman
- Université Bordeaux 2, UMR1090 Génomique Diversité Pouvoir Pathogène, F-33076 Bordeaux, France.,INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, F-33883 Villenave d'Ornon, France
| | - Guillaume Arnaud
- Université Bordeaux 2, UMR1090 Génomique Diversité Pouvoir Pathogène, F-33076 Bordeaux, France.,INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, F-33883 Villenave d'Ornon, France
| | - Patricia Carle
- Université Bordeaux 2, UMR1090 Génomique Diversité Pouvoir Pathogène, F-33076 Bordeaux, France.,INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, F-33883 Villenave d'Ornon, France
| | - Xavier Foissac
- Université Bordeaux 2, UMR1090 Génomique Diversité Pouvoir Pathogène, F-33076 Bordeaux, France.,INRA, UMR1090 Génomique Diversité Pouvoir Pathogène, F-33883 Villenave d'Ornon, France
| | - Elisabeth Boudon-Padieu
- CNRS, UMR1088 Plante Microbe Environnement, F-21000 Dijon, France.,Université de Bourgogne, UMR1088 Plante Microbe Environnement, F-21000 Dijon, France.,INRA, UMR1088 Plante Microbe Environnement, F-21065 Dijon, France
| |
Collapse
|
7
|
Kube M, Schneider B, Kuhl H, Dandekar T, Heitmann K, Migdoll AM, Reinhardt R, Seemüller E. The linear chromosome of the plant-pathogenic mycoplasma 'Candidatus Phytoplasma mali'. BMC Genomics 2008; 9:306. [PMID: 18582369 PMCID: PMC2459194 DOI: 10.1186/1471-2164-9-306] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 06/26/2008] [Indexed: 11/28/2022] Open
Abstract
Background Phytoplasmas are insect-transmitted, uncultivable bacterial plant pathogens that cause diseases in hundreds of economically important plants. They represent a monophyletic group within the class Mollicutes (trivial name mycoplasmas) and are characterized by a small genome with a low GC content, and the lack of a firm cell wall. All mycoplasmas, including strains of 'Candidatus (Ca.) Phytoplasma asteris' and 'Ca. P. australiense', examined so far have circular chromosomes, as is the case for almost all walled bacteria. Results Our work has shown that 'Ca. Phytoplasma mali', the causative agent of apple proliferation disease, has a linear chromosome. Linear chromosomes were also identified in the closely related provisional species 'Ca. P. pyri' and 'Ca. P. prunorum'. The chromosome of 'Ca. P. mali' strain AT is 601,943 bp in size and has a GC content of 21.4%. The chromosome is further characterized by large terminal inverted repeats and covalently closed hairpin ends. Analysis of the protein-coding genes revealed that glycolysis, the major energy-yielding pathway supposed for 'Ca. P. asteris', is incomplete in 'Ca. P. mali'. Due to the apparent lack of other metabolic pathways present in mycoplasmas, it is proposed that maltose and malate are utilized as carbon and energy sources. However, complete ATP-yielding pathways were not identified. 'Ca. P. mali' also differs from 'Ca. P. asteris' by a smaller genome, a lower GC content, a lower number of paralogous genes, fewer insertions of potential mobile DNA elements, and a strongly reduced number of ABC transporters for amino acids. In contrast, 'Ca. P. mali' has an extended set of genes for homologous recombination, excision repair and SOS response than 'Ca. P. asteris'. Conclusion The small linear chromosome with large terminal inverted repeats and covalently closed hairpin ends, the extremely low GC content and the limited metabolic capabilities reflect unique features of 'Ca. P. mali', not only within phytoplasmas, but all mycoplasmas. It is expected that the genome information obtained here will contribute to a better understanding of the reduced metabolism of phytoplasmas, their fastidious nutrition requirements that prevented axenic cultivation, and the mechanisms involved in pathogenicity.
Collapse
Affiliation(s)
- Michael Kube
- Max Planck Institute for Molecular Genetics, Ihnestr, 63, D-14195 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Cai H, Wei W, Davis RE, Chen H, Zhao Y. Genetic diversity among phytoplasmas infecting Opuntia species: virtual RFLP analysis identifies new subgroups in the peanut witches'-broom phytoplasma group. Int J Syst Evol Microbiol 2008; 58:1448-57. [DOI: 10.1099/ijs.0.65615-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
9
|
Wei W, Davis RE, Lee IM, Zhao Y. Computer-simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups. Int J Syst Evol Microbiol 2007; 57:1855-1867. [PMID: 17684271 DOI: 10.1099/ijs.0.65000-0] [Citation(s) in RCA: 261] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phytoplasmas are cell wall-less bacteria that cause numerous plant diseases. As no phytoplasma has been cultured in cell-free medium, phytoplasmas cannot be differentiated and classified by the traditional methods which are applied to culturable prokaryotes. Over the past decade, the establishment of a phytoplasma classification scheme based on 16S rRNA restriction fragment length polymorphism (RFLP) patterns has enabled the accurate and reliable identification and classification of a wide range of phytoplasmas. In the present study, we expanded this classification scheme through the use of computer-simulated RFLP analysis, achieving rapid differentiation and classification of phytoplasmas. Over 800 publicly available phytoplasma 16S rRNA gene sequences were aligned using the CLUSTAL_X program and the aligned 1.25 kb fragments were exported to pDRAW32 software for in silico restriction digestion and virtual gel plotting. Based on distinctive virtual RFLP patterns and calculated similarity coefficients, phytoplasma strains were classified into 28 groups. The results included the classification of hundreds of previously unclassified phytoplasmas and the delineation of 10 new phytoplasma groups representing three recently described and seven novel putative 'Candidatus Phytoplasma' taxa.
Collapse
Affiliation(s)
- Wei Wei
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| | - Robert E Davis
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| | - Ing-Ming Lee
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| | - Yan Zhao
- Molecular Plant Pathology Laboratory, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| |
Collapse
|
10
|
Seemüller E, Schneider B. Differences in Virulence and Genomic Features of Strains of 'Candidatus Phytoplasma mali', the Apple Proliferation Agent. PHYTOPATHOLOGY 2007; 97:964-970. [PMID: 18943636 DOI: 10.1094/phyto-97-8-0964] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ABSTRACT Root and shoot samples from 24 symptomatic or nonsymptomatic apple trees infected with 'Candidatus Phytoplasma mali' were collected at different locations in Germany and France and used to inoculate rootstock M11 top grafted with cv. Golden Delicious. Inoculated trees were monitored over a 12-year period for apple proliferation (AP) symptoms and categorized as not or slightly, moderately, or severely affected. Based on symptomatology, the phytoplasma strains were defined as being avirulent to mildly, moderately, or highly virulent. Determination of phytoplasma titers by quantitative polymerase chain reaction (PCR) with DNA from roots revealed similar phytoplasma concentrations in all virulence groups. Molecular characterization of the strains by differential PCR amplification with five sets of primers resulted in 13 profiles. Six strains that were maintained in periwinkle and tobacco were molecularly characterized in more detail. The genome sizes of these strains as determined by pulsed-field gel electrophoresis using yeast chromosomes as size references ranged between 640 and 680 kb. Cleavage of the chromosome with the rare cutting restriction enzymes ApaI, BamHI, BssHII, MluI, and SmaI resulted in macro fragment patterns distinctly different in all strains. Similar results were obtained by Southern blot hybridization with three probes derived from strain AT. Differential PCR amplification at an annealing temperature of 52 degrees C using eight primer pairs derived from strain AT revealed heterogeneity of target sequences among all strains. Based on these results, there is considerable variability in virulence and genomic traits in 'Ca. P. mali'. However, correlations between molecular markers and virulence or phytoplasma titer could not be identified.
Collapse
|
11
|
Tran-Nguyen LTT, Gibb KS. Optimizing Phytoplasma DNA purification for genome analysis. J Biomol Tech 2007; 18:104-12. [PMID: 17496222 PMCID: PMC2062537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Genome analysis of uncultivable plant pathogenic phytoplasmas is hindered by the difficulty in obtaining sufficient quantities of phytoplasma enriched DNA. We investigated a combination of conventional enrichment techniques such as cesium chloride (CsCl) buoyant gradient centrifugation, and new methods such as rolling circle amplification (RCA), suppression subtractive hybridization (SSH), and mirror orientation selection (MOS) to obtain DNA with a high phytoplasma:host ratio as the major first step in genome analysis of Candidatus Phytoplasma australiense. The phytoplasma:host ratio was calculated for five different plasmid libraries. Based on sequence data, 90% of clones from CsCl DNA enrichment contained chromosomal phytoplasma DNA, compared to 60% from RCA CsCl DNA and 20% from SSH subtracted libraries. Based on an analysis of representative libraries, none contained plant DNA. A high percentage of clones (80-100%) from SSH libraries contained extrachromosomal DNA (eDNA), and we speculate that eDNA in the original DNA preparation was amplified in subsequent SSH manipulations. Despite the availability of new techniques for nucleic acid amplification, we found that conventional CsCl gradient centrifugation was the best enrichment method for obtaining chromosomal phytoplasma DNA with low host DNA content.
Collapse
Affiliation(s)
- L T T Tran-Nguyen
- Charles Darwin University, School of Science and Primary Industries, Darwin, NT, Australia.
| | | |
Collapse
|
12
|
Dally EL, Barros TSL, Zhao Y, Lin S, Roe BA, Davis RE. Physical and genetic map of the Spiroplasma kunkelii CR2-3x chromosome. Can J Microbiol 2006; 52:857-67. [PMID: 17110978 DOI: 10.1139/w06-044] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spiroplasma kunkelii (class Mollicutes) is the characteristically helical, wall-less bacterium that causes corn stunt disease. A combination of restriction enzyme analysis, pulsed-field gel electrophoresis (PFGE), and Southern hybridization analysis was used to construct a physical and genetic map of the S. kunkelii CR2-3x chromosome. The order of restriction fragments on the map was determined by analyses of reciprocal endonuclease double digests employing I-CeuI, AscI, ApaI, EagI, SmaI, BssHII, BglI, and SalI; adjacent fragments were identified on two-dimensional pulsed-field electrophoresis gels. The size of the chromosome was estimated at 1550 kb. Oligonucleotide pairs were designed to prime the amplification of 26 S. kunkelii gene sequences in the polymerase chain reaction (PCR). Using PCR amplicons as probes, the locations of 27 S. kunkelii putative single-copy genes were positioned on the map by Southern hybridization analyses of chromosomal fragments separated in PFGE. The nucleotide sequence of the single ribosomal RNA operon was determined and its location mapped to a chromosomal segment bearing recognition sites for SalI, SmaI, EagI, and I-CeuI.
Collapse
Affiliation(s)
- Ellen L Dally
- USDA, Agricultural Research Service, Molecular Plant Pathology Laboratory, Beltsville, MD 20705, USA
| | | | | | | | | | | |
Collapse
|
13
|
'Candidatus Phytoplasma', a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int J Syst Evol Microbiol 2005; 54:1243-1255. [PMID: 15280299 DOI: 10.1099/ijs.0.02854-0] [Citation(s) in RCA: 228] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The trivial name 'phytoplasma' has been adopted to collectively name wall-less, non-helical prokaryotes that colonize plant phloem and insects, which were formerly known as mycoplasma-like organisms. Although phytoplasmas have not yet been cultivated in vitro, phylogenetic analyses based on various conserved genes have shown that they represent a distinct, monophyletic clade within the class Mollicutes. It is proposed here to accommodate phytoplasmas within the novel genus 'Candidatus (Ca.) Phytoplasma'. Given the diversity within 'Ca. Phytoplasma', several subtaxa are needed to accommodate organisms that share <97.5% similarity among their 16S rRNA gene sequences. This report describes the properties of 'Ca. Phytoplasma', a taxon that includes the species 'Ca. Phytoplasma aurantifolia' (the prokaryote associated with witches'-broom disease of small-fruited acid lime), 'Ca. Phytoplasma australiense' (associated with Australian grapevine yellows), 'Ca. Phytoplasma fraxini' (associated with ash yellows), 'Ca. Phytoplasma japonicum' (associated with Japanese hydrangea phyllody), 'Ca. Phytoplasma brasiliense' (associated with hibiscus witches'-broom in Brazil), 'Ca. Phytoplasma castaneae' (associated with chestnut witches'-broom in Korea), 'Ca. Phytoplasma asteris' (associated with aster yellows), 'Ca. Phytoplasma mali' (associated with apple proliferation), 'Ca. Phytoplasma phoenicium' (associated with almond lethal disease), 'Ca. Phytoplasma trifolii' (associated with clover proliferation), 'Ca. Phytoplasma cynodontis' (associated with Bermuda grass white leaf), 'Ca. Phytoplasma ziziphi' (associated with jujube witches'-broom), 'Ca. Phytoplasma oryzae' (associated with rice yellow dwarf) and six species-level taxa for which the Candidatus species designation has not yet been formally proposed (for the phytoplasmas associated with X-disease of peach, grapevine flavescence dorée, Central American coconut lethal yellows, Tanzanian lethal decline of coconut, Nigerian lethal decline of coconut and loofah witches'-broom, respectively). Additional species are needed to accommodate organisms that, despite their 16S rRNA gene sequence being >97.5% similar to those of other 'Ca. Phytoplasma' species, are characterized by distinctive biological, phytopathological and genetic properties. These include 'Ca. Phytoplasma pyri' (associated with pear decline), 'Ca. Phytoplasma prunorum' (associated with European stone fruit yellows), 'Ca. Phytoplasma spartii' (associated with spartium witches'-broom), 'Ca. Phytoplasma rhamni' (associated with buckthorn witches'-broom), 'Ca. Phytoplasma allocasuarinae' (associated with allocasuarina yellows), 'Ca. Phytoplasma ulmi' (associated with elm yellows) and an additional taxon for the stolbur phytoplasma. Conversely, some organisms, despite their 16S rRNA gene sequence being <97.5% similar to that of any other 'Ca. Phytoplasma' species, are not presently described as Candidatus species, due to their poor overall characterization.
Collapse
|
14
|
Seemüller E, Schneider B. ‘Candidatus Phytoplasma mali’, ‘Candidatus Phytoplasma pyri’ and ‘Candidatus Phytoplasma prunorum’, the causal agents of apple proliferation, pear decline and European stone fruit yellows, respectively. Int J Syst Evol Microbiol 2004; 54:1217-1226. [PMID: 15280295 DOI: 10.1099/ijs.0.02823-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Apple proliferation (AP), pear decline (PD) and European stone fruit yellows (ESFY) are among the most economically important plant diseases that are caused by phytoplasmas. Phylogenetic analyses revealed that the 16S rDNA sequences of strains of each of these pathogens were identical or nearly identical. Differences between the three phytoplasmas ranged from 1·0 to 1·5 % of nucleotide positions and were thus below the recommended threshold of 2·5 % for assigning species rank to phytoplasmas under the provisional status ‘Candidatus’. However, supporting data for distinguishing the AP, PD and ESFY agents at the species level were obtained by examining other molecular markers, including the 16S–23S rDNA spacer region, protein-encoding genes and randomly cloned DNA fragments. The three phytoplasmas also differed in serological comparisons and showed clear differences in vector transmission and host-range specificity. From these results, it can be concluded that the AP, PD and ESFY phytoplasmas are coherent but discrete taxa that can be distinguished at the putative species level, for which the names ‘Candidatus Phytoplasma mali’, ‘Candidatus Phytoplasma pyri’ and ‘Candidatus Phytoplasma prunorum’, respectively, are proposed. Strains AP15R, PD1R and ESFY-G1R were selected as reference strains. Examination of available data on the peach yellow leaf roll (PYLR) phytoplasma, which clusters with the AP, PD and ESFY agents, confirmed previous results showing that it is related most closely to the PD pathogen. The two phytoplasmas share 99·6 % 16S rDNA sequence similarity. Significant differences were only observed in the sequence of a gene that encodes an immunodominant membrane protein. Until more information on this phytoplasma is available, it is proposed that the PYLR phytoplasma should be regarded as a subtype of ‘Candidatus Phytoplasma pyri’.
Collapse
MESH Headings
- Animals
- Antigens, Bacterial/immunology
- Bacterial Proteins/immunology
- Base Composition
- DNA Fingerprinting
- DNA, Bacterial/chemistry
- DNA, Ribosomal/chemistry
- DNA, Ribosomal Spacer/chemistry
- Electrophoresis, Gel, Pulsed-Field
- Genes, rRNA
- Hemiptera/microbiology
- Malus/microbiology
- Molecular Sequence Data
- Phylogeny
- Phytoplasma/classification
- Phytoplasma/genetics
- Phytoplasma/isolation & purification
- Phytoplasma/physiology
- Plant Diseases/microbiology
- Polymorphism, Restriction Fragment Length
- Prunus/microbiology
- Pyrus/microbiology
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Restriction Mapping
- Sequence Analysis, DNA
- Sequence Homology
Collapse
Affiliation(s)
- Erich Seemüller
- Biologische Bundesanstalt für Land- und Forstwirtschaft, Institut für Pflanzenschutz im Obstbau, D-69221 Dossenheim, Germany
| | - Bernd Schneider
- Biologische Bundesanstalt für Land- und Forstwirtschaft, Institut für Pflanzenschutz im Obstbau, D-69221 Dossenheim, Germany
| |
Collapse
|
15
|
Wagner M, Fingerhut C, Gross HJ, Schön A. The first phytoplasma RNase P RNA provides new insights into the sequence requirements of this ribozyme. Nucleic Acids Res 2001; 29:2661-5. [PMID: 11410676 PMCID: PMC55747 DOI: 10.1093/nar/29.12.2661] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A high variability of RNase P RNA structures is seen among members of the Mycoplasma group. To gain further insight into the structure-function relations of this ribozyme, we have searched for the RNase P RNA gene from more distant relatives, the phytoplasmas. These mycoplasma-like organisms are the aetiological agents of many severe plant diseases. We report the sequence and catalytic properties of RNase P RNA from the phytoplasma causing apple proliferation disease. The primary and postulated secondary structure of this 443 nt long RNA are most similar to those of Acholeplasma, supporting the phylogenetic position of this pathogen. Remarkably, the extremely AT-rich (73.6%) phytoplasma RNA differs from the known bacterial consensus sequence by a single base pair, which is positioned close to the substrate cleavage site in current three-dimensional models. Phytoplasma RNase P RNA functions as an efficient ribozyme in vitro. Conversion of its sequence to the full consensus and kinetic analysis of the resulting mutant RNAs suggests that neither the sequence alone, nor the type of pairing at this position is crucial for substrate binding or catalysis by the RNase P ribozyme. These results refine the bacterial consensus structure close to the catalytic core and thus improve our understanding of RNase P RNA function.
Collapse
MESH Headings
- Acholeplasmataceae/enzymology
- Acholeplasmataceae/genetics
- Base Pairing
- Base Sequence
- Binding Sites
- Catalysis
- Consensus Sequence/genetics
- Endoribonucleases/chemistry
- Endoribonucleases/genetics
- Endoribonucleases/isolation & purification
- Endoribonucleases/metabolism
- Escherichia coli/genetics
- Escherichia coli Proteins
- Kinetics
- Magnesium/pharmacology
- Molecular Sequence Data
- Mutation/genetics
- Nucleic Acid Conformation
- Phylogeny
- Plant Diseases/microbiology
- RNA Precursors/chemistry
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Stability/genetics
- RNA, Catalytic/chemistry
- RNA, Catalytic/genetics
- RNA, Catalytic/isolation & purification
- RNA, Catalytic/metabolism
- RNA, Transfer, Tyr/chemistry
- RNA, Transfer, Tyr/genetics
- RNA, Transfer, Tyr/metabolism
- Ribonuclease P
- Structure-Activity Relationship
- Thermodynamics
Collapse
Affiliation(s)
- M Wagner
- Institut für Biochemie, Bayerische Julius-Maximilians-Universität, Biozentrum, Am Hubland, D-97074 Würzburg, Germany
| | | | | | | |
Collapse
|
16
|
Marcone C, Seemüller E. A chromosome map of the European stone fruit yellows phytoplasma. MICROBIOLOGY (READING, ENGLAND) 2001; 147:1213-1221. [PMID: 11320124 DOI: 10.1099/00221287-147-5-1213] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A physical map of the European stone fruit yellows phytoplasma strain GSFY1 chromosome was constructed using PFGE-purified genomic DNA from diseased tobacco and tomato plants. The map was generated with single and double digestions of the chromosome with SmaI, BssHII, ApaI, BamHI and XhoI restriction endonucleases and the fragments were resolved by PFGE. Reciprocal double digestions were used to locate 26 restriction sites on the chromosome. Southern blot analysis was also used to assist in the arrangement of the contiguous restriction fragments obtained. From the restriction fragments generated by double digestion, the circular chromosome was calculated to be approximately 635 kb. Loci of two rRNA operons, the operon containing the tuf gene, genes encoding an immunodominant membrane protein and a putative nitroreductase, and randomly cloned DNA fragments IH184 and AT67 were placed on the map. Digestion of chromosomal DNA of strain GSFY1 with MluI gave a complex restriction pattern, suggesting that this isolate consists of a population with heterogeneity with respect to MluI restriction sites. The GSFY1 physical map was different from that of the closely related apple proliferation phytoplasma but the genetic arrangement was similar.
Collapse
Affiliation(s)
- Carmine Marcone
- Biologische Bundesanstalt für Land- und Forstwirtschaft, Institut für Pflanzenschutz im Obstbau, D-69221 Dossenheim, Germany1
| | - Erich Seemüller
- Biologische Bundesanstalt für Land- und Forstwirtschaft, Institut für Pflanzenschutz im Obstbau, D-69221 Dossenheim, Germany1
| |
Collapse
|