1
|
Housh AB, Noel R, Powell A, Waller S, Wilder SL, Sopko S, Benoit M, Powell G, Schueller MJ, Ferrieri RA. Studies Using Mutant Strains of Azospirillum brasilense Reveal That Atmospheric Nitrogen Fixation and Auxin Production Are Light Dependent Processes. Microorganisms 2023; 11:1727. [PMID: 37512900 PMCID: PMC10383956 DOI: 10.3390/microorganisms11071727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
As the use of microbial inoculants in agriculture rises, it becomes important to understand how the environment may influence microbial ability to promote plant growth. This work examines whether there are light dependencies in the biological functions of Azospirillum brasilense, a commercialized prolific grass-root colonizer. Though classically defined as non-phototrophic, A. brasilense possesses photoreceptors that could perceive light conducted through its host's roots. Here, we examined the light dependency of atmospheric biological nitrogen fixation (BNF) and auxin biosynthesis along with supporting processes including ATP biosynthesis, and iron and manganese uptake. Functional mutants of A. brasilense were studied in light and dark environments: HM053 (high BNF and auxin production), ipdC (capable of BNF, deficient in auxin production), and FP10 (capable of auxin production, deficient in BNF). HM053 exhibited the highest rate of nitrogenase activity with the greatest light dependency comparing iterations in light and dark environments. The ipdC mutant showed similar behavior with relatively lower nitrogenase activity observed, while FP10 did not show a light dependency. Auxin biosynthesis showed strong light dependencies in HM053 and FP10 strains, but not for ipdC. Ferrous iron is involved in BNF, and a light dependency was observed for microbial 59Fe2+ uptake in HM053 and ipdC, but not FP10. Surprisingly, a light dependency for 52Mn2+ uptake was only observed in ipdC. Finally, ATP biosynthesis was sensitive to light across all three mutants favoring blue light over red light compared to darkness with observed ATP levels in descending order for HM053 > ipdC > FP10.
Collapse
Affiliation(s)
- Alexandra Bauer Housh
- Missouri Research Reactor Center, University of Missouri, Columbia, MO 65211, USA
- Chemistry Department, University of Missouri, Columbia, MO 65211, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
| | - Randi Noel
- Missouri Research Reactor Center, University of Missouri, Columbia, MO 65211, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
- Division of Plant Science & Technology, University of Missouri, Columbia, MO 65211, USA
| | - Avery Powell
- Missouri Research Reactor Center, University of Missouri, Columbia, MO 65211, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Spenser Waller
- Missouri Research Reactor Center, University of Missouri, Columbia, MO 65211, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
- School of Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Stacy L Wilder
- Missouri Research Reactor Center, University of Missouri, Columbia, MO 65211, USA
| | - Stephanie Sopko
- Missouri Research Reactor Center, University of Missouri, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Mary Benoit
- Missouri Research Reactor Center, University of Missouri, Columbia, MO 65211, USA
- Division of Plant Science & Technology, University of Missouri, Columbia, MO 65211, USA
| | - Garren Powell
- Missouri Research Reactor Center, University of Missouri, Columbia, MO 65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Michael J Schueller
- Missouri Research Reactor Center, University of Missouri, Columbia, MO 65211, USA
- Chemistry Department, University of Missouri, Columbia, MO 65211, USA
| | - Richard A Ferrieri
- Missouri Research Reactor Center, University of Missouri, Columbia, MO 65211, USA
- Chemistry Department, University of Missouri, Columbia, MO 65211, USA
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA
- Division of Plant Science & Technology, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
2
|
Wang H, Waluk D, Dixon R, Nordlund S, Norén A. Energy shifts induce membrane sequestration of DraG in Rhodospirillum rubrum independent of the ammonium transporters and diazotrophic conditions. FEMS Microbiol Lett 2019; 365:5053809. [PMID: 30010831 PMCID: PMC6067124 DOI: 10.1093/femsle/fny176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/10/2018] [Indexed: 01/15/2023] Open
Abstract
Metabolic regulation of Rhodospirillum rubrum nitrogenase is mediated at the post-translational level by the enzymes DraT and DraG when subjected to changes in nitrogen or energy status. DraT is activated during switch-off, while DraG is inactivated by reversible membrane association. We confirm here that the ammonium transporter, AmtB1, rather than its paralog AmtB2, is required for ammonium induced switch-off. Amongst several substitutions at the N100 position in DraG, only N100K failed to locate to the membrane following ammonium shock, suggesting loss of interaction through charge repulsion. When switch-off was induced by lowering energy levels, either by darkness during photosynthetic growth or oxygen depletion under respiratory conditions, reversible membrane sequestration of DraG was independent of AmtB proteins and occurred even under non-diazotrophic conditions. We propose that under these conditions, changes in redox status or possibly membrane potential induce interactions between DraG and another membrane protein in response to the energy status.
Collapse
Affiliation(s)
- Helen Wang
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedicinska Centrum, Husarg.3, S-75237 Uppsala, Sweden
| | - Dominik Waluk
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, Svante Arrhenius v. 16C, Stockholm S-10691, Sweden
| | - Ray Dixon
- Department of Molecular Microbiology, John Innes Centre, Norwich NR47 UH, UK
| | - Stefan Nordlund
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, Svante Arrhenius v. 16C, Stockholm S-10691, Sweden
| | - Agneta Norén
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, Svante Arrhenius v. 16C, Stockholm S-10691, Sweden
| |
Collapse
|
3
|
Moure VR, Siöberg CLB, Valdameri G, Nji E, Oliveira MAS, Gerdhardt ECM, Pedrosa FO, Mitchell DA, Seefeldt LC, Huergo LF, Högbom M, Nordlund S, Souza EM. The ammonium transporter AmtB and the PII signal transduction protein GlnZ are required to inhibit DraG in Azospirillum brasilense. FEBS J 2019; 286:1214-1229. [PMID: 30633437 DOI: 10.1111/febs.14745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 11/04/2018] [Accepted: 01/09/2019] [Indexed: 01/15/2023]
Abstract
The ammonium-dependent posttranslational regulation of nitrogenase activity in Azospirillum brasilense requires dinitrogenase reductase ADP-ribosyl transferase (DraT) and dinitrogenase reductase ADP-glycohydrolase (DraG). These enzymes are reciprocally regulated by interaction with the PII proteins, GlnB and GlnZ. In this study, purified ADP-ribosylated Fe-protein was used as substrate to study the mechanism involved in the regulation of A. brasilense DraG in vitro. The data show that DraG is partially inhibited by GlnZ and that DraG inhibition is further enhanced by the simultaneous presence of GlnZ and AmtB. These results are the first to demonstrate experimentally that DraG inactivation requires the formation of a ternary DraG-GlnZ-AmtB complex in vitro. Previous structural data have revealed that when the DraG-GlnZ complex associates with AmtB, the flexible T-loops of the trimeric GlnZ bind to AmtB and become rigid; these molecular events stabilize the DraG-GlnZ complex, resulting in DraG inactivation. To determine whether restraining the flexibility of the GlnZ T-loops is a limiting factor in DraG inhibition, we used a GlnZ variant that carries a partial deletion of the T-loop (GlnZΔ42-54). However, although the GlnZΔ42-54 variant was more effective in inhibiting DraG in vitro, it bound to DraG with a slightly lower affinity than does wild-type GlnZ and was not competent to completely inhibit DraG activity either in vitro or in vivo. We, therefore, conclude that the formation of a ternary complex between DraG-GlnZ-AmtB is necessary for the inactivation of DraG.
Collapse
Affiliation(s)
- Vivian R Moure
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil
| | - Catrine L B Siöberg
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden
| | - Glaucio Valdameri
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil
| | - Emmanuel Nji
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden
| | - Marco Aurelio S Oliveira
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil
| | - Edileusa C M Gerdhardt
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil
| | - Fabio O Pedrosa
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil
| | - David A Mitchell
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil
| | - Lance C Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT, USA
| | - Luciano F Huergo
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil.,Setor Litoral, Universidade Federal do Paraná, Matinhos, Brazil
| | - Martin Högbom
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden
| | - Stefan Nordlund
- Department of Biochemistry and Biophysics, Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden
| | - Emanuel M Souza
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
4
|
Yin TT, Pin UL, Ghazali AHA. Influence of External Nitrogen on Nitrogenase Enzyme Activity and Auxin Production in Herbaspirillum seropedicae (Z78). Trop Life Sci Res 2015; 26:101-110. [PMID: 26868594 PMCID: PMC4437320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023] Open
Abstract
The production of nitrogenase enzyme and auxins by free living diazotrophs has the potential to influence the growth of host plants. In this study, diazotrophs were grown in the presence of various concentrations of nitogen (N) to determine the optimal concentration of N for microbial growth stimulation, promotion of gaseous N (N2) fixation, and phytohormone production. Therefore, we investigate whether different levels of N supplied to Herbaspirillum seropedicae (Z78) have significant effects on nitrogenase activity and auxin production. The highest nitrogenase activity and the lowest auxin production of H. seropedicae (Z78) were both recorded at 0 gL(-1) of NH4Cl. Higher levels of external N caused a significant decrease in the nitrogenase activity and an increased production of auxins. In a subsequent test, two different inoculum sizes of Z78 (10(6) and 10(12) cfu/ml) were used to study the effect of different percentages of acetylene on nitrogenase activity of the inoculum via the acetylene reduction assay (ARA). The results showed that the optimal amount of acetylene required for nitrogenase enzyme activity was 5% for the 10(6) cfu/ml inoculum, whereas the higher inoculum size (10(12) cfu/ml) required at least 10% of acetylene for optimal nitrogenase activity. These findings provide a clearer understanding of the effects of N levels on diazotrophic nitrogenase activity and auxin production, which are important factors influencing plant growth.
Collapse
|
5
|
Inaba J, Thornton J, Huergo LF, Monteiro RA, Klassen G, Pedrosa FDO, Merrick M, de Souza EM. Mutational analysis of GlnB residues critical for NifA activation in Azospirillum brasilense. Microbiol Res 2014; 171:65-72. [PMID: 25644954 DOI: 10.1016/j.micres.2014.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 12/08/2014] [Accepted: 12/14/2014] [Indexed: 11/28/2022]
Abstract
PII proteins are signal transduction that sense cellular nitrogen status and relay this signals to other targets. Azospirillum brasilense is a nitrogen fixing bacterium, which associates with grasses and cereals promoting beneficial effects on plant growth and crop yields. A. brasilense contains two PII encoding genes, named glnB and glnZ. In this paper, glnB was mutagenised in order to identify amino acid residues involved in GlnB signaling. Two variants were obtained by random mutagenesis, GlnBL13P and GlnBV100A and a site directed mutant, GlnBY51F, was obtained. Their ability to complement nitrogenase activity of glnB mutant strains of A. brasilense were determined. The variant proteins were also overexpressed in Escherichia coli, purified and characterized biochemically. None of the GlnB variant forms was able to restore nitrogenase activity in glnB mutant strains of A. brasilense LFH3 and 7628. The purified GlnBY51F and GlnBL13P proteins could not be uridylylated by GlnD, whereas GlnBV100A was uridylylated but at only 20% of the rate for wild type GlnB. Biochemical and computational analyses suggest that residue Leu13, located in the α helix 1 of GlnB, is important to maintain GlnB trimeric structure and function. The substitution V100A led to a lower affinity for ATP binding. Together the results suggest that NifA activation requires uridylylated GlnB bound to ATP.
Collapse
Affiliation(s)
- Juliana Inaba
- Department of Chemistry, Universidade Estadual de Ponta Grossa, Av. Gal. Carlos Cavalcanti, 4748, CEP 84030-900 Ponta Grossa, PR, Brazil.
| | - Jeremy Thornton
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom.
| | - Luciano Fernandes Huergo
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, CEP 81531-990 Curitiba, PR, Brazil.
| | - Rose Adele Monteiro
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, CEP 81531-990 Curitiba, PR, Brazil.
| | - Giseli Klassen
- Department of Basic Pathology, Universidade Federal do Paraná, CP 19046, CEP 81531-990 Curitiba, PR, Brazil.
| | - Fábio de Oliveira Pedrosa
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, CEP 81531-990 Curitiba, PR, Brazil.
| | - Mike Merrick
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom.
| | - Emanuel Maltempi de Souza
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, CEP 81531-990 Curitiba, PR, Brazil.
| |
Collapse
|
6
|
Huergo LF, Chandra G, Merrick M. PIIsignal transduction proteins: nitrogen regulation and beyond. FEMS Microbiol Rev 2013; 37:251-83. [DOI: 10.1111/j.1574-6976.2012.00351.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/26/2012] [Accepted: 07/26/2012] [Indexed: 01/12/2023] Open
|
7
|
Huergo LF, Pedrosa FO, Muller-Santos M, Chubatsu LS, Monteiro RA, Merrick M, Souza EM. PII signal transduction proteins: pivotal players in post-translational control of nitrogenase activity. MICROBIOLOGY-SGM 2012; 158:176-190. [PMID: 22210804 DOI: 10.1099/mic.0.049783-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The fixation of atmospheric nitrogen by the prokaryotic enzyme nitrogenase is an energy- expensive process and consequently it is tightly regulated at a variety of levels. In many diazotrophs this includes post-translational regulation of the enzyme's activity, which has been reported in both bacteria and archaea. The best understood response is the short-term inactivation of nitrogenase in response to a transient rise in ammonium levels in the environment. A number of proteobacteria species effect this regulation through reversible ADP-ribosylation of the enzyme, but other prokaryotes have evolved different mechanisms. Here we review current knowledge of post-translational control of nitrogenase and show that, for the response to ammonium, the P(II) signal transduction proteins act as key players.
Collapse
Affiliation(s)
- Luciano F Huergo
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Brazil
| | - Fábio O Pedrosa
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Brazil
| | - Marcelo Muller-Santos
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Brazil
| | - Leda S Chubatsu
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Brazil
| | - Rose A Monteiro
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Brazil
| | - Mike Merrick
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, UK
| | - Emanuel M Souza
- Instituto Nacional de Ciência e Tecnologia da Fixação Biológica de Nitrogênio, Departamento de Bioquímica e Biologia Molecular, UFPR Curitiba, PR, Brazil
| |
Collapse
|
8
|
Zou X, Zhu Y, Pohlmann EL, Li J, Zhang Y, Roberts GP. Identification and functional characterization of NifA variants that are independent of GlnB activation in the photosynthetic bacterium Rhodospirillum rubrum. MICROBIOLOGY-SGM 2008; 154:2689-2699. [PMID: 18757802 DOI: 10.1099/mic.0.2008/019406-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The activity of NifA, the transcriptional activator of the nitrogen fixation (nif) gene, is tightly regulated in response to ammonium and oxygen. However, the mechanisms for the regulation of NifA activity are quite different among various nitrogen-fixing bacteria. Unlike the well-studied NifL-NifA regulatory systems in Klebsiella pneumoniae and Azotobacter vinelandii, in Rhodospirillum rubrum NifA is activated by a direct protein-protein interaction with the uridylylated form of GlnB, which in turn causes a conformational change in NifA. We report the identification of several substitutions in the N-terminal GAF domain of R. rubrum NifA that allow NifA to be activated in the absence of GlnB. Presumably these substitutions cause conformational changes in NifA necessary for activation, without interaction with GlnB. We also found that wild-type NifA can be activated in a GlnB-independent manner under certain growth conditions, suggesting that some other effector(s) can also activate NifA. An attempt to use Tn5 mutagenesis to obtain mutants that altered the pool of these presumptive effector(s) failed, though much rarer spontaneous mutations in nifA were detected. This suggests that the necessary alteration of the pool of effector(s) for NifA activation cannot be obtained by knockout mutations.
Collapse
Affiliation(s)
- Xiaoxiao Zou
- Department of Microbiology and Immunology, College of Biological Sciences and State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100094, PR China
| | - Yu Zhu
- Department of Bacteriology and the Center for the Study of Nitrogen Fixation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Edward L Pohlmann
- Department of Bacteriology and the Center for the Study of Nitrogen Fixation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jilun Li
- Department of Microbiology and Immunology, College of Biological Sciences and State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100094, PR China
| | - Yaoping Zhang
- Department of Bacteriology and the Center for the Study of Nitrogen Fixation, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Microbiology and Immunology, College of Biological Sciences and State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100094, PR China
| | - Gary P Roberts
- Department of Bacteriology and the Center for the Study of Nitrogen Fixation, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
9
|
Tremblay PL, Drepper T, Masepohl B, Hallenbeck PC. Membrane sequestration of PII proteins and nitrogenase regulation in the photosynthetic bacterium Rhodobacter capsulatus. J Bacteriol 2007; 189:5850-9. [PMID: 17586647 PMCID: PMC1952044 DOI: 10.1128/jb.00680-07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Both Rhodobacter capsulatus PII homologs GlnB and GlnK were found to be necessary for the proper regulation of nitrogenase activity and modification in response to an ammonium shock. As previously reported for several other bacteria, ammonium addition triggered the AmtB-dependent association of GlnK with the R. capsulatus membrane. Native polyacrylamide gel electrophoresis analysis indicates that the modification/demodification of one PII homolog is aberrant in the absence of the other. In a glnK mutant, more GlnB was found to be membrane associated under these conditions. In a glnB mutant, GlnK fails to be significantly sequestered by AmtB, even though it appears to be fully deuridylylated. Additionally, the ammonium-induced enhanced sequestration by AmtB of the unmodifiable GlnK variant GlnK-Y51F follows the wild-type GlnK pattern with a high level in the cytoplasm without the addition of ammonium and an increased level in the membrane fraction after ammonium treatment. These results suggest that factors other than PII modification are driving its association with AmtB in the membrane in R. capsulatus.
Collapse
Affiliation(s)
- Pier-Luc Tremblay
- Département de Microbiologie et Immunologie, Université de Montréal, CP 6128, Succursale Centre-ville, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
10
|
Srivastava A, Tripathi AK. Adenosine diphosphate ribosylation of dinitrogenase reductase and adenylylation of glutamine synthetase control ammonia excretion in ethylenediamine-resistant mutants of Azospirillum brasilense Sp7. Curr Microbiol 2006; 53:317-23. [PMID: 16972125 DOI: 10.1007/s00284-006-0058-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Accepted: 06/19/2006] [Indexed: 11/26/2022]
Abstract
Azospirillum brasilense is a nitrogen-fixing, root-colonizing bacterium that brings about plant-growth-promoting effects mainly because of its ability to produce phytohormones. Ethylenediamine (EDA)-resistant mutants of A. brasilense were isolated and screened for their higher ability to decrease acetylene and release ammonia in the medium. One of the mutants showed considerably higher levels of acetylene decrease and ammonia excretion. Nitrogenase activity of this mutant was relatively resistant to inhibition by NH(4)Cl. Adenosine triphosphate ribosylation of dinitrogenase reductase in the mutant did not increase even in presence of 10 mM NH(4)Cl. Although the mutant showed decreased glutamine synthetase (GS) activity, neither the levels of GS synthesized by the mutant nor the NH (4) (+) -binding site in the GS differed from those of the parent. The main reason for the release of ammonia by the mutant seems to be the fixation of higher levels of nitrogen than its GS can assimilate, as well as higher levels of adenylylation of GS, which may decrease ammonia assimilation.
Collapse
Affiliation(s)
- A Srivastava
- Laboratary of Bacterial Genetics, School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi, 221005, India
| | | |
Collapse
|
11
|
Huergo LF, Chubatsu LS, Souza EM, Pedrosa FO, Steffens MBR, Merrick M. Interactions between PII proteins and the nitrogenase regulatory enzymes DraT and DraG in Azospirillum brasilense. FEBS Lett 2006; 580:5232-6. [PMID: 16963029 DOI: 10.1016/j.febslet.2006.08.054] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 08/17/2006] [Accepted: 08/17/2006] [Indexed: 11/16/2022]
Abstract
In Azospirillum brasilense ADP-ribosylation of dinitrogenase reductase (NifH) occurs in response to addition of ammonium to the extracellular medium and is mediated by dinitrogenase reductase ADP-ribosyltransferase (DraT) and reversed by dinitrogenase reductase glycohydrolase (DraG). The P(II) proteins GlnB and GlnZ have been implicated in regulation of DraT and DraG by an as yet unknown mechanism. Using pull-down experiments with His-tagged versions of DraT and DraG we have now shown that DraT binds to GlnB, but only to the deuridylylated form, and that DraG binds to both the uridylylated and deuridylylated forms of GlnZ. The demonstration of these specific protein complexes, together with our recent report of the ability of deuridylylated GlnZ to be sequestered to the cell membrane by the ammonia channel protein AmtB, offers new insights into the control of NifH ADP-ribosylation.
Collapse
Affiliation(s)
- Luciano F Huergo
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, 81531-990 Curitiba, PR, Brazil
| | | | | | | | | | | |
Collapse
|
12
|
Zhang Y, Wolfe DM, Pohlmann EL, Conrad MC, Roberts GP. Effect of AmtB homologues on the post-translational regulation of nitrogenase activity in response to ammonium and energy signals in Rhodospirillum rubrum. MICROBIOLOGY-SGM 2006; 152:2075-2089. [PMID: 16804182 DOI: 10.1099/mic.0.28903-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The AmtB protein transports uncharged NH(3) into the cell, but it also interacts with the nitrogen regulatory protein P(II), which in turn regulates a variety of proteins involved in nitrogen fixation and utilization. Three P(II) homologues, GlnB, GlnK and GlnJ, have been identified in the photosynthetic bacterium Rhodospirillum rubrum, and they have roles in at least four overlapping and distinct functions, one of which is the post-translational regulation of nitrogenase activity. In R. rubrum, nitrogenase activity is tightly regulated in response to addition or energy depletion (shift to darkness), and this regulation is catalysed by the post-translational regulatory system encoded by draTG. Two amtB homologues, amtB(1) and amtB(2), have been identified in R. rubrum, and they are linked with glnJ and glnK, respectively. Mutants lacking AmtB(1) are defective in their response to both addition and darkness, while mutants lacking AmtB(2) show little effect on the regulation of nitrogenase activity. These responses to darkness and appear to involve different signal transduction pathways, and the poor response to darkness does not seem to be an indirect result of perturbation of internal pools of nitrogen. It is also shown that AmtB(1) is necessary to sequester detectable amounts GlnJ to the cell membrane. These results suggest that some element of the AmtB(1)-P(II) regulatory system senses energy deprivation and a consistent model for the integration of nitrogen, carbon and energy signals by P(II) is proposed. Other results demonstrate a degree of specificity in interaction of AmtB(1) with the different P(II) homologues in R. rubrum. Such interaction specificity might be important in explaining the way in which P(II) proteins regulate processes involved in nitrogen acquisition and utilization.
Collapse
Affiliation(s)
- Yaoping Zhang
- Department of Bacteriology and the Center for the Study of Nitrogen Fixation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David M Wolfe
- Department of Bacteriology and the Center for the Study of Nitrogen Fixation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Edward L Pohlmann
- Department of Bacteriology and the Center for the Study of Nitrogen Fixation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mary C Conrad
- Department of Bacteriology and the Center for the Study of Nitrogen Fixation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Gary P Roberts
- Department of Bacteriology and the Center for the Study of Nitrogen Fixation, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
13
|
Huergo LF, Souza EM, Araujo MS, Pedrosa FO, Chubatsu LS, Steffens MBR, Merrick M. ADP-ribosylation of dinitrogenase reductase in Azospirillum brasilense is regulated by AmtB-dependent membrane sequestration of DraG. Mol Microbiol 2006; 59:326-37. [PMID: 16359338 DOI: 10.1111/j.1365-2958.2005.04944.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nitrogen fixation in some diazotrophic bacteria is regulated by mono-ADP-ribosylation of dinitrogenase reductase (NifH) that occurs in response to addition of ammonium to the extracellular medium. This process is mediated by dinitrogenase reductase ADP-ribosyltransferase (DraT) and reversed by dinitrogenase reductase glycohydrolase (DraG), but the means by which the activities of these enzymes are regulated are unknown. We have investigated the role of the P(II) proteins (GlnB and GlnZ), the ammonia channel protein AmtB and the cellular localization of DraG in the regulation of the NifH-modification process in Azospirillum brasilense. GlnB, GlnZ and DraG were all membrane-associated after an ammonium shock, and both this membrane sequestration and ADP-ribosylation of NifH were defective in an amtB mutant. We now propose a model in which membrane association of DraG after an ammonium shock creates a physical separation from its cytoplasmic substrate NifH thereby inhibiting ADP-ribosyl-removal. Our observations identify a novel role for an ammonia channel (Amt) protein in the regulation of bacterial nitrogen metabolism by mediating membrane sequestration of a protein other than a P(II) family member. They also suggest a model for control of ADP-ribosylation that is likely to be applicable to all diazotrophs that exhibit such post-translational regulation of nitrogenase.
Collapse
Affiliation(s)
- Luciano F Huergo
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, 81531-990 Curitiba, PR, Brazil
| | | | | | | | | | | | | |
Collapse
|
14
|
Klassen G, Souza EM, Yates MG, Rigo LU, Costa RM, Inaba J, Pedrosa FO. Nitrogenase switch-off by ammonium ions in Azospirillum brasilense requires the GlnB nitrogen signal-transducing protein. Appl Environ Microbiol 2005; 71:5637-41. [PMID: 16151168 PMCID: PMC1214662 DOI: 10.1128/aem.71.9.5637-5641.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrogenase activity in several diazotrophs is switched off by ammonium and reactivated after consumption. The signaling pathway to this system in Azospirillum brasilense is not understood. We show that ammonium-dependent switch-off through ADP-ribosylation of Fe protein was partial in a glnB mutant of A. brasilense but absent in a glnB glnZ double mutant. Triggering of inactivation by anaerobic conditions was not affected in either mutant. The results suggest that glnB is necessary for full ammonium-dependent nitrogenase switch-off in A. brasilense.
Collapse
Affiliation(s)
- Giseli Klassen
- Universidade Federal do Paraná, Departamento de Bioquímica e Biologia Molecular, Caixa Postal 19046 CEP-81531-990, Curitiba, Paraná, Brazil
| | | | | | | | | | | | | |
Collapse
|
15
|
Huergo LF, Filipaki A, Chubatsu LS, Yates MG, Steffens MB, Pedrosa FO, Souza EM. Effect of the over-expression of PII and PZ proteins on the nitrogenase activity of Azospirillum brasilense. FEMS Microbiol Lett 2005; 253:47-54. [PMID: 16239079 DOI: 10.1016/j.femsle.2005.09.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 09/12/2005] [Indexed: 11/30/2022] Open
Abstract
The Azospirillum brasilense PII and PZ proteins, encoded by the glnB and glnZ genes respectively, are intracellular transducers of nitrogen levels with distinct functions. The PII protein participates in nif regulation by controlling the activity of the transcriptional regulator NifA. PII is also involved in transducing the prevailing nitrogen levels to the Fe-protein ADP-ribosylation system. PZ regulates negatively ammonium transport and is involved in nitrogenase reactivation. To further investigate the role of PII and PZ in the regulation of nitrogen fixation, broad-host-range plasmids capable of over-expressing the glnB and glnZ genes under control of the ptac promoter were constructed and introduced into A. brasilense. The nitrogenase activity and nitrate-dependent growth was impaired in A. brasilense cells over-expressing the PII protein. Using immunoblot analysis we observed that the reduction of nitrogenase activity in cells over-expressing PII was due to partial ADP-ribosylation of the Fe-protein under derepressing conditions and a reduction in the amount of Fe-protein. These results support the hypothesis that the unmodified PII protein act as a signal to the DraT enzyme to ADP-ribosylate the Fe-protein in response to ammonium shock, and that it also inhibits nif gene expression. In cells over-expressing the PZ protein the nitrogenase reactivation after an ammonium shock was delayed indicating that the PZ protein is involved in regulation of DraG activity.
Collapse
Affiliation(s)
- Luciano F Huergo
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, 81531-990, Curitiba, PR, Brazil
| | | | | | | | | | | | | |
Collapse
|
16
|
Baldani JI, Baldani VLD. History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience. AN ACAD BRAS CIENC 2005; 77:549-79. [PMID: 16127558 DOI: 10.1590/s0001-37652005000300014] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review covers the history on Biological Nitrogen Fixation (BNF) in Graminaceous plants grown in Brazil, and describes research progress made over the last 40 years, most of whichwas coordinated by Johanna Döbereiner. One notable accomplishment during this period was the discovery of several nitrogen-fixing bacteria such as the rhizospheric (Beijerinckia fluminensis and Azotobacter paspali), associative (Azospirillum lipoferum, A. brasilense, A. amazonense) and the endophytic (Herbaspirillum seropedicae, H. rubrisubalbicans, Gluconacetobacter diazotrophicus, Burkholderia brasilensis and B. tropica). The role of these diazotrophs in association with grasses, mainly with cereal plants, has been studied and a lot of progress has been achieved in the ecological, physiological, biochemical, and genetic aspects. The mechanisms of colonization and infection of the plant tissues are better understood, and the BNF contribution to the soil/plant system has been determined. Inoculation studies with diazotrophs showed that endophytic bacteria have a much higher BNF contribution potential than associative diazotrophs. In addition, it was found that the plant genotype influences the plant/bacteria association. Recent data suggest that more studies should be conducted on the endophytic association to strengthen the BNF potential. The ongoing genome sequencing programs: RIOGENE (Gluconacetobacter diazotrophicus) and GENOPAR (Herbaspirillum seropedicae) reflect the commitment to the BNF study in Brazil and should allow the country to continue in the forefront of research related to the BNF process in Graminaceous plants.
Collapse
Affiliation(s)
- José I Baldani
- Embrapa Agrobiologia, Seropédica, Rio de Janeiro, 23851-970, Brazil.
| | | |
Collapse
|
17
|
Dodsworth JA, Cady NC, Leigh JA. 2-Oxoglutarate and the PII homologues NifI1and NifI2regulate nitrogenase activity in cell extracts ofMethanococcus maripaludis. Mol Microbiol 2005; 56:1527-38. [PMID: 15916603 DOI: 10.1111/j.1365-2958.2005.04621.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Summary Post-translational regulation of nitrogen fixation, or switch-off, in the methanogenic archaeon Methanococcus maripaludis does not involve detectable covalent modification of the dinitrogenase reductase as in some bacteria, and the genes encoding the PII homologues NifI(1) and NifI(2) are both required, indicating a novel mechanism. To further understand the mechanism of switch-off, we assayed nitrogenase activity in cell extracts from wild-type and nifI mutant strains in the absence or presence of potential signals of nitrogen status. Activity in extracts from a DeltanifI(1)nifI(2) strain was sixfold higher than in extracts from wild-type cells. Addition of 2-oxoglutarate to wild-type extracts enhanced activity up to fivefold, a level similar to that observed in DeltanifI(1)nifI(2) extracts. 2-Oxoglutarate did not affect activity in DeltanifI(1)nifI(2) or single nifI mutant extracts. Furthermore, extracts from genetically complimented nifI mutants regained wild-type characteristics, indicating an in vitro correlation with in vivo effects. Extraction and quantification of 2-oxoglutarate indicated concentrations 10-fold higher in nitrogen-fixing cells than in switched-off and ammonium-grown cells. We propose a model for switch-off where the NifI proteins have an inhibitory effect on nitrogenase activity that is counteracted by high levels of 2-oxoglutarate, which acts as a signal of nitrogen limitation.
Collapse
Affiliation(s)
- Jeremy A Dodsworth
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
18
|
Huergo LF, Souza EM, Steffens MBR, Yates MG, Pedrosa FO, Chubatsu LS. Effects of over-expression of the regulatory enzymes DraT and DraG on the ammonium-dependent post-translational regulation of nitrogenase reductase in Azospirillum brasilense. Arch Microbiol 2005; 183:209-17. [PMID: 15723223 DOI: 10.1007/s00203-005-0763-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 01/20/2005] [Accepted: 01/28/2005] [Indexed: 10/25/2022]
Abstract
Nitrogen fixation in Azospirillum brasilense is regulated at transcriptional and post-translational levels. Post-translational control occurs through the reversible ADP-ribosylation of dinitrogenase reductase (Fe Protein), mediated by the dinitrogenase reductase ADP-ribosyltransferase (DraT) and dinitrogenase reductase glycohydrolase (DraG). Although the DraT and DraG activities are regulated in vivo, the molecules responsible for such regulation remain unknown. We have constructed broad-host-range plasmids capable of over-expressing, upon IPTG induction, the regulatory enzymes DraT and DraG as six-histidine-N-terminal fused proteins (His). Both DraT-His and DraG-His are functional in vivo. We have analyzed the effects of DraT-His and DraG-His over-expression on the post-translational modification of Fe Protein. The DraT-His over-expression led to Fe Protein modification in the absence of ammonium addition, while cells over-expressing DraG-His showed only partial ADP-ribosylation of Fe Protein by adding ammonium. These results suggest that both DraT-His and DraG-His lose their regulation upon over-expression, possible by titrating out negative regulators.
Collapse
Affiliation(s)
- Luciano F Huergo
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, 81531-990 Curitiba, PR, Brazil
| | | | | | | | | | | |
Collapse
|
19
|
Huergo LF, Assumpção MC, Souza EM, Steffens MBR, Yates MG, Chubatsu LS, Pedrosa FO. Repressor mutant forms of the Azospirillum brasilense NtrC protein. Appl Environ Microbiol 2004; 70:6320-3. [PMID: 15466584 PMCID: PMC522079 DOI: 10.1128/aem.70.10.6320-6323.2004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Azospirillum brasilense mutant strains FP8 and FP9, after treatment with nitrosoguanidine, showed a null Nif phenotype and were unable to use nitrate as their sole nitrogen source. Sequencing of the ntrC genes revealed single nucleotide mutations in the NtrC nucleotide-binding site. The phenotypes of these strains are discussed in relation to their genotypes.
Collapse
Affiliation(s)
- Luciano F Huergo
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, 81531-990 Curitiba, Paraná, Brazil
| | | | | | | | | | | | | |
Collapse
|
20
|
Bashan Y, Holguin G, de-Bashan LE. Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997-2003). Can J Microbiol 2004; 50:521-77. [PMID: 15467782 DOI: 10.1139/w04-035] [Citation(s) in RCA: 278] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review presents a critical and comprehensive documentation and analysis of the developments in agricultural, environmental, molecular, and physiological studies related to Azospirillum cells, and to Azospirillum interactions with plants, based solely on information published between 1997 and 2003. It was designed as an update of previous reviews (Bashan and Levanony 1990; Bashan and Holguin 1997a), with a similar scope of interest. Apart from an update and critical analysis of the current knowledge, this review focuses on the central issues of Azospirillum research today, such as, (i) physiological and molecular studies as a general model for rhizosphere bacteria; (ii) co-inoculation with other microorganisms; (iii) hormonal studies and re-consideration of the nitrogen contribution by the bacteria under specific environmental conditions; (iv) proposed Azospirillum as a non-specific plant-growth-promoting bacterium; (v) re-introduction of the "Additive Hypothesis," which suggests involvement of multiple mechanisms employed by the bacteria to affect plant growth; (vi) comment on the less researched areas, such as inoculant and pesticide research; and (vii) proposes possible avenues for the exploitation of this bacterium in environmental areas other than agriculture.Key words: Azospirillum, plant–bacteria interaction, plant-growth-promoting bacteria, PGPB, PGPR, rhizosphere bacteria.
Collapse
Affiliation(s)
- Yoav Bashan
- Environmental Microbiology Group, Center for Biological Research of the Northwest (CIB), P.O. Box 128, La Paz, B.C.S 23000, Mexico.
| | | | | |
Collapse
|
21
|
Araújo LM, Monteiro RA, Souza EM, Steffens MBR, Rigo LU, Pedrosa FO, Chubatsu LS. GlnB is specifically required for Azospirillum brasilense NifA activity in Escherichia coli. Res Microbiol 2004; 155:491-5. [PMID: 15249067 DOI: 10.1016/j.resmic.2004.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Accepted: 03/11/2004] [Indexed: 10/26/2022]
Abstract
The Azospirillum brasilense transcription regulator NifA and the nitrogen-status signaling proteins GlnB, GlnZ and GlnK were expressed in Escherichia coli and analyzed for their ability to activate nif gene expression. When expressed separately, none of the proteins were able to activate nifH promoter expression in any tested conditions; in contrast, nifH expression was observed in cells grown in the absence of ammonium and oxygen and when expressing simultaneously NifA and GlnB proteins, but not when expressing NifA and GlnZ or GlnK. Our results show that the GlnB protein is required for transcription activation by Azospirillum brasilense NifA and it cannot be replaced by GlnZ or GlnK.
Collapse
Affiliation(s)
- Luiza M Araújo
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, 81531-990 Curitiba, PR, Brazil
| | | | | | | | | | | | | |
Collapse
|
22
|
Araujo MS, Baura VA, Souza EM, Benelli EM, Rigo LU, Steffens MBR, Pedrosa FO, Chubatsu LS. In vitro uridylylation of the Azospirillum brasilense N-signal transducing GlnZ protein. Protein Expr Purif 2004; 33:19-24. [PMID: 14680957 DOI: 10.1016/j.pep.2003.08.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2003] [Revised: 08/12/2003] [Indexed: 11/24/2022]
Abstract
Azospirillum brasilense is a diazotroph which associates with important agricultural crops. The nitrogen fixation process in this organism is highly regulated by ammonium and oxygen, and involves several proteins including the two PII-like proteins, GlnB and GlnZ. Although these proteins are structurally very similar, they play different roles in the control of nitrogen fixation. In this work, we describe the expression, purification, and uridylylation of the GlnZ protein of A. brasilense strain FP2. The amplified glnZ gene was sub-cloned and expressed as a His-tagged fusion protein. After purification, we obtained 30-40 mg of purified GlnZ per liter of culture. This protein was purified to 99% purity and assayed for in vitro uridylylation using a partially purified Escherichia coli GlnD as a source of uridylylyl-transferase activity. Analyses of the uridylylation reactions in non-denaturing and denaturing polyacrylamide gel electrophoresis showed that up to 74% of GlnZ monomers were modified after 30 min reaction. This covalent modification is strictly dependent on ATP and 2-ketoglutarate, while glutamine acts as an inhibitor and promotes deuridylylation.
Collapse
Affiliation(s)
- Mariana S Araujo
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP19046, Curitiba, PR 81531-990, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Perlova O, Ureta A, Nordlund S, Meletzus D. Identification of three genes encoding P(II)-like proteins in Gluconacetobacter diazotrophicus: studies of their role(s) in the control of nitrogen fixation. J Bacteriol 2003; 185:5854-61. [PMID: 13129958 PMCID: PMC193954 DOI: 10.1128/jb.185.19.5854-5861.2003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In our studies on the regulation of nitrogen metabolism in Gluconacetobacter diazotrophicus, an endophytic diazotroph of sugarcane, three glnB-like genes were identified and their role(s) in the control of nitrogen fixation was studied. Sequence analysis revealed that one P(II) protein-encoding gene, glnB, was adjacent to a glnA gene (encoding glutamine synthetase) and that two other P(II) protein-encoding genes, identified as glnK1 and glnK2, were located upstream of amtB1 and amtB2, respectively, genes which in other organisms encode ammonium (or methylammonium) transporters. Single and double mutants and a triple mutant with respect to the three P(II) protein-encoding genes were constructed, and the effects of the mutations on nitrogenase expression and activity in the presence of either ammonium starvation or ammonium sufficiency were studied. Based on the results presented here, it is suggested that none of the three P(II) homologs is required for nif gene expression, that the GlnK2 protein acts primarily as an inhibitor of nif gene expression, and that GlnB and GlnK1 control the expression of nif genes in response to ammonium availability, both directly and by relieving the inhibition by GlnK2. This model includes novel regulatory features of P(II) proteins.
Collapse
Affiliation(s)
- Olena Perlova
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
24
|
Pawlowski A, Riedel KU, Klipp W, Dreiskemper P, Gross S, Bierhoff H, Drepper T, Masepohl B. Yeast two-hybrid studies on interaction of proteins involved in regulation of nitrogen fixation in the phototrophic bacterium Rhodobacter capsulatus. J Bacteriol 2003; 185:5240-7. [PMID: 12923097 PMCID: PMC181009 DOI: 10.1128/jb.185.17.5240-5247.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhodobacter capsulatus contains two PII-like proteins, GlnB and GlnK, which play central roles in controlling the synthesis and activity of nitrogenase in response to ammonium availability. Here we used the yeast two-hybrid system to probe interactions between these PII-like proteins and proteins known to be involved in regulating nitrogen fixation. Analysis of defined protein pairs demonstrated the following interactions: GlnB-NtrB, GlnB-NifA1, GlnB-NifA2, GlnB-DraT, GlnK-NifA1, GlnK-NifA2, and GlnK-DraT. These results corroborate earlier genetic data and in addition show that PII-dependent ammonium regulation of nitrogen fixation in R. capsulatus does not require additional proteins, like NifL in Klebsiella pneumoniae. In addition, we found interactions for the protein pairs GlnB-GlnB, GlnB-GlnK, NifA1-NifA1, NifA2-NifA2, and NifA1-NifA2, suggesting that fine tuning of the nitrogen fixation process in R. capsulatus may involve the formation of GlnB-GlnK heterotrimers as well as NifA1-NifA2 heterodimers. In order to identify new proteins that interact with GlnB and GlnK, we constructed an R. capsulatus genomic library for use in yeast two-hybrid studies. Screening of this library identified the ATP-dependent helicase PcrA as a new putative protein that interacts with GlnB and the Ras-like protein Era as a new protein that interacts with GlnK.
Collapse
Affiliation(s)
- Alice Pawlowski
- Lehrstuhl für Biologie der Mikroorganismen, Fakultät für Biologie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Drepper T, Groß S, Yakunin AF, Hallenbeck PC, Masepohl B, Klipp W. Role of GlnB and GlnK in ammonium control of both nitrogenase systems in the phototrophic bacterium Rhodobacter capsulatus. MICROBIOLOGY (READING, ENGLAND) 2003; 149:2203-2212. [PMID: 12904560 DOI: 10.1099/mic.0.26235-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In most bacteria, nitrogen metabolism is tightly regulated and P(II) proteins play a pivotal role in the regulatory processes. Rhodobacter capsulatus possesses two genes (glnB and glnK) encoding P(II)-like proteins. The glnB gene forms part of a glnB-glnA operon and the glnK gene is located immediately upstream of amtB, encoding a (methyl-) ammonium transporter. Expression of glnK is activated by NtrC under nitrogen-limiting conditions. The synthesis and activity of the molybdenum and iron nitrogenases of R. capsulatus are regulated by ammonium on at least three levels, including the transcriptional activation of nifA1, nifA2 and anfA by NtrC, the regulation of NifA and AnfA activity by two different NtrC-independent mechanisms, and the post-translational control of the activity of both nitrogenases by reversible ADP-ribosylation of NifH and AnfH as well as by ADP-ribosylation independent switch-off. Mutational analysis revealed that both P(II)-like proteins are involved in the ammonium regulation of the two nitrogenase systems. A mutation in glnB results in the constitutive expression of nifA and anfA. In addition, the post-translational ammonium inhibition of NifA activity is completely abolished in a glnB-glnK double mutant. However, AnfA activity was still suppressed by ammonium in the glnB-glnK double mutant. Furthermore, the P(II)-like proteins are involved in ammonium control of nitrogenase activity via ADP-ribosylation and the switch-off response. Remarkably, in the glnB-glnK double mutant, all three levels of the ammonium regulation of the molybdenum (but not of the alternative) nitrogenase are completely circumvented, resulting in the synthesis of active molybdenum nitrogenase even in the presence of high concentrations of ammonium.
Collapse
Affiliation(s)
- Thomas Drepper
- Ruhr-Universität Bochum, Lehrstuhl für Biologie der Mikroorganismen, D-44780 Bochum, Germany
| | - Silke Groß
- Ruhr-Universität Bochum, Lehrstuhl für Biologie der Mikroorganismen, D-44780 Bochum, Germany
| | - Alexander F Yakunin
- Université de Montréal, Département de microbiologie et immunologie, CP 6128, succursale Centre-ville, Montréal, Québec, Canada H3C 3J7
| | - Patrick C Hallenbeck
- Université de Montréal, Département de microbiologie et immunologie, CP 6128, succursale Centre-ville, Montréal, Québec, Canada H3C 3J7
| | - Bernd Masepohl
- Ruhr-Universität Bochum, Lehrstuhl für Biologie der Mikroorganismen, D-44780 Bochum, Germany
| | - Werner Klipp
- Ruhr-Universität Bochum, Lehrstuhl für Biologie der Mikroorganismen, D-44780 Bochum, Germany
| |
Collapse
|