1
|
Mei L, Xu S, Lu P, Lin H, Guo Y, Wang Y. CsrB, a noncoding regulatory RNA, is required for BarA-dependent expression of biocontrol traits in Rahnella aquatilis HX2. PLoS One 2017; 12:e0187492. [PMID: 29091941 PMCID: PMC5665550 DOI: 10.1371/journal.pone.0187492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 10/21/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Rahnella aquatilis is ubiquitous and its certain strains have the applicative potent as a plant growth-promoting rhizobacteria. R. aquatilis HX2 is a biocontrol agent to produce antibacterial substance (ABS) and showed efficient biocontrol against crown gall caused by Agrobacterium vitis on sunflower and grapevine plants. The regulatory network of the ABS production and biocontrol activity is still limited known. METHODOLOGY/PRINCIPAL FINDINGS In this study, a transposon-mediated mutagenesis strategy was used to investigate the regulators that involved in the biocontrol activity of R. aquatilis HX2. A 366-nt noncoding RNA CsrB was identified in vitro and in vivo, which regulated ABS production and biocontrol activity against crown gall on sunflower plants, respectively. The predicted product of noncoding RNA CsrB contains 14 stem-loop structures and an additional ρ-independent terminator harpin, with 23 characteristic GGA motifs in the loops and other unpaired regions. CsrB is required for ABS production and biocontrol activity in the biocontrol regulation by a two-component regulatory system BarA/UvrY in R. aquatilis HX2. CONCLUSION/SIGNIFICANCE The noncoding RNA CsrB regulates BarA-dependent ABS production and biocontrol activity in R. aquatilis HX2. To the best of our knowledge, this is the first report of noncoding RNA as a regulator for biocontrol function in R. aquatilis.
Collapse
Affiliation(s)
- Li Mei
- College of Forestry and Biotechnology, Zhejiang A&F University, Lin’An, China
| | - Sanger Xu
- College of Forestry and Biotechnology, Zhejiang A&F University, Lin’An, China
| | - Peng Lu
- College of Forestry and Biotechnology, Zhejiang A&F University, Lin’An, China
| | - Haiping Lin
- College of Forestry and Biotechnology, Zhejiang A&F University, Lin’An, China
| | - Yanbin Guo
- Department of Ecological Science and Engineering, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Yongjun Wang
- College of Forestry and Biotechnology, Zhejiang A&F University, Lin’An, China
- National and Provincial Joint Engineering Laboratory of Bio-pesticide Preparation, Lin’An, China
| |
Collapse
|
2
|
Scotto-Lavino E, Bai M, Zhang YB, Freimuth P. Export is the default pathway for soluble unfolded polypeptides that accumulate during expression in Escherichia coli. Protein Expr Purif 2011; 79:137-41. [PMID: 21443953 DOI: 10.1016/j.pep.2011.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 03/18/2011] [Accepted: 03/21/2011] [Indexed: 01/31/2023]
Abstract
Several E. coli endogenous, cytoplasmic proteins that are known clients of the chaperonin GroEL were overexpressed to examine the fate of accumulated unfolded polypeptides. Substantial fractions of about half of the proteins formed insoluble aggregates, consistent with the hypothesis that these proteins were produced at rates or in amounts that exceeded the protein-folding capacity of GroEL. In addition, large fractions of three overexpressed GroEL client proteins were localized in an extra-cytoplasmic, osmotically-sensitive compartment, suggesting they had initially accumulated in the cytoplasm as soluble unfolded polypeptides and thus were able to access a protein export pathway. Consistent with this model, an intrinsically unfoldable, hydrophilic, non-secretory polypeptide was quantitatively exported from the E. coli cytoplasm into an osmotically-sensitive compartment. Our results support the conclusion that a soluble, unfolded conformation alone may be sufficient to direct non-secretory polypeptides into a protein export pathway for signal peptide-independent translocation across the inner membrane, and that export rather than degradation by cytoplasmic proteases is the preferred fate for newly-synthesized, soluble, unfolded polypeptides that accumulate in the cytoplasm. The stable folded conformation of exported GroEL client proteins further suggests that the requirement for GroEL may be conditional on protein folding in the molecularly-crowded environment of the cytoplasm.
Collapse
|
3
|
Abstract
AbstractSmall non-coding RNAs (sRNAs) have attracted considerable attention as an emerging class of gene expression regulators. In bacteria, a few regulatory RNA molecules have long been known, but the extent of their role in the cell was not fully appreciated until the recent discovery of hundreds of potential sRNA genes in the bacteriumEscherichia coli. Orthologs of theseE. colisRNA genes, as well as unrelated sRNAs, were also found in other bacteria. Here we review the disparate experimental approaches used over the years to identify sRNA molecules and their genes in prokaryotes. These include genome-wide searches based on the biocomputational prediction of non-coding RNA genes, global detection of non-coding transcripts using microarrays, and shotgun cloning of small RNAs (RNomics). Other sRNAs were found by either co-purification with RNA-binding proteins, such as Hfq or CsrA/RsmA, or classical cloning of abundant small RNAs after size fractionation in polyacrylamide gels. In addition, bacterial genetics offers powerful tools that aid in the search for sRNAs that may play a critical role in the regulatory circuit of interest, for example, the response to stress or the adaptation to a change in nutrient availability. Many of the techniques discussed here have also been successfully applied to the discovery of eukaryotic and archaeal sRNAs.
Collapse
MESH Headings
- Cloning, Molecular
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/genetics
- Escherichia coli Proteins/metabolism
- Eukaryotic Cells/metabolism
- Gene Expression Regulation, Bacterial
- Genome, Bacterial
- Host Factor 1 Protein/chemistry
- Host Factor 1 Protein/genetics
- Host Factor 1 Protein/metabolism
- Oligonucleotide Array Sequence Analysis
- RNA Processing, Post-Transcriptional
- RNA, Archaeal/chemistry
- RNA, Archaeal/genetics
- RNA, Archaeal/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Untranslated/chemistry
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
Collapse
Affiliation(s)
- Jörg Vogel
- Max Planck Institute for Infection Biology, RNA Biology, Schumannstr. 21/22, D-10117 Berlin, Germany.
| | | |
Collapse
|
4
|
Saetrom P, Sneve R, Kristiansen KI, Snøve O, Grünfeld T, Rognes T, Seeberg E. Predicting non-coding RNA genes in Escherichia coli with boosted genetic programming. Nucleic Acids Res 2005; 33:3263-70. [PMID: 15942029 PMCID: PMC1143698 DOI: 10.1093/nar/gki644] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Several methods exist for predicting non-coding RNA (ncRNA) genes in Escherichia coli (E.coli). In addition to about sixty known ncRNA genes excluding tRNAs and rRNAs, various methods have predicted more than thousand ncRNA genes, but only 95 of these candidates were confirmed by more than one study. Here, we introduce a new method that uses automatic discovery of sequence patterns to predict ncRNA genes. The method predicts 135 novel candidates. In addition, the method predicts 152 genes that overlap with predictions in the literature. We test sixteen predictions experimentally, and show that twelve of these are actual ncRNA transcripts. Six of the twelve verified candidates were novel predictions. The relatively high confirmation rate indicates that many of the untested novel predictions are also ncRNAs, and we therefore speculate that E.coli contains more ncRNA genes than previously estimated.
Collapse
Affiliation(s)
- Pål Saetrom
- Interagon AS, Medisinsk teknisk senter NO-7489 Trondheim, Norway.
| | | | | | | | | | | | | |
Collapse
|
5
|
Mikulík K. Structure and functional properties of prokaryotic small noncoding RNAs. Folia Microbiol (Praha) 2003; 48:443-68. [PMID: 14533476 DOI: 10.1007/bf02931326] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Most biochemical, computational and genetic approaches to gene finding assume the Central Dogma and look for genes that make mRNA and have ORFs. These approaches essentially do not work for one class of genes--the noncoding RNA. In all living organisms RNA is involved in a number of essential cell processes. Functional analysis of genome sequences has largely ignored RNA genes and their structures. Different RNA species including rRNA, tRNA, mRNA and sRNA (small RNA) are important structural, transfer, informational, and regulatory molecules containing complex folded conformations that participate in recognition and catalytic processes. Noncoding RNAs play an number of important structural, catalytic and regulatory roles in the cell. The size of the sRNA genes ranges from 70 to 500 nucleotides. Several transcripts of these genes are processed by RNAases and their final products are smaller. The encoding genes are localized between two ORFs and do not overlap with ORFs on the complementary DNA strand. As aptamers, some sRNA bind small molecular components (metal ions, peptides and nucleotides). This review summarizes recent data on the functions of prokaryotic sRNAs and approaches to their identification.
Collapse
Affiliation(s)
- K Mikulík
- Institute of Microbiology, Academy of Sciences of the Czech Republic, 142 20 Prague, Czechia.
| |
Collapse
|
6
|
Valverde C, Heeb S, Keel C, Haas D. RsmY, a small regulatory RNA, is required in concert with RsmZ for GacA-dependent expression of biocontrol traits in Pseudomonas fluorescens CHA0. Mol Microbiol 2003; 50:1361-79. [PMID: 14622422 DOI: 10.1046/j.1365-2958.2003.03774.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the plant-beneficial soil bacterium and biocontrol model organism Pseudomonas fluorescens CHA0, the GacS/GacA two-component system upregulates the production of biocontrol factors, i.e. antifungal secondary metabolites and extracellular enzymes, under conditions of slow, non-exponential growth. When activated, the GacS/GacA system promotes the transcription of a small regulatory RNA (RsmZ), which sequesters the small RNA-binding protein RsmA, a translational regulator of genes involved in biocontrol. The gene for a second GacA-regulated small RNA (RsmY) was detected in silico in various pseudomonads, and was cloned from strain CHA0. RsmY, like RsmZ, contains several characteristic GGA motifs. The rsmY gene was expressed in strain CHA0 as a 118 nt transcript which was most abundant in stationary phase, as revealed by Northern blot and transcriptional fusion analysis. Transcription of rsmY was enhanced by the addition of the strain's own supernatant extract containing a quorum-sensing signal and was abolished in gacS or gacA mutants. An rsmA mutation led to reduced rsmY expression, via a gacA-independent mechanism. Overexpression of rsmY restored the expression of target genes (hcnA, aprA) to gacS or gacA mutants. Whereas mutants deleted for either the rsmY or the rsmZ structural gene were not significantly altered in the synthesis of extracellular products (hydrogen cyanide, 2,4-diacetylphloroglucinol, exoprotease), an rsmY rsmZ double mutant was strongly impaired in this production and in its biocontrol properties in a cucumber-Pythium ultimum microcosm. Mobility shift assays demonstrated that multiple molecules of RsmA bound specifically to RsmY and RsmZ RNAs. In conclusion, two small, untranslated RNAs, RsmY and RsmZ, are key factors that relieve RsmA-mediated regulation of secondary metabolism and biocontrol traits in the GacS/GacA cascade of strain CHA0.
Collapse
Affiliation(s)
- Claudio Valverde
- Institut de Microbiologie Fondamentale, Bâtiment de Biologie, Université de Lausanne, CH-1015 Lausanne (Dorigny), Switzerland.
| | | | | | | |
Collapse
|
7
|
Chen S, Lesnik EA, Hall TA, Sampath R, Griffey RH, Ecker DJ, Blyn LB. A bioinformatics based approach to discover small RNA genes in the Escherichia coli genome. Biosystems 2002; 65:157-77. [PMID: 12069726 DOI: 10.1016/s0303-2647(02)00013-8] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The recent explosion in available bacterial genome sequences has initiated the need to improve an ability to annotate important sequence and structural elements in a fast, efficient and accurate manner. In particular, small non-coding RNAs (sRNAs) have been difficult to predict. The sRNAs play an important number of structural, catalytic and regulatory roles in the cell. Although a few groups have recently published prediction methods for annotating sRNAs in bacterial genome, much remains to be done in this field. Toward the goal of developing an efficient method for predicting unknown sRNA genes in the completed Escherichia coli genome, we adopted a bioinformatics approach to search for DNA regions that contain a sigma70 promoter within a short distance of a rho-independent terminator. Among a total of 227 candidate sRNA genes initially identified, 32 were previously described sRNAs, orphan tRNAs, and partial tRNA and rRNA operons. Fifty-one are mRNAs genes encoding annotated extremely small open reading frames (ORFs) following an acceptable ribosome binding site. One hundred forty-four are potentially novel non-translatable sRNA genes. Using total RNA isolated from E. coli MG1655 cells grown under four different conditions, we verified transcripts of some of the genes by Northern hybridization. Here we summarize our data and discuss the rules and advantages/disadvantages of using this approach in annotating sRNA genes on bacterial genomes.
Collapse
Affiliation(s)
- Shuo Chen
- Ibis Therapeutics, Isis Pharmaceuticals, Inc, 2292 Faraday Ave, Carlsbad, CA 92008, USA.
| | | | | | | | | | | | | |
Collapse
|