1
|
Alcorlo M, Martínez‐Caballero S, Li J, Sham L, Luo M, Hermoso JA. Modulation of the lytic apparatus by the FtsEX complex within the bacterial division machinery. FEBS Lett 2024; 598:2836-2851. [PMID: 38849310 PMCID: PMC11627006 DOI: 10.1002/1873-3468.14953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024]
Abstract
The FtsEX membrane complex constitutes an essential component of the ABC transporter superfamily, widely distributed among bacterial species. It governs peptidoglycan degradation for cell division, acting as a signal transmitter rather than a substrate transporter. Through the ATPase activity of FtsE, it facilitates signal transmission from the cytosol across the membrane to the periplasm, activating associated peptidoglycan hydrolases. This review concentrates on the latest structural advancements elucidating the architecture of the FtsEX complex and its interplay with lytic enzymes or regulatory counterparts. The revealed three-dimensional structures unveil a landscape wherein a precise array of intermolecular interactions, preserved across diverse bacterial species, afford meticulous spatial and temporal control over the cell division process.
Collapse
Affiliation(s)
- Martín Alcorlo
- Department of Crystallography and Structural BiologyInstituto de Química‐Física “Blas Cabrera”, Consejo Superior de Investigaciones CientíficasMadridSpain
| | - Siseth Martínez‐Caballero
- Department of Crystallography and Structural BiologyInstituto de Química‐Física “Blas Cabrera”, Consejo Superior de Investigaciones CientíficasMadridSpain
| | - Jianwei Li
- Department of Biological Sciences, Faculty of ScienceNational University of SingaporeSingapore
- Department of Biological Sciences, Center for Bioimaging SciencesNational University of SingaporeSingapore
| | - Lok‐To Sham
- Infectious Diseases Translational Research Programme and Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Min Luo
- Department of Biological Sciences, Faculty of ScienceNational University of SingaporeSingapore
- Department of Biological Sciences, Center for Bioimaging SciencesNational University of SingaporeSingapore
| | - Juan A. Hermoso
- Department of Crystallography and Structural BiologyInstituto de Química‐Física “Blas Cabrera”, Consejo Superior de Investigaciones CientíficasMadridSpain
| |
Collapse
|
2
|
Thapa R, Goh KGK, Desai D, Copeman E, Acharya D, Sullivan MJ, Ulett GC. Alterations in cell arrangements of group B streptococcus due to virulence factor expression can bias estimates of bacterial populations based on colony count measures. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001453. [PMID: 38656296 PMCID: PMC11084685 DOI: 10.1099/mic.0.001453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
Group B streptococcus (GBS) is a chain-forming commensal bacterium and opportunistic pathogen that resides in the gastrointestinal and genitourinary tract of healthy adults. GBS can cause various infections and related complications in pregnant and nonpregnant women, adults, and newborns. Investigations of the mechanisms by which GBS causes disease pathogenesis often utilize colony count assays to estimate bacterial population size in experimental models. In other streptococci, such as group A streptococcus and pneumococcus, variation in the chain length of the bacteria that can occur naturally or due to mutation can affect facets of pathogenesis, such as adherence to or colonization of a host. No studies have reported a relationship between GBS chain length and pathogenicity. Here, we used GBS strain 874391 and several derivative strains displaying longer chain-forming phenotypes (874391pgapC, 874391ΔcovR, 874391Δstp1) to assess the impact of chain length on bacterial population estimates based on the colony-forming unit (c.f.u.) assay. Disruption of GBS chains via bead beating or sonication in conjunction with fluorescence microscopy was used to compare chaining phenotypes pre- and post-disruption to detect long- and short-chain forms, respectively. We used a murine model of GBS colonization of the female reproductive tract to assess whether chaining may affect bacterial colonization dynamics in the host during chronic infection in vivo. Overall, we found that GBS exhibiting long-chain form can significantly affect population size estimates based on the colony count assay. Additionally, we found that the length of chaining of GBS can affect virulence in the reproductive tract colonization model. Collectively, these findings have implications for studies of GBS that utilize colony count assays to measure GBS populations and establish that chain length can affect infection dynamics and disease pathogenesis for this important opportunistic pathogen.
Collapse
Affiliation(s)
- Ruby Thapa
- School of Pharmacy and Medical Sciences and Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, QLD 4222, Australia
| | - Kelvin G. K. Goh
- School of Pharmacy and Medical Sciences and Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, QLD 4222, Australia
| | - Devika Desai
- School of Pharmacy and Medical Sciences and Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, QLD 4222, Australia
| | - Ellen Copeman
- School of Pharmacy and Medical Sciences and Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, QLD 4222, Australia
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Dhruba Acharya
- School of Pharmacy and Medical Sciences and Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, QLD 4222, Australia
| | - Matthew J. Sullivan
- School of Pharmacy and Medical Sciences and Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, QLD 4222, Australia
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Glen C. Ulett
- School of Pharmacy and Medical Sciences and Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, QLD 4222, Australia
| |
Collapse
|
3
|
Izquierdo-Martinez A, Billini M, Miguel-Ruano V, Hernández-Tamayo R, Richter P, Biboy J, Batuecas MT, Glatter T, Vollmer W, Graumann PL, Hermoso JA, Thanbichler M. DipM controls multiple autolysins and mediates a regulatory feedback loop promoting cell constriction in Caulobacter crescentus. Nat Commun 2023; 14:4095. [PMID: 37433794 DOI: 10.1038/s41467-023-39783-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 06/22/2023] [Indexed: 07/13/2023] Open
Abstract
Proteins with a catalytically inactive LytM-type endopeptidase domain are important regulators of cell wall-degrading enzymes in bacteria. Here, we study their representative DipM, a factor promoting cell division in Caulobacter crescentus. We show that the LytM domain of DipM interacts with multiple autolysins, including the soluble lytic transglycosylases SdpA and SdpB, the amidase AmiC and the putative carboxypeptidase CrbA, and stimulates the activities of SdpA and AmiC. Its crystal structure reveals a conserved groove, which is predicted to represent the docking site for autolysins by modeling studies. Mutations in this groove indeed abolish the function of DipM in vivo and its interaction with AmiC and SdpA in vitro. Notably, DipM and its targets SdpA and SdpB stimulate each other's recruitment to midcell, establishing a self-reinforcing cycle that gradually increases autolytic activity as cytokinesis progresses. DipM thus coordinates different peptidoglycan-remodeling pathways to ensure proper cell constriction and daughter cell separation.
Collapse
Affiliation(s)
- Adrian Izquierdo-Martinez
- Department of Biology, University of Marburg, Marburg, Germany
- Max Planck Fellow Group Bacterial Cell Biology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Maria Billini
- Department of Biology, University of Marburg, Marburg, Germany
| | - Vega Miguel-Ruano
- Department of Crystallography and Structural Biology, Instituto de Química-Física "Rocasolano", Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Rogelio Hernández-Tamayo
- Department of Chemistry, University of Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Pia Richter
- Department of Biology, University of Marburg, Marburg, Germany
| | - Jacob Biboy
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - María T Batuecas
- Department of Crystallography and Structural Biology, Instituto de Química-Física "Rocasolano", Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Timo Glatter
- Mass Spectrometry and Proteomics Facility, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Peter L Graumann
- Department of Chemistry, University of Marburg, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, Instituto de Química-Física "Rocasolano", Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Martin Thanbichler
- Department of Biology, University of Marburg, Marburg, Germany.
- Max Planck Fellow Group Bacterial Cell Biology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany.
| |
Collapse
|
4
|
Griffin ME, Klupt S, Espinosa J, Hang HC. Peptidoglycan NlpC/P60 peptidases in bacterial physiology and host interactions. Cell Chem Biol 2023; 30:436-456. [PMID: 36417916 PMCID: PMC10192474 DOI: 10.1016/j.chembiol.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022]
Abstract
The bacterial cell wall is composed of a highly crosslinked matrix of glycopeptide polymers known as peptidoglycan that dictates bacterial cell morphology and protects against environmental stresses. Regulation of peptidoglycan turnover is therefore crucial for bacterial survival and growth and is mediated by key protein complexes and enzyme families. Here, we review the prevalence, structure, and activity of NlpC/P60 peptidases, a family of peptidoglycan hydrolases that are crucial for cell wall turnover and division as well as interactions with antibiotics and different hosts. Understanding the molecular functions of NlpC/P60 peptidases should provide important insight into bacterial physiology, their interactions with different kingdoms of life, and the development of new therapeutic approaches.
Collapse
Affiliation(s)
- Matthew E Griffin
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Steven Klupt
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Juliel Espinosa
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, USA
| | - Howard C Hang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA; Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
5
|
Lentini G, De Gaetano GV, Famà A, Galbo R, Coppolino F, Mancuso G, Teti G, Beninati C. Neutrophils discriminate live from dead bacteria by integrating signals initiated by Fprs and TLRs. EMBO J 2022; 41:e109386. [PMID: 35112724 PMCID: PMC8886525 DOI: 10.15252/embj.2021109386] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/15/2021] [Accepted: 01/12/2022] [Indexed: 11/09/2022] Open
Abstract
The mechanisms whereby neutrophils respond differentially to live and dead organisms are unknown. We show here that neutrophils produce 5- to 30-fold higher levels of the Cxcl2 chemokine in response to live bacteria, compared with killed bacteria or isolated bacterial components, despite producing similar levels of Cxcl1 or pro-inflammatory cytokines. Secretion of high levels of Cxcl2, which potently activates neutrophils by an autocrine mechanism, requires three signals. The first two signals are provided by two different sets of signal peptides released by live bacteria, which selectively activate formylated peptide receptor 1 (Fpr1) and Fpr2, respectively. Signal 3 originates from Toll-like receptor activation by microbial components present in both live and killed bacteria. Mechanistically, these signaling pathways converge at the level of the p38 MAP kinase, leading to activation of the AP-1 transcription factor and to Cxcl2 induction. Collectively, our data demonstrate that the simultaneous presence of agonists for Fpr1, Fpr2, and Toll-like receptors represents a unique signature associated with viable bacteria, which is sensed by neutrophils and induces Cxcl2-dependent autocrine cell activation.
Collapse
Affiliation(s)
- Germana Lentini
- Department of Human PathologyUniversity of MessinaMessinaItaly
| | | | - Agata Famà
- Department of Human PathologyUniversity of MessinaMessinaItaly
| | - Roberta Galbo
- Department of Chemical, Biological and Pharmaceutical SciencesUniversity of MessinaMessinaItaly
| | - Francesco Coppolino
- Department of BiomedicalDental, Morphological and Functional Imaging SciencesUniversity of MessinaMessinaItaly
| | | | | | - Concetta Beninati
- Department of Human PathologyUniversity of MessinaMessinaItaly,Scylla Biotech SrlMessinaItaly
| |
Collapse
|
6
|
Palang I, Hirono I, Senapin S, Sirimanapong W, Withyachumnarnkul B, Vanichviriyakit R. Cytotoxicity of Streptococcus agalactiae secretory protein on tilapia cultured cells. JOURNAL OF FISH DISEASES 2020; 43:1229-1236. [PMID: 32974952 DOI: 10.1111/jfd.13230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Streptococcus agalactiae secrete virulence factors believed to be able of killing host tissues, especially under elevated water temperature. A direct effect of S. agalactiae secretory products on tilapia cells was tested on the tilapia kidney (TK-1) cell culture. The bacteria were cultured under four different temperature levels: 22, 29, 32 and 37°C; the cell-free portion was processed through SDS-PAGE; and distinct bands were identified by LC-MS/MS. At least, three virulence factors were identified, Bsp, PcsB and CAMP factor, with increasing levels as the cultured temperature rose. Expressions of bsp, pcsB and cfb were also up-regulated with the rising of the temperature in S. agalactiae culture. The supernatant from the bacteria cultured under specified temperatures was added into TK-1 cell-cultured wells. Morphological damage and mortality of the cultured cells, as determined by MTT method, were increased progressively from the supernatant treatment according to the rise of temperature in S. agalactiae culture. This study suggests that the production of the three virulence factors of S. agalactiae reported herein is temperature-dependent, and it is likely that CAMP factor directly kills the TK-1 cells since the other two types of protein are involved in S. agalactiae cell division and the bacterial adherence to host tissues.
Collapse
Affiliation(s)
- Iyapa Palang
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ikuo Hirono
- Laboratory of Genome Science, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Saengchan Senapin
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Wanna Sirimanapong
- Veterinary Aquatic Animal Research Health Care Unit, Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Bangkok, Thailand
| | - Boonsirm Withyachumnarnkul
- Faculty of Science and Industrial Technology, Prince of Songkla University, Surat Thani, Thailand
- AquaAcademy Farm, Surat Thani, Thailand
| | - Rapeepun Vanichviriyakit
- Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
7
|
Another Breaker of the Wall: the Biological Function of the Usp45 Protein of Lactococcus lactis. Appl Environ Microbiol 2020; 86:AEM.00903-20. [PMID: 32532874 DOI: 10.1128/aem.00903-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/01/2020] [Indexed: 11/20/2022] Open
Abstract
Lactococcus lactis is a Gram-positive bacterium that is widely used as a cell factory for the expression of heterologous proteins that are relevant in the pharmaceutical and nutraceutical fields. The signal peptide of the major secreted protein of L. lactis, Usp45, has been employed extensively in engineering strategies to secrete proteins of interest. However, the biological function of Usp45 has remained obscure despite more than 25 years of research. Studies on Usp45 homologs in other Gram-positive bacteria suggest that Usp45 may play a role in cell wall turnover processes. Here, we show the effect of inactivation and overexpression of the usp45 gene on L. lactis growth, phenotype, and cell division. Our results are in agreement with those obtained in streptococci and demonstrate that the L. lactis Usp45 protein is essential for proper cell division. We also show that the usp45 promoter is highly activated by galactose. Overall, our results indicate that Usp45 mediates cell separation, probably by acting as a peptidoglycan hydrolase.IMPORTANCE The cell wall, composed mainly of peptidoglycan, is key to maintaining the cell shape and protecting the cell from bursting. Peptidoglycan degradation by peptidoglycan hydrolysis and autolysins occurs during growth and cell division. Since peptidoglycan hydrolases are important for virulence, envelope integrity, and regulation of cell division, it is valuable to investigate their function and regulation. Notably, PcsB-like proteins such as Usp45 have been proposed as new targets for antimicrobial drugs and could also be target for the development of food-grade suicide systems. In addition, although various other expression and secretion systems have been developed for use in Lactococcus lactis, the most-used signal peptide for protein secretion in this bacterium is that of the Usp45 protein. Thus, elucidating the biological function of Usp45 and determining the factors affecting its expression would contribute to optimize several applications.
Collapse
|
8
|
Kovacs CJ, Faustoferri RC, Bischer AP, Quivey RG. Streptococcus mutans requires mature rhamnose-glucose polysaccharides for proper pathophysiology, morphogenesis and cellular division. Mol Microbiol 2019; 112:944-959. [PMID: 31210392 DOI: 10.1111/mmi.14330] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2019] [Indexed: 12/30/2022]
Abstract
The cell wall of Gram-positive bacteria has been shown to mediate environmental stress tolerance, antibiotic susceptibility, host immune evasion and overall virulence. The majority of these traits have been demonstrated for the well-studied system of wall teichoic acid (WTA) synthesis, a common cell wall polysaccharide among Gram-positive organisms. Streptococcus mutans, a Gram-positive odontopathogen that contributes to the enamel-destructive disease dental caries, lacks the capabilities to generate WTA. Instead, the cell wall of S. mutans is highly decorated with rhamnose-glucose polysaccharides (RGP), for which functional roles are poorly defined. Here, we demonstrate that the RGP has a distinct role in protecting S. mutans from a variety of stress conditions pertinent to pathogenic capability. Mutant strains with disrupted RGP synthesis failed to properly localize cell division complexes, suffered from aberrant septum formation and exhibited enhanced cellular autolysis. Surprisingly, mutant strains of S. mutans with impairment in RGP side chain modification grew into elongated chains and also failed to properly localize the presumed cell wall hydrolase, GbpB. Our results indicate that fully mature RGP has distinct protective and morphogenic roles for S. mutans, and these structures are functionally homologous to the WTA of other Gram-positive bacteria.
Collapse
Affiliation(s)
- Christopher J Kovacs
- Department of Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Box 672, Rochester, NY, 14642, USA
| | - Roberta C Faustoferri
- Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Box 611, Rochester, NY, 14642, USA
| | - Andrew P Bischer
- Department of Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Box 672, Rochester, NY, 14642, USA
| | - Robert G Quivey
- Department of Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Box 672, Rochester, NY, 14642, USA.,Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Box 611, Rochester, NY, 14642, USA
| |
Collapse
|
9
|
Li W, Li Y, Hu YZ, Mo XB, Xu GH, Xie LW, Li AX. GroEL, a novel vaccine candidate of piscine Streptococcus agalactiae identified by immunoproteome. FISH & SHELLFISH IMMUNOLOGY 2019; 84:377-383. [PMID: 30308296 DOI: 10.1016/j.fsi.2018.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/05/2018] [Accepted: 10/07/2018] [Indexed: 06/08/2023]
Abstract
Streptococcus agalactiae is the major etiological agent of streptococcosis, which is responsible for huge economic losses in fishery, particularly in tilapia (Oreochromis niloticus) aquaculture. A research priority to control streptococcosis is to develop vaccines, so we sought to figure out the immunogenic proteins of S. agalactiae and screen the vaccine candidates for streptococcosis in the present study. Immunoproteomics, a technique involving two-dimensional gel electrophoresis (2-DE) followed by immunoblotting and mass spectrometry (MS), was employed to investigate the immunogenic proteins of S. agalactiae THN0901. Whole-cell soluble proteins were separated using 2-DE, and the immunogenic proteins were detected by western blotting using rabbit anti-S. agalactiae sera. A total of 17 immunoreactive spots on the soluble protein profile, corresponding to 15 different proteins, were identified by MALDI-TOF/TOF MS. Among the immunogenic proteins, GroEL attracted our attention as it was demonstrated to be immunogenic and protective against other streptococci. Nevertheless, to date, there have been no published reports on the immunogenicity and protective efficacy of GroEL against piscine S. agalactiae. Therefore, recombinant GroEL (rGroEL) was expressed in Escherichia coli BL21 (DE3) and purified by affinity chromatography. Immunization of tilapia with rGroEL resulted in an increase in antibody titers and conferred protection against S. agalactiae, with the relative percentage survival of 68.61 ± 7.39%. The immunoproteome in the present study narrows the scope of vaccine candidates, and the evaluation of GroEL immunogenicity and protective efficacy shows that GroEL forms an ideal candidate molecule in subunit vaccine against S. agalactiae.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, The School of Life Sciences, Sun Yat-sen University, 135 Xingang West Street, Haizhu District, Guangzhou, 510275, Guangdong Province, PR China; State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, 510070, Guangdong Province, PR China
| | - Yun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, The School of Life Sciences, Sun Yat-sen University, 135 Xingang West Street, Haizhu District, Guangzhou, 510275, Guangdong Province, PR China
| | - Ya-Zhou Hu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, The School of Life Sciences, Sun Yat-sen University, 135 Xingang West Street, Haizhu District, Guangzhou, 510275, Guangdong Province, PR China
| | - Xu-Bing Mo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, The School of Life Sciences, Sun Yat-sen University, 135 Xingang West Street, Haizhu District, Guangzhou, 510275, Guangdong Province, PR China
| | - Guo-Huan Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, 510070, Guangdong Province, PR China
| | - Li-Wei Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou, 510070, Guangdong Province, PR China
| | - An-Xing Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, The School of Life Sciences, Sun Yat-sen University, 135 Xingang West Street, Haizhu District, Guangzhou, 510275, Guangdong Province, PR China.
| |
Collapse
|
10
|
Perinatal Streptococcus agalactiae Epidemiology and Surveillance Targets. Clin Microbiol Rev 2018; 31:31/4/e00049-18. [PMID: 30111577 DOI: 10.1128/cmr.00049-18] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus agalactiae, or group B streptococcus (GBS), is a major neonatal pathogen. Recent data have elucidated the global prevalence of maternal and neonatal colonization, but gaps still remain in the epidemiology of this species. A number of phenotypic and genotypic classifications can be used to identify the diversity of GBS strains, and some are more discriminatory than others. This review explores the main schemes used for GBS epidemiology and further details the targets for epidemiological surveillance. Current screening practices across the world provide a unique opportunity to gain detailed information on maternal colonizing strains and neonatal disease-causing strains, which is vital for monitoring and therapeutics, if sufficient detail can be extracted. Deciphering which isolates are circulating within specific populations and recording targets within invasive strains are crucial steps in monitoring the implementation of therapeutics, such as vaccines, as well as developing novel therapies against prevalent GBS strains. Having a detailed understanding of global GBS epidemiology will prove invaluable for understanding the pathogenesis of this organism and equipping future prevention strategies for success.
Collapse
|
11
|
Takada H, Yoshikawa H. Essentiality and function of WalK/WalR two-component system: the past, present, and future of research. Biosci Biotechnol Biochem 2018. [PMID: 29514560 DOI: 10.1080/09168451.2018.1444466] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The WalK/WalR two-component system (TCS), originally identified in Bacillus subtilis, is very highly conserved in gram-positive bacteria, including several important pathogens. The WalK/WalR TCS appears to be involved in the growth of most bacterial species encoding it. Previous studies have indicated conserved functions of this system, defining this signal transduction pathway as a crucial regulatory system for cell wall metabolism. Because of such effects on essential functions, this system is considered a potential target for anti-infective therapeutics. In this review, we discuss the role of WalK/WalR TCS in different bacterial cells, focusing on the function of the genes in its regulon as well as the variations in walRK operon structure, its auxiliary proteins, and the composition of its regulon. We also discuss recent experimental data addressing its essential function and the potential type of signal being sensed by B. subtilis. This review also focuses on the potential future research.
Collapse
Affiliation(s)
- Hiraku Takada
- Department of Life Science and Research Center for Life Science, College of Science, Rikkyo University, Tokyo, Japan.,Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | | |
Collapse
|
12
|
Djorić D, Kristich CJ. Extracellular SalB Contributes to Intrinsic Cephalosporin Resistance and Cell Envelope Integrity in Enterococcus faecalis. J Bacteriol 2017; 199:e00392-17. [PMID: 28874409 PMCID: PMC5686589 DOI: 10.1128/jb.00392-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/30/2017] [Indexed: 11/20/2022] Open
Abstract
Enterococci are major causes of hospital-acquired infections. Intrinsic resistance to cephalosporins is a universal trait among clinically relevant enterococci. Cephalosporin resistance enables enterococci to proliferate to high densities in the intestines of patients undergoing cephalosporin treatment, a precursor to the emergence of infection. However, the genetic and biochemical mechanisms of intrinsic cephalosporin resistance in enterococci are not well understood. A two-component signal transduction system, CroR/S, is required for cephalosporin resistance in enterococci. Although the CroR/S regulon is not well defined, one gene reported to be CroR dependent in Enterococcus faecalis JH2-2 encodes an extracellular putative peptidoglycan hydrolase, SalB. To test the hypothesis that SalB is responsible for CroR-dependent cephalosporin resistance, we examined ΔsalB mutants in multiple genetic lineages of E. faecalis, revealing that SalB is required not only for intrinsic cephalosporin resistance but also for maintenance of cell envelope integrity in the absence of antibiotic stress. The N-terminal signal sequence is necessary for SalB secretion, and secretion is required for SalB to promote cephalosporin resistance. Functional dissection revealed that the C-terminal SCP domain of SalB is essential for biological activity and identified three residues within the SCP domain that are required for the stability and function of SalB. Additionally, we found that in contrast to what is seen in E. faecalis JH2-2, SalB is not regulated by the CroR/S two-component system in E. faecalis OG1, suggesting diversity in the CroR/S regulon among distinct lineages of E. faecalis IMPORTANCE Resistance to cephalosporins is universal among clinically relevant enterococci, enabling enterococcal proliferation to high densities in the intestines of patients undergoing cephalosporin treatment, a precursor to the emergence of infection. Disabling cephalosporin resistance could therefore reduce the incidence of enterococcal infections. However, the genetic and biochemical mechanisms of cephalosporin resistance are not well understood. The significance of this work is the identification of a novel extracellular factor (SalB) that promotes cephalosporin resistance in E. faecalis, which could potentially serve as a target for therapeutics that impair enterococcal cephalosporin resistance. Additionally, our work highlights the importance of the C-terminal SCP domain of SalB, including several conserved residues within the SCP domain, for the ability of SalB to promote cephalosporin resistance.
Collapse
Affiliation(s)
- Dušanka Djorić
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Christopher J Kristich
- Department of Microbiology and Immunology, Center for Infectious Disease Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
13
|
Mattos-Graner RO, Duncan MJ. Two-component signal transduction systems in oral bacteria. J Oral Microbiol 2017; 9:1400858. [PMID: 29209465 PMCID: PMC5706477 DOI: 10.1080/20002297.2017.1400858] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/01/2017] [Indexed: 01/03/2023] Open
Abstract
We present an overview of how members of the oral microbiota respond to their environment by regulating gene expression through two-component signal transduction systems (TCSs) to support conditions compatible with homeostasis in oral biofilms or drive the equilibrium toward dysbiosis in response to environmental changes. Using studies on the sub-gingival Gram-negative anaerobe Porphyromonas gingivalis and Gram-positive streptococci as examples, we focus on the molecular mechanisms involved in activation of TCS and species specificities of TCS regulons.
Collapse
Affiliation(s)
- Renata O. Mattos-Graner
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas – UNICAMP, São Paulo, Brazil
| | - Margaret J. Duncan
- Department of Oral Medicine, Infection and Immunity, The Forsyth Institute, Cambridge, MA, USA
| |
Collapse
|
14
|
The SPOR Domain, a Widely Conserved Peptidoglycan Binding Domain That Targets Proteins to the Site of Cell Division. J Bacteriol 2017; 199:JB.00118-17. [PMID: 28396350 DOI: 10.1128/jb.00118-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Sporulation-related repeat (SPOR) domains are small peptidoglycan (PG) binding domains found in thousands of bacterial proteins. The name "SPOR domain" stems from the fact that several early examples came from proteins involved in sporulation, but SPOR domain proteins are quite diverse and contribute to a variety of processes that involve remodeling of the PG sacculus, especially with respect to cell division. SPOR domains target proteins to the division site by binding to regions of PG devoid of stem peptides ("denuded" glycans), which in turn are enriched in septal PG by the intense, localized activity of cell wall amidases involved in daughter cell separation. This targeting mechanism sets SPOR domain proteins apart from most other septal ring proteins, which localize via protein-protein interactions. In addition to SPOR domains, bacteria contain several other PG-binding domains that can exploit features of the cell wall to target proteins to specific subcellular sites.
Collapse
|
15
|
Liu X, Gallay C, Kjos M, Domenech A, Slager J, van Kessel SP, Knoops K, Sorg RA, Zhang JR, Veening JW. High-throughput CRISPRi phenotyping identifies new essential genes in Streptococcus pneumoniae. Mol Syst Biol 2017; 13:931. [PMID: 28490437 PMCID: PMC5448163 DOI: 10.15252/msb.20167449] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Genome‐wide screens have discovered a large set of essential genes in the opportunistic human pathogen Streptococcus pneumoniae. However, the functions of many essential genes are still unknown, hampering vaccine development and drug discovery. Based on results from transposon sequencing (Tn‐seq), we refined the list of essential genes in S. pneumoniae serotype 2 strain D39. Next, we created a knockdown library targeting 348 potentially essential genes by CRISPR interference (CRISPRi) and show a growth phenotype for 254 of them (73%). Using high‐content microscopy screening, we searched for essential genes of unknown function with clear phenotypes in cell morphology upon CRISPRi‐based depletion. We show that SPD_1416 and SPD_1417 (renamed to MurT and GatD, respectively) are essential for peptidoglycan synthesis, and that SPD_1198 and SPD_1197 (renamed to TarP and TarQ, respectively) are responsible for the polymerization of teichoic acid (TA) precursors. This knowledge enabled us to reconstruct the unique pneumococcal TA biosynthetic pathway. CRISPRi was also employed to unravel the role of the essential Clp‐proteolytic system in regulation of competence development, and we show that ClpX is the essential ATPase responsible for ClpP‐dependent repression of competence. The CRISPRi library provides a valuable tool for characterization of pneumococcal genes and pathways and revealed several promising antibiotic targets.
Collapse
Affiliation(s)
- Xue Liu
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Groningen, The Netherlands.,Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Clement Gallay
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Groningen, The Netherlands
| | - Morten Kjos
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Groningen, The Netherlands.,Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Arnau Domenech
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Groningen, The Netherlands
| | - Jelle Slager
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Groningen, The Netherlands
| | - Sebastiaan P van Kessel
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Groningen, The Netherlands
| | - Kèvin Knoops
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Robin A Sorg
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Groningen, The Netherlands
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Jan-Willem Veening
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Groningen, The Netherlands .,Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
16
|
Li W, Wang HQ, He RZ, Li YW, Su YL, Li AX. Major surfome and secretome profile of Streptococcus agalactiae from Nile tilapia (Oreochromis niloticus): Insight into vaccine development. FISH & SHELLFISH IMMUNOLOGY 2016; 55:737-746. [PMID: 27327442 DOI: 10.1016/j.fsi.2016.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 06/03/2016] [Accepted: 06/04/2016] [Indexed: 06/06/2023]
Abstract
Streptococcus agalactiae is a major piscine pathogen that is responsible for huge economic losses to the aquaculture industry. Safe recombinant vaccines, based on a small number of antigenic proteins, are emerging as the most attractive, cost-effective solution against S. agalactiae. The proteins of S. agalactiae exposed to the environment, including surface proteins and secretory proteins, are important targets for the immune system and they are likely to be good vaccine candidates. To obtain a precise profile of its surface proteins, S. agalactiae strain THN0901, which was isolated from tilapia (Oreochromis niloticus), was treated with proteinase K to cleave surface-exposed proteins, which were identified by liquid chromatography-tandem spectrometry (LC-MS/MS). Forty surface-associated proteins were identified, including ten proteins containing cell wall-anchoring motifs, eight lipoproteins, eleven membrane proteins, seven secretory proteins, three cytoplasmic proteins, and one unknown protein. In addition, culture supernatant proteins of S. agalactiae were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and all of the Coomassie-stained bands were subsequently identified by LC-MS/MS. A total of twenty-six extracellular proteins were identified, including eleven secretory proteins, seven cell wall proteins, three membrane proteins, two cytoplasmic proteins and three unknown proteins. Of these, six highly expressed surface-associated and secretory proteins are putative to be vaccine candidate of piscine S. agalactiae. Moreover, immunogenic secreted protein, a highly expressed protein screened from the secretome in the present study, was demonstrated to induce high antibody titer in tilapia, and it conferred protection against S. agalactiae, as evidenced by the relative percent survival (RPS) 48.61± 8.45%. The data reported here narrow the scope of screening protective antigens, and provide guidance in the development of a novel vaccine against piscine S. agalactiae.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Biocontrol/Key Laboratory for Aquatic Products Safety of Ministry of Education/Institute of Aquatic Economic Animals, The School of Life Sciences, Sun Yat-sen University, 135 Xingang West Street, Haizhu District, Guangzhou, 510275, Guangdong Province, PR China
| | - Hai-Qing Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Province, PR China
| | - Run-Zhen He
- State Key Laboratory of Biocontrol/Key Laboratory for Aquatic Products Safety of Ministry of Education/Institute of Aquatic Economic Animals, The School of Life Sciences, Sun Yat-sen University, 135 Xingang West Street, Haizhu District, Guangzhou, 510275, Guangdong Province, PR China
| | - Yan-Wei Li
- College of Marine Sciences, South China Agricultural University, Guangdong Province, PR China
| | - You-Lu Su
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, Guangdong Province, PR China
| | - An-Xing Li
- State Key Laboratory of Biocontrol/Key Laboratory for Aquatic Products Safety of Ministry of Education/Institute of Aquatic Economic Animals, The School of Life Sciences, Sun Yat-sen University, 135 Xingang West Street, Haizhu District, Guangzhou, 510275, Guangdong Province, PR China.
| |
Collapse
|
17
|
Padhi A, Naik SK, Sengupta S, Ganguli G, Sonawane A. Expression of Mycobacterium tuberculosis NLPC/p60 family protein Rv0024 induce biofilm formation and resistance against cell wall acting anti-tuberculosis drugs in Mycobacterium smegmatis. Microbes Infect 2016; 18:224-36. [DOI: 10.1016/j.micinf.2015.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 11/25/2015] [Accepted: 11/28/2015] [Indexed: 10/22/2022]
|
18
|
Dehbashi S, Pourmand MR, Mashhadi R. Characterization of Afb, a novel bifunctional protein in Streptococcus agalactiae. IRANIAN JOURNAL OF MICROBIOLOGY 2016; 8:73-9. [PMID: 27092228 PMCID: PMC4833744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND AND OBJECTIVES Streptococcus agalactiae is the leading cause of bacterial sepsis and meningitis in newborns and results in pneumonia and bacteremia in adults. A number of S. agalactiae components are involved in colonization of target cells. Destruction of peptidoglycan and division of covalently linked daughter cells is mediated by autolysins. In this study, autolytic activity and plasma binding ability of AFb novel recombinant protein of S. agalactiae was investigated. MATERIALS AND METHODS The gbs1805 gene was cloned and expressed. E. coli strains DH5α and BL21 were used as cloning and expression hosts, respectively. After purification, antigenicity and binding ability to plasma proteins of the recombinant protein was evaluated. RESULTS AFb, the 18KDa protein was purified successfully. The insoluble mature protein revealed the ability to bind to fibrinogen and fibronectin. This insoluble mature protein revealed that it has the ability to bind to fibrinogen and fibronectin plasma proteins. Furthermore, in silico analysis demonstrated the AFb has an autolytic activity. CONCLUSIONS AFb is a novel protein capable of binding to fibrinogen and fibronectin. This findings lay a ground work for further investigation of the role of the bacteria in adhesion and colonization to the host.
Collapse
Affiliation(s)
- Sanaz Dehbashi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Pourmand
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran,Corresponding author: Mohammad Reza Pourmand Address: Department of Pathobiology, School of Public Health and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran. Tel: +98-21- 88954910, E-mail:
| | - Rahil Mashhadi
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Stoner TD, Weston TA, Trejo J, Doran KS. Group B streptococcal infection and activation of human astrocytes. PLoS One 2015; 10:e0128431. [PMID: 26030618 PMCID: PMC4452173 DOI: 10.1371/journal.pone.0128431] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/27/2015] [Indexed: 01/08/2023] Open
Abstract
Background Streptococcus agalactiae (Group B Streptococcus, GBS) is the leading cause of life-threatening meningitis in human newborns in industrialized countries. Meningitis results from neonatal infection that occurs when GBS leaves the bloodstream (bacteremia), crosses the blood-brain barrier (BBB), and enters the central nervous system (CNS), where the bacteria contact the meninges. Although GBS is known to invade the BBB, subsequent interaction with astrocytes that physically associate with brain endothelium has not been well studied. Methodology/Principal Findings We hypothesize that human astrocytes play a unique role in GBS infection and contribute to the development of meningitis. To address this, we used a well- characterized human fetal astrocyte cell line, SVG-A, and examined GBS infection in vitro. We observed that all GBS strains of representative clinically dominant serotypes (Ia, Ib, III, and V) were able to adhere to and invade astrocytes. Cellular invasion was dependent on host actin cytoskeleton rearrangements, and was specific to GBS as Streptococcus gordonii failed to enter astrocytes. Analysis of isogenic mutant GBS strains deficient in various cell surface organelles showed that anchored LTA, serine-rich repeat protein (Srr1) and fibronectin binding (SfbA) proteins all contribute to host cell internalization. Wild-type GBS also displayed an ability to persist and survive within an intracellular compartment for at least 12 h following invasion. Moreover, GBS infection resulted in increased astrocyte transcription of interleukin (IL)-1β, IL-6 and VEGF. Conclusions/Significance This study has further characterized the interaction of GBS with human astrocytes, and has identified the importance of specific virulence factors in these interactions. Understanding the role of astrocytes during GBS infection will provide important information regarding BBB disruption and the development of neonatal meningitis.
Collapse
Affiliation(s)
- Terri D. Stoner
- Department of Biology, Center for Microbial Sciences, San Diego State University, San Diego, CA, United States of America
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Thomas A. Weston
- Department of Biology, Center for Microbial Sciences, San Diego State University, San Diego, CA, United States of America
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California San Diego, La Jolla, CA, United States of America
| | - Kelly S. Doran
- Department of Biology, Center for Microbial Sciences, San Diego State University, San Diego, CA, United States of America
- Departmant of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, United States of America
- * E-mail:
| |
Collapse
|
20
|
Bartual SG, Straume D, Stamsås GA, Muñoz IG, Alfonso C, Martínez-Ripoll M, Håvarstein LS, Hermoso JA. Structural basis of PcsB-mediated cell separation in Streptococcus pneumoniae. Nat Commun 2014; 5:3842. [DOI: 10.1038/ncomms4842] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 04/08/2014] [Indexed: 01/01/2023] Open
|
21
|
Massidda O, Nováková L, Vollmer W. From models to pathogens: how much have we learned about Streptococcus pneumoniae cell division? Environ Microbiol 2013; 15:3133-57. [PMID: 23848140 DOI: 10.1111/1462-2920.12189] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/08/2013] [Accepted: 06/09/2013] [Indexed: 12/22/2022]
Abstract
Streptococcus pneumoniae is an oval-shaped Gram-positive coccus that lives in intimate association with its human host, both as a commensal and pathogen. The seriousness of pneumococcal infections and the spread of multi-drug resistant strains call for new lines of intervention. Bacterial cell division is an attractive target to develop antimicrobial drugs. This review discusses the recent advances in understanding S. pneumoniae growth and division, in comparison with the best studied rod-shaped models, Escherichia coli and Bacillus subtilis. To maintain their shape, these bacteria propagate by peripheral and septal peptidoglycan synthesis, involving proteins that assemble into distinct complexes called the elongasome and the divisome, respectively. Many of these proteins are conserved in S. pneumoniae, supporting the notion that the ovococcal shape is also achieved by rounds of elongation and division. Importantly, S. pneumoniae and close relatives with similar morphology differ in several aspects from the model rods. Overall, the data support a model in which a single large machinery, containing both the peripheral and septal peptidoglycan synthesis complexes, assembles at midcell and governs growth and division. The mechanisms generating the ovococcal or coccal shape in lactic-acid bacteria have likely evolved by gene reduction from a rod-shaped ancestor of the same group.
Collapse
Affiliation(s)
- Orietta Massidda
- Department of Surgical Sciences, University of Cagliari, Via Porcell, 4, 09100, Cagliari, Italy
| | | | | |
Collapse
|
22
|
Papasergi S, Galbo R, Lanza-Cariccio V, Domina M, Signorino G, Biondo C, Pernice I, Poyart C, Trieu-Cuot P, Teti G, Beninati C. Analysis of the Streptococcus agalactiae exoproteome. J Proteomics 2013; 89:154-64. [PMID: 23770297 DOI: 10.1016/j.jprot.2013.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 05/13/2013] [Accepted: 06/02/2013] [Indexed: 10/26/2022]
Abstract
UNLABELLED The two-component regulatory system CovRS is the main regulator of virulence gene expression in Group B Streptococcus (GBS), the leading cause of invasive infections in neonates. In this study we analyzed by mass spectrometry the GBS extracellular protein complex (i.e. the exoproteome) of NEM316 wild-type (WT) strain and its isogenic covRS deletion mutant (ΔcovRS). A total of 53 proteins, 49 of which had classical secretion signals, were identified: 12 were released by both strains while 21 and 20 were released exclusively by WT and ΔcovRS strains, respectively. In addition to known surface proteins, we detected here unstudied cell-wall associated proteins and/or orthologs of putative virulence factors present in other pathogenic streptococci. While the functional role of these proteins remains to be elucidated, our data suggest that the analysis of the exoproteome of bacterial pathogens under different gene expression conditions may be a powerful tool for the rapid identification of novel virulence factors and vaccine candidates. BIOLOGICAL SIGNIFICANCE We believe that this manuscript will be of interest to Journal of Proteomics readers since the paper describes the identification of several putative virulence factors and vaccine candidates of the group B streptococcus, an important pathogen, using a simple proteomics strategy involving LC-MS analysis of culture supernatants obtained from two strains with divergent gene expression patterns. This technique provided the most comprehensive inventory of extracellular proteins obtained from a single streptococcal species thus far. The approach described has the added benefit of being easily applicable to a large number of different strains, making it ideal for the identification of conserved vaccine candidates.
Collapse
|
23
|
Stamsås GA, Håvarstein LS, Straume D. CHiC, a new tandem affinity tag for the protein purification toolbox. J Microbiol Methods 2012; 92:59-63. [PMID: 23154041 DOI: 10.1016/j.mimet.2012.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/30/2012] [Accepted: 11/05/2012] [Indexed: 01/06/2023]
Abstract
In the present work we have constructed a new tandem affinity purification tag and used it to purify two different polypeptides, PcsB and ECL1 from Streptococcus pneumoniae. PcsB probably functions as a peptidoglycan hydrolase and is believed to be involved in splitting of the septum during cell division. ECL1 is the extracellular domain of the membrane spanning protein FtsX. Experimental evidence indicates that the ECL1 domain controls the activity of PcsB through direct interaction (Sham et al., 2011). The affinity tag consists of an N-terminal 6xHis-tag, a choline binding domain followed by a proteolytic site specific for the TEV (tobacco etch virus) endopeptidase. Based on the choline-binding His-tag combination the new 16.5 kDa tag was named CHiC. CHiC-tagged PcsB and ECL1 were expressed in Escherichia coli and sequentially purified by employing diethylaminoethyl-cellulose affinity chromatography and Ni(2+) immobilized metal affinity chromatography. After TEV digestion, the CHiC-tag, TEV-protease and undigested fusion protein were easily separated from the target protein in a single purification step. By using this method, 4-7 mg of recombinant PcsB and ECL1 were obtained from one liter of cell culture with a purity estimated to be at least 95%. In addition, we found that the tag has the potential to function as a solubilisation partner as it markedly increased the solubility of PcsB. In sum, the CHiC-tag is a versatile tool that allows purification of milligram quantities of highly purified recombinant protein in only one or two steps.
Collapse
Affiliation(s)
- Gro Anita Stamsås
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NO-1432 Aas, Norway
| | | | | |
Collapse
|
24
|
Caliot É, Dramsi S, Chapot-Chartier MP, Courtin P, Kulakauskas S, Péchoux C, Trieu-Cuot P, Mistou MY. Role of the Group B antigen of Streptococcus agalactiae: a peptidoglycan-anchored polysaccharide involved in cell wall biogenesis. PLoS Pathog 2012; 8:e1002756. [PMID: 22719253 PMCID: PMC3375309 DOI: 10.1371/journal.ppat.1002756] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 05/03/2012] [Indexed: 11/18/2022] Open
Abstract
Streptococcus agalactiae (Group B streptococcus, GBS) is a leading cause of infections in neonates and an emerging pathogen in adults. The Lancefield Group B carbohydrate (GBC) is a peptidoglycan-anchored antigen that defines this species as a Group B Streptococcus. Despite earlier immunological and biochemical characterizations, the function of this abundant glycopolymer has never been addressed experimentally. Here, we inactivated the gene gbcO encoding a putative UDP-N-acetylglucosamine-1-phosphate:lipid phosphate transferase thought to catalyze the first step of GBC synthesis. Indeed, the gbcO mutant was unable to synthesize the GBC polymer, and displayed an important growth defect in vitro. Electron microscopy study of the GBC-depleted strain of S. agalactiae revealed a series of growth-related abnormalities: random placement of septa, defective cell division and separation processes, and aberrant cell morphology. Furthermore, vancomycin labeling and peptidoglycan structure analysis demonstrated that, in the absence of GBC, cells failed to initiate normal PG synthesis and cannot complete polymerization of the murein sacculus. Finally, the subcellular localization of the PG hydrolase PcsB, which has a critical role in cell division of streptococci, was altered in the gbcO mutant. Collectively, these findings show that GBC is an essential component of the cell wall of S. agalactiae whose function is reminiscent of that of conventional wall teichoic acids found in Staphylococcus aureus or Bacillus subtilis. Furthermore, our findings raise the possibility that GBC-like molecules play a major role in the growth of most if not all beta-hemolytic streptococci.
Collapse
Affiliation(s)
- Élise Caliot
- Institut Pasteur, Unité des Bactéries Pathogènes à Gram positif, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Murakami J, Terao Y, Morisaki I, Hamada S, Kawabata S. Group A streptococcus adheres to pharyngeal epithelial cells with salivary proline-rich proteins via GrpE chaperone protein. J Biol Chem 2012; 287:22266-75. [PMID: 22566698 DOI: 10.1074/jbc.m112.350082] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Group A Streptococcus pyogenes (GAS) is an important human pathogen that frequently causes pharyngitis. GAS organisms can adhere to and invade pharyngeal epithelial cells, which are overlaid by salivary components. However, the role of salivary components in GAS adhesion to pharyngeal cells has not been reported precisely. We collected human saliva and purified various salivary components, including proline-rich protein (PRP), statherin, and amylase, and performed invasion assays. The GAS-HEp-2 association ratio (invasion/adhesion ratio) and invasion ratio of GAS were increased significantly with whole human saliva and PRP, while the anti-PRP antibody inhibited the latter. GAS strain NY-5, which lacks M and F proteins on the cell surface, was promoted to cohere with HEp-2 cells by whole human saliva and PRP. The 28-kDa protein of GAS bound to PRP and was identified as GrpE, a chaperone protein, whereas the N-terminal of GrpE was found to bind to PRP. A GrpE-deficient mutant of GAS strain B514Sm, TR-45, exhibited a reduced ability to adhere to and invade HEp-2 cells. Microscopic observations showed the GrpE was mainly expressed on the surface of the cell division site of GAS. Furthermore, GrpE-deficient mutants of GAS and Streptococcus pneumoniae showed an elongated morphology as compared with the wild type. Taken together, this is the first study to show an interaction between salivary PRP and GAS GrpE, which plays an important role in GAS infection on the pharynx, whereas the expression of GrpE on the surface of GAS helps to maintain morphology.
Collapse
Affiliation(s)
- Jumpei Murakami
- Division of Special Care Dentistry, Osaka University Graduate School of Dentistry, Suita, Osaka, 565-0871, Japan
| | | | | | | | | |
Collapse
|
26
|
SalB inactivation modulates culture supernatant exoproteins and affects autolysis and viability in Enterococcus faecalis OG1RF. J Bacteriol 2012; 194:3569-78. [PMID: 22563054 DOI: 10.1128/jb.00376-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The culture supernatant fraction of an Enterococcus faecalis gelE mutant of strain OG1RF contained elevated levels of the secreted antigen SalB. Using differential fluorescence gel electrophoresis (DIGE) the salB mutant was shown to possess a unique complement of exoproteins. Differentially abundant exoproteins were identified using matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. Stress-related proteins including DnaK, Dps family protein, SOD, and NADH peroxidase were present in greater quantity in the OG1RF salB mutant culture supernatant. Moreover, several proteins involved in cell wall synthesis and cell division, including d-Ala-d-Lac ligase and EzrA, were present in reduced quantity in OG1RF salB relative to the parent strain. The salB mutant displayed reduced viability and anomalous cell division, and these phenotypes were exacerbated in a gelE salB double mutant. An epistatic relationship between gelE and salB was not identified with respect to increased autolysis and cell morphological changes observed in the salB mutant. SalB was purified as a six-histidine-tagged protein to investigate peptidoglycan hydrolytic activity; however, activity was not evident. High-pressure liquid chromatography (HPLC) analysis of reduced muropeptides from peptidoglycan digested with mutanolysin revealed that the salB mutant and OG1RF were indistinguishable.
Collapse
|
27
|
Pessione A, Lamberti C, Cocolin L, Campolongo S, Grunau A, Giubergia S, Eberl L, Riedel K, Pessione E. Different protein expression profiles in cheese and clinical isolates of Enterococcus faecalis
revealed by proteomic analysis. Proteomics 2012; 12:431-47. [DOI: 10.1002/pmic.201100468] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 11/25/2011] [Accepted: 11/29/2011] [Indexed: 01/27/2023]
|
28
|
LytF, a novel competence-regulated murein hydrolase in the genus Streptococcus. J Bacteriol 2011; 194:627-35. [PMID: 22123253 DOI: 10.1128/jb.06273-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Streptococcus pneumoniae and probably most other members of the genus Streptococcus are competent for natural genetic transformation. During the competent state, S. pneumoniae produces a murein hydrolase, CbpD, that kills and lyses noncompetent pneumococci and closely related species. Previous studies have shown that CbpD is essential for efficient transfer of genomic DNA from noncompetent to competent cells in vitro. Consequently, it has been proposed that CbpD together with the cognate immunity protein ComM constitutes a DNA acquisition mechanism that enables competent pneumococci to capture homologous DNA from closely related streptococci sharing the same habitat. Although genes encoding CbpD homologs or CbpD-related proteins are present in many different streptococcal species, the genomes of a number of streptococci do not encode CbpD-type proteins. In the present study we show that the genomes of nearly all species lacking CbpD encode an unrelated competence-regulated murein hydrolase termed LytF. Using Streptococcus gordonii as a model system, we obtained evidence indicating that LytF is a functional analogue of CbpD. In sum, our results show that a murein hydrolase gene is part of the competence regulon of most or all streptococcal species, demonstrating that these muralytic enzymes constitute an essential part of the streptococcal natural transformation system.
Collapse
|
29
|
Burnside K, Lembo A, Harrell MI, Gurney M, Xue L, BinhTran NT, Connelly JE, Jewell KA, Schmidt BZ, de Los Reyes M, Tao WA, Doran KS, Rajagopal L. Serine/threonine phosphatase Stp1 mediates post-transcriptional regulation of hemolysin, autolysis, and virulence of group B Streptococcus. J Biol Chem 2011; 286:44197-44210. [PMID: 22081606 DOI: 10.1074/jbc.m111.313486] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Elucidating how serine/threonine phosphatases regulate kinase function and bacterial virulence is critical for our ability to combat these infections. Group B streptococci (GBS) are β-hemolytic Gram-positive bacteria that cause invasive infections in humans. To adapt to environmental changes, GBS encodes signaling mechanisms comprising two component systems and eukaryotic-like enzymes. We have previously described the importance of the serine/threonine kinase Stk1 to GBS pathogenesis. However, how the presence or absence of the cognate serine/threonine phosphatase Stp1 affects Stk1 function and GBS virulence is not known. Here, we show that GBS deficient only in Stp1 expression are markedly reduced for their ability to cause systemic infections, exhibit decreased β-hemolysin/cytolysin activity, and show increased sensitivity to autolysis. Although transcription of genes important for β-hemolysin/cytolysin expression and export is similar to the wild type (WT), 294 genes (excluding stp1) showed altered expression in the stp1 mutant and included autolysin genes. Furthermore, phosphopeptide enrichment analysis identified that 35 serine/threonine phosphopeptides, corresponding to 27 proteins, were unique to the stp1 mutant. This included phosphorylation of ATP synthase, DNA and RNA helicases, and proteins important for cell division and protein synthesis. Collectively, our results indicate that Stp1 is important for appropriate regulation of Stk1 function, hemolysin activity, autolysis, and GBS virulence.
Collapse
Affiliation(s)
- Kellie Burnside
- Department of Pediatric Infectious Diseases, University of Washington School of Medicine and Seattle Children's Hospital Research Institute, Seattle, Washington 98101
| | - Annalisa Lembo
- Department of Pediatric Infectious Diseases, University of Washington School of Medicine and Seattle Children's Hospital Research Institute, Seattle, Washington 98101
| | - Maria Isabel Harrell
- Department of Pediatric Infectious Diseases, University of Washington School of Medicine and Seattle Children's Hospital Research Institute, Seattle, Washington 98101
| | - Michael Gurney
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California 92182
| | - Liang Xue
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Nguyen-Thao BinhTran
- Department of Pediatric Infectious Diseases, University of Washington School of Medicine and Seattle Children's Hospital Research Institute, Seattle, Washington 98101
| | - James E Connelly
- Department of Pediatric Infectious Diseases, University of Washington School of Medicine and Seattle Children's Hospital Research Institute, Seattle, Washington 98101
| | - Kelsea A Jewell
- Department of Pediatric Infectious Diseases, University of Washington School of Medicine and Seattle Children's Hospital Research Institute, Seattle, Washington 98101
| | - Byron Z Schmidt
- Department of Pediatric Infectious Diseases, University of Washington School of Medicine and Seattle Children's Hospital Research Institute, Seattle, Washington 98101
| | - Melissa de Los Reyes
- Department of Pediatric Infectious Diseases, University of Washington School of Medicine and Seattle Children's Hospital Research Institute, Seattle, Washington 98101
| | - Weiguo Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Kelly S Doran
- Department of Biology and Center for Microbial Sciences, San Diego State University, San Diego, California 92182
| | - Lakshmi Rajagopal
- Department of Pediatric Infectious Diseases, University of Washington School of Medicine and Seattle Children's Hospital Research Institute, Seattle, Washington 98101.
| |
Collapse
|
30
|
Essential PcsB putative peptidoglycan hydrolase interacts with the essential FtsXSpn cell division protein in Streptococcus pneumoniae D39. Proc Natl Acad Sci U S A 2011; 108:E1061-9. [PMID: 22006325 DOI: 10.1073/pnas.1108323108] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The connection between peptidoglycan remodeling and cell division is poorly understood in ellipsoid-shaped ovococcus bacteria, such as the human respiratory pathogen Streptococcus pneumoniae. In S. pneumoniae, peptidoglycan homeostasis and stress are regulated by the WalRK (VicRK) two-component regulatory system, which positively regulates expression of the essential PcsB cysteine- and histidine-dependent aminohydrolases/peptidases (CHAP)-domain protein. CHAP-domain proteins usually act as peptidoglycan hydrolases, but purified PcsB lacks detectable enzymatic activity. To explore the functions of PcsB, its subcellular localization was determined. Fractionation experiments showed that cell-bound PcsB was located through hydrophobic interactions on the external membrane surface of pneumococcal cells. Immunofluorescent microscopy localized PcsB mainly to the septa and equators of dividing cells. Chemical cross-linking combined with immunoprecipitation showed that PcsB interacts with the cell division complex formed by membrane-bound FtsX(Spn) and cytoplasmic FtsE(Spn) ATPase, which structurally resemble an ABC transporter. Far Western blotting showed that this interaction was likely through the large extracellular loop of FtsX(Spn) and the amino terminal coiled-coil domain of PcsB. Unlike in Bacillus subtilis and Escherichia coli, we show that FtsX(Spn) and FtsE(Spn) are essential in S. pneumoniae. Consistent with an interaction between PcsB and FtsX(Spn), cells depleted of PcsB or FtsX(Spn) had strikingly similar defects in cell division, and depletion of FtsX(Spn) caused mislocalization of PcsB but not the FtsZ(Spn) early-division protein. A model is presented in which the interaction of the FtsEX(Spn) complex with PcsB activates its peptidoglycan hydrolysis activity and couples peptidoglycan remodeling to pneumococcal cell division.
Collapse
|
31
|
Giefing-Kröll C, Jelencsics KE, Reipert S, Nagy E. Absence of pneumococcal PcsB is associated with overexpression of LysM domain-containing proteins. MICROBIOLOGY-SGM 2011; 157:1897-1909. [PMID: 21474534 DOI: 10.1099/mic.0.045211-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The streptococcal protein required for cell separation B (PcsB) is predicted to play an important role in peptidoglycan metabolism, based on sequence motifs and altered phenotypes of gene deletion mutant cells exhibiting defects in cell separation. However, no enzymic activity has been demonstrated for PcsB so far. By generating gene deletion mutant strains in four different genetic backgrounds we could demonstrate that pcsB is not essential for cell survival in Streptococcus pneumoniae, but is essential for proper cell division. Deletion mutant cells displayed cluster formation due to aberrant cell division, reduced growth and antibiotic sensitivity that were fully reverted by transformation with a plasmid carrying pcsB. Immunofluorescence staining revealed that PcsB was localized to the cell poles, similarly to PBP3 and LytB, enzymes with demonstrated peptidoglycan-degrading activity required for daughter cell separation. Similarly to other studies with PcsB homologues, we could not detect peptidoglycan-lytic activity with recombinant or native pneumococcal PcsB in vitro. In addition to defects in septum placement and separation, the absence of PcsB induced an increased release of several proteins, such as enolase, MalX and the SP0107 LysM domain protein. Interestingly, genes encoding both LysM domain-containing proteins that are present in the pneumococcal genome (SP0107 and SP2063) and predicted to be involved in cell wall metabolism were found to be highly overexpressed (14-33-fold increase) in ΔpcsB cells in two different genetic backgrounds. Otherwise, we detected very few changes in the global gene expression profile of cells lacking PcsB. Thus our data suggest that LysM domain proteins partially compensate for the lack of PcsB function and allow the survival and slow growth of the pneumococcus.
Collapse
Affiliation(s)
| | | | | | - Eszter Nagy
- Intercell AG, Vienna Biocenter 3, 1030 Vienna, Austria
| |
Collapse
|
32
|
Downregulation of GbpB, a component of the VicRK regulon, affects biofilm formation and cell surface characteristics of Streptococcus mutans. Infect Immun 2010; 79:786-96. [PMID: 21078847 DOI: 10.1128/iai.00725-10] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The virulence of the dental caries pathogen Streptococcus mutans relies in part on the sucrose-dependent synthesis of and interaction with glucan, a major component of the extracellular matrix of tooth biofilms. However, the mechanisms by which secreted and/or cell-associated glucan-binding proteins (Gbps) produced by S. mutans participate in biofilm growth remain to be elucidated. In this study, we further investigate GbpB, an essential immunodominant protein with similarity to murein hydrolases. A conditional knockdown mutant that expressed gbpB antisense RNA under the control of a tetracycline-inducible promoter was constructed in strain UA159 (UACA2) and used to investigate the effects of GbpB depletion on biofilm formation and cell surface-associated characteristics. Additionally, regulation of gbpB by the two-component system VicRK was investigated, and phenotypic analysis of a vicK mutant (UAvicK) was performed. GbpB was directly regulated by VicR, and several phenotypic changes were comparable between UACA2 and UAvicK, although differences between these strains existed. It was established that GbpB depletion impaired initial phases of sucrose-dependent biofilm formation, while exogenous native GbpB partially restored the biofilm phenotype. Several cellular traits were significantly affected by GbpB depletion, including altered cell shape, decreased autolysis, increased cell hydrophobicity, and sensitivity to antibiotics and osmotic and oxidative stresses. These data provide the first experimental evidence for GbpB participation in sucrose-dependent biofilm formation and in cell surface properties.
Collapse
|
33
|
Pancholi V, Boël G, Jin H. Streptococcus pyogenes Ser/Thr kinase-regulated cell wall hydrolase is a cell division plane-recognizing and chain-forming virulence factor. J Biol Chem 2010; 285:30861-74. [PMID: 20643653 PMCID: PMC2945579 DOI: 10.1074/jbc.m110.153825] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 07/15/2010] [Indexed: 11/06/2022] Open
Abstract
Cell division and cell wall synthesis are closely linked complex phenomena and play a crucial role in the maintenance and regulation of bacterial virulence. Eukaryotic-type Ser/Thr kinases reported in prokaryotes, including that in group A Streptococcus (GAS) (Streptococcus pyogenes Ser/Thr kinase (SP-STK)), regulate cell division, growth, and virulence. The mechanism of this regulation is, however, unknown. In this study, we demonstrated that SP-STK-controlled cell division is mediated under the positive regulation of secretory protein that possesses a cysteine and histidine-dependent aminohydrolases/peptidases (CHAP) domain with functionally active cell wall hydrolase activity (henceforth named as CdhA (CHAP-domain-containing and chain-forming cell wall hydrolase). Deletion of the CdhA-encoding gene resulted in severe cell division and growth defects in GAS mutants. The mutant expressing the truncated CdhA (devoid of the CHAP domain), although displayed no such defects, it became attenuated for virulence in mice and highly susceptible to cell wall-acting antibiotics, as observed for the mutant lacking CdhA. When CdhA was overexpressed in the wild-type GAS as well as in heterologous strains, Escherichia coli and Staphylococcus aureus, we observed a distinct increase in bacterial chain length. Our data reveal that CdhA is a multifunctional protein with a major function of the N-terminal region as a cell division plane-recognizing domain and that of the C-terminal CHAP domain as a virulence-regulating domain. CdhA is thus an important therapeutic target.
Collapse
Affiliation(s)
- Vijay Pancholi
- Department of Pathology, Ohio State University College of Medicine, Columbus, Ohio 43210-1214, USA.
| | | | | |
Collapse
|
34
|
Meinke AL, Senn BM, Visram Z, Henics TZ, Minh DB, Schüler W, Neubauer C, Gelbmann D, Noiges B, Sinzinger J, Hanner M, Dewasthaly S, Lundberg U, Hordnes K, Masoud H, Sevelda P, von Gabain A, Nagy E. Immunological fingerprinting of group B streptococci: From circulating human antibodies to protective antigens. Vaccine 2010; 28:6997-7008. [DOI: 10.1016/j.vaccine.2010.08.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 08/03/2010] [Accepted: 08/06/2010] [Indexed: 11/25/2022]
|
35
|
Li W, Liu L, Qiu D, Chen H, Zhou R. Identification of Streptococcus suis serotype 2 genes preferentially expressed in the natural host. Int J Med Microbiol 2010; 300:482-8. [PMID: 20554247 DOI: 10.1016/j.ijmm.2010.04.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/16/2010] [Accepted: 04/18/2010] [Indexed: 01/01/2023] Open
Abstract
Streptococcus suis serotype 2 (SS2) is an important zoonotic pathogen for swine and humans. Previous research about the mechanism of SS2 infection was largely established on in vitro or ex vivo models. In this study, we focused on the identification of SS2 genes preferentially expressed in vivo during natural infection in pigs. Eighty SS2 genes were identified to be up-regulated in the porcine brains and lungs by selective capture of transcribed sequences (SCOTS) and comparative dot blot analysis, followed by quantitative RT-PCR validation. These genes could be classified into 5 functional categories: metabolism, cell wall associated proteins, transporters, cell replication, and function unknown. Some of these genes may contribute to the survival and pathogenesis of SS2 in the host via the following strategies. First, SS2 evades the host innate immune clearance through modifying its metabolism and cell wall composition as indicated by the up-regulation of the corresponding gene ldh and pbp2A, respectively. Secondly, SS2 adapts to the in vivo conditions by inducing the expression of the two-component signal transduction system VicKR which may function on the target genes such as pcsB involved in stress response and cell wall biosynthesis. Thirdly, SS2 enhances its virulence in vivo by up-regulating the virulence genes, such as sly, pdgA, ssp, gidA, gcp and hp1311. Further study of these in vivo up-regulated genes will contribute to understanding the in vivo survival mechanism and pathogenesis of SS2.
Collapse
Affiliation(s)
- Wei Li
- Division of Animal Infectious Diseases in the State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Shizishan Street 1, Hongshan District, Wuhan, Hubei 430070, China
| | | | | | | | | |
Collapse
|
36
|
Rapid multiple-locus variant-repeat assay (MLVA) for genotyping of Streptococcus agalactiae. J Clin Microbiol 2010; 48:2502-8. [PMID: 20504982 DOI: 10.1128/jcm.00234-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several methods have been used for typing of Streptococcus agalactiae (group B streptococci [GBS]). Methods currently in use may provide inadequate resolution (e.g., typing of capsular polysaccharides and surface protein) or are labor-intensive and expensive (e.g., multilocus sequence typing [MLST] or pulsed-field gel electrophoresis). This work describes the construction and use of a multiple-locus variant-repeat assay (MLVA) on 126 well-characterized human GBS strains, consisting mostly of invasive Norwegian strains and international reference strains. Based on in silico whole-genomic analysis of the genomes of strains A909, NEM316, and 2603V/R, 18 candidate loci were selected and investigated by PCR. Eleven loci showed diversity, and the five most diverse loci were used for the construction of an MLVA, consisting of a multiplex PCR followed by fragment analysis with capillary electrophoresis. The assay generated clusters which corresponded well with those observed by other methods. However, it provided a considerably higher degree of diversity, with 70 different MLVA types compared to 36 types generated by MLST. Simpson's index of diversity for the 5-locus MLVA was 0.963, compared to 0.899 for the MLST in this strain collection. MLVA results will generally be available within 2 days, which is usually faster than MLST. In our hands, MLVA of GBS represents a rapid, easy, and comparably inexpensive method for high-resolution genotyping of GBS.
Collapse
|
37
|
Immunization with a combination of three pneumococcal proteins confers additive and broad protection against Streptococcus pneumoniae Infections in Mice. Infect Immun 2009; 78:1276-83. [PMID: 20038538 DOI: 10.1128/iai.00473-09] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pneumococcal polysaccharide-based vaccines are effective in preventing pneumococcus infection; however, some drawbacks preclude their widespread use in developing and undeveloped countries. Here, we evaluated the protective effects of ATP-dependent caseinolytic protease (ClpP), pneumolysin mutant (DeltaA146 Ply), putative lipoate-protein ligase (Lpl), or combinations thereof against pneumococcal infections in mice. Vaccinated mice were intraperitoneally and/or intranasally challenged with different pneumococcal strains. In intraperitoneal challenge models with pneumococcal strain D39 (serotype 2), the most striking protection was obtained with the combination of the three antigens. Similarly, with the intranasal challenge models, (i) additive clearance of bacteria in lungs was observed for the combination of the three antigens and (ii) a combination vaccine conferred complete protection against intranasal infections of three of the four most common pneumococcal strains (serotypes 14, 19F, and 23F) and 80% protection for pneumococcal strain 6B. Even so, immunity to this combination could confer protection against pneumococcal infection with a mixture of four serotypes. Our results showed that the combination vaccine was as effective as the currently used vaccines (PCV7 and PPV23). These results indicate that system immunization with the combination of pneumococcal antigens could provide an additive and broad protection against Streptococcus pneumoniae in pneumonia and sepsis infection models.
Collapse
|
38
|
Inactivation of VicK affects acid production and acid survival of Streptococcus mutans. J Bacteriol 2009; 191:6415-24. [PMID: 19684142 DOI: 10.1128/jb.00793-09] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The regulation of acid production in and the tolerance to low pH of the cariogenic bacterium Streptococcus mutans have garnered considerable attention since both of these properties contribute substantially to the virulence of this organism. Frequent or prolonged exposure to acid end products, mainly lactic acid, that are present following the consumption of dietary sugars erodes the dental enamel, thereby initiating dental caries. Here we report the involvement of the S. mutans VicK sensor kinase in both the acidogenicity and the aciduricity of this bacterium. When cultures were supplemented with glucose, the glycolytic rate of a VicK null mutant was significantly decreased compared to the glycolytic rate of the wild type (P < 0.05), suggesting that there was impaired acid production. Not surprisingly, the VicK deletion mutant produced less lactic acid, while an acid tolerance response assay revealed that loss of VicK significantly enhanced the survival of S. mutans (P < 0.05). Compared to the survival rates of the wild type, the survival rates of the VicK-deficient mutant were drastically increased when cultures were grown at pH 3.5 with or without preexposure to a signal pH (pH 5.5). Global transcriptional analysis using DNA microarrays and S. mutans wild-type UA159 and VicK deletion mutant strains grown at neutral and low pH values revealed that loss of VicK significantly affected expression of 89 transcripts more than twofold at pH 5.5 (P < 0.001). The affected transcripts included genes with putative functions in transport and maintenance of cell membrane integrity. While our results provide insight into the acid-inducible regulon of S. mutans, here we imply a novel role for VicK in regulating intracellular pH homeostasis in S. mutans.
Collapse
|
39
|
Influences of capsule on cell shape and chain formation of wild-type and pcsB mutants of serotype 2 Streptococcus pneumoniae. J Bacteriol 2009; 191:3024-40. [PMID: 19270090 DOI: 10.1128/jb.01505-08] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
PcsB is a protein of unknown function that plays a critical role in cell division in Streptococcus pneumoniae and other ovococcus species of Streptococcus. We constructed isogenic sets of mutants expressing different amounts of PcsB in laboratory strain R6 and virulent serotype 2 strain D39 to evaluate its cellular roles. Insertion mutagenesis in parent and pcsB(+) merodiploid strains indicated that pcsB is essential in serotype 2 S. pneumoniae. Quantitative Western blotting of wild-type and epitope-tagged PcsB showed that all PcsB was processed into cell-associated and secreted forms of the same molecular mass and that cell-associated PcsB was moderately abundant and present at approximately 4,900 monomers per cell. Controlled expression and complementation experiments indicated that there was a causative relationship between the severity of defects in cell division and decreasing PcsB amount. These experiments also showed that perturbations of expression of the upstream mreCD genes did not contribute to the cell division defects of pcsB mutants and that mreCD could be deleted. Unexpectedly, capsule influenced the cell shape and chain formation phenotypes of the wild-type D39 strain and mutants underexpressing PcsB or deleted for other genes involved in peptidoglycan biosynthesis, such as dacA. Underexpression of PcsB did not result in changes in the amounts or composition of lactoyl-peptides, which were markedly different in the R6 and D39 strains, and there was no correlation between decreased PcsB amount and sensitivity to penicillin. Finally, microarray analyses indicated that underexpression of PcsB may generate a signal that increases expression of the VicRK regulon, which includes pcsB.
Collapse
|
40
|
Layec S, Gérard J, Legué V, Chapot-Chartier MP, Courtin P, Borges F, Decaris B, Leblond-Bourget N. The CHAP domain of Cse functions as an endopeptidase that acts at mature septa to promote Streptococcus thermophilus cell separation. Mol Microbiol 2009; 71:1205-17. [PMID: 19170887 DOI: 10.1111/j.1365-2958.2009.06595.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cell separation is dependent on cell wall hydrolases that cleave the peptidoglycan shared between daughter cells. In Streptococcus thermophilus, this step is performed by the Cse protein whose depletion resulted in the formation of extremely long chains of cells. Cse, a natural chimeric enzyme created by domain shuffling, carries at least two important domains for its activity: the LysM expected to be responsible for the cell wall-binding and the CHAP domain predicted to contain the active centre. Accordingly, the localization of Cse on S. thermophilus cell surface has been undertaken by immunogold electron and immunofluorescence microscopies using of antibodies raised against the N-terminal end of this protein. Immunolocalization shows the presence of the Cse protein at mature septa. Moreover, the CHAP domain of Cse exhibits a cell wall lytic activity in zymograms performed with cell walls of Micrococcus lysodeikticus, Bacillus subtilis and S. thermophilus. Additionally, RP-HPLC analysis of muropeptides released from B. subtilis and S. thermophilus cell wall after digestion with the CHAP domain shows that Cse is an endopeptidase. Altogether, these results suggest that Cse is a cell wall hydrolase involved in daughter cell separation of S. thermophilus.
Collapse
Affiliation(s)
- Séverine Layec
- Laboratoire de Génétique et Microbiologie, UMR INRA/UHP 1128, IFR 110, Nancy-Université, BP 239, 54506 Vandoeuvre-lès-Nancy, France
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Deletion of cgR_1596 and cgR_2070, encoding NlpC/P60 proteins, causes a defect in cell separation in Corynebacterium glutamicum R. J Bacteriol 2008; 190:8204-14. [PMID: 18931118 DOI: 10.1128/jb.00752-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In previous work, random genome deletion mutants of Corynebacterium glutamicum R were generated using the insertion sequence (IS) element IS31831 and the Cre/loxP excision system. One of these mutants, C. glutamicum strain RD41, resulting from the deletion of a 10.1-kb genomic region (DeltacgR_1595 through cgR_1604) from the WT strain, showed cell elongation, and several lines appeared on the cell surface (bamboo shape). The morphological changes were suppressed by overexpression of cgR_1596. Single disruption of cgR_1596 in WT C. glutamicum R resulted in morphological changes similar to those observed in the RD41 strain. CgR_1596 has a predicted secretion signal peptide in the amino-terminal region and a predicted NlpC/P60 domain, which is conserved in cell wall hydrolases, in the carboxyl-terminal region. In C. glutamicum R, CgR_0802, CgR_1596, CgR_2069, and CgR_2070 have the NlpC/P60 domain; however, only simultaneous disruption of cgR_1596 and cgR_2070, and not cgR_2070 single disruption, resulted in cell growth delay and more severe morphological changes than disruption of cgR_1596. Transmission electron microscopy revealed multiple septa within individual cells of cgR_1596 single and cgR_1596-cgR_2070 double disruptants. Taken together, these results suggest that cgR_1596 and cgR_2070 are involved in cell separation and cell growth in C. glutamicum.
Collapse
|
42
|
|
43
|
Giefing C, Meinke AL, Hanner M, Henics T, Bui MD, Gelbmann D, Lundberg U, Senn BM, Schunn M, Habel A, Henriques-Normark B, Ortqvist A, Kalin M, von Gabain A, Nagy E. Discovery of a novel class of highly conserved vaccine antigens using genomic scale antigenic fingerprinting of pneumococcus with human antibodies. ACTA ACUST UNITED AC 2007; 205:117-31. [PMID: 18166586 PMCID: PMC2234372 DOI: 10.1084/jem.20071168] [Citation(s) in RCA: 208] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pneumococcus is one of the most important human pathogens that causes life-threatening invasive diseases, especially at the extremities of age. Capsular polysaccharides (CPSs) are known to induce protective antibodies; however, it is not feasible to develop CPS-based vaccines that cover all of the 90 disease-causing serotypes. We applied a genomic approach and described the antibody repertoire for pneumococcal proteins using display libraries expressing 15–150 amino acid fragments of the pathogen's proteome. Serum antibodies of exposed, but not infected, individuals and convalescing patients identified the ANTIGENome of pneumococcus consisting of ∼140 antigens, many of them surface exposed. Based on several in vitro assays, 18 novel candidates were preselected for animal studies, and 4 of them showed significant protection against lethal sepsis. Two lead vaccine candidates, protein required for cell wall separation of group B streptococcus (PcsB) and serine/threonine protein kinase (StkP), were found to be exceptionally conserved among clinical isolates (>99.5% identity) and cross-protective against four different serotypes in lethal sepsis and pneumonia models, and have important nonredundant functions in bacterial multiplication based on gene deletion studies. We describe for the first time opsonophagocytic killing activity for pneumococcal protein antigens. A vaccine containing PcsB and StkP is intended for the prevention of infections caused by all serotypes of pneumococcus in the elderly and in children.
Collapse
|
44
|
Layec S, Decaris B, Leblond-Bourget N. Characterization of Proteins Belonging to the CHAP-Related Superfamily within the Firmicutes. J Mol Microbiol Biotechnol 2007; 14:31-40. [DOI: 10.1159/000106080] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
45
|
Dubrac S, Boneca IG, Poupel O, Msadek T. New insights into the WalK/WalR (YycG/YycF) essential signal transduction pathway reveal a major role in controlling cell wall metabolism and biofilm formation in Staphylococcus aureus. J Bacteriol 2007; 189:8257-69. [PMID: 17827301 PMCID: PMC2168699 DOI: 10.1128/jb.00645-07] [Citation(s) in RCA: 285] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The highly conserved WalK/WalR (also known as YycG/YycF) two-component system is specific to low-G+C gram-positive bacteria. While this system is essential for cell viability, both the nature of its regulon and its physiological role have remained mostly uncharacterized. We observed that, unexpectedly, Staphylococcus aureus cell death induced by WalKR depletion was not followed by lysis. We show that WalKR positively controls autolytic activity, in particular that of the two major S. aureus autolysins, AtlA and LytM. By using our previously characterized consensus WalR binding site and carefully reexamining the genome annotations, we identified nine genes potentially belonging to the WalKR regulon that appeared to be involved in S. aureus cell wall degradation. Expression of all of these genes was positively controlled by WalKR levels in the cell, leading to high resistance to Triton X-100-induced lysis when the cells were starved for WalKR. Cells lacking WalKR were also more resistant to lysostaphin-induced lysis, suggesting modifications in cell wall structure. Indeed, lowered levels of WalKR led to a significant decrease in peptidoglycan biosynthesis and turnover and to cell wall modifications, which included increased peptidoglycan cross-linking and glycan chain length. We also demonstrated a direct relationship between WalKR levels and the ability to form biofilms. This is the first example in S. aureus of a regulatory system positively controlling autolysin synthesis and biofilm formation. Taken together, our results now define this signal transduction pathway as a master regulatory system for cell wall metabolism, which we have accordingly renamed WalK/WalR to reflect its true function.
Collapse
Affiliation(s)
- Sarah Dubrac
- Unité de Biologie des Bactéries Pathogènes à Gram Positif, CNRS URA 2172, Institut Pasteur, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
46
|
Priyadarshini R, de Pedro MA, Young KD. Role of peptidoglycan amidases in the development and morphology of the division septum in Escherichia coli. J Bacteriol 2007; 189:5334-47. [PMID: 17483214 PMCID: PMC1951850 DOI: 10.1128/jb.00415-07] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli contains multiple peptidoglycan-specific hydrolases, but their physiological purposes are poorly understood. Several mutants lacking combinations of hydrolases grow as chains of unseparated cells, indicating that these enzymes help cleave the septum to separate daughter cells after cell division. Here, we confirm previous observations that in the absence of two or more amidases, thickened and dark bands, which we term septal peptidoglycan (SP) rings, appear at division sites in isolated sacculi. The formation of SP rings depends on active cell division, and they apparently represent a cell division structure that accumulates because septal synthesis and hydrolysis are uncoupled. Even though septal constriction was incomplete, SP rings exhibited two properties of mature cell poles: they behaved as though composed of inert peptidoglycan, and they attracted the IcsA protein. Despite not being separated by a completed peptidoglycan wall, adjacent cells in these chains were often compartmentalized by the inner membrane, indicating that cytokinesis could occur in the absence of invagination of the entire cell envelope. Finally, deletion of penicillin-binding protein 5 from amidase mutants exacerbated the formation of twisted chains, producing numerous cells having septa with abnormal placements and geometries. The results suggest that the amidases are necessary for continued peptidoglycan synthesis during cell division, that their activities help create a septum having the appropriate geometry, and that they may contribute to the development of inert peptidoglycan.
Collapse
Affiliation(s)
- Richa Priyadarshini
- Department of Microbiology and Immunology, University of North Dakota School of Medicine, Grand Forks, ND 58202-9037, USA
| | | | | |
Collapse
|
47
|
Sasková L, Nováková L, Basler M, Branny P. Eukaryotic-type serine/threonine protein kinase StkP is a global regulator of gene expression in Streptococcus pneumoniae. J Bacteriol 2007; 189:4168-79. [PMID: 17416671 PMCID: PMC1913385 DOI: 10.1128/jb.01616-06] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Signal transduction pathways in both prokaryotes and eukaryotes utilize protein phosphorylation as a key regulatory mechanism. Recent studies have proven that eukaryotic-type serine/threonine protein kinases (Hank's type) are widespread in many bacteria, although little is known regarding the cellular processes they control. In this study, we have attempted to establish the role of a single eukaryotic-type protein kinase, StkP of Streptococcus pneumoniae, in bacterial survival. Our results indicate that the expression of StkP is important for the resistance of S. pneumoniae to various stress conditions. To investigate the impact of StkP on this phenotype, we compared the whole-genome expression profiles of the wild-type and DeltastkP mutant strains by microarray technology. This analysis revealed that StkP positively controls the transcription of a set of genes encoding functions involved in cell wall metabolism, pyrimidine biosynthesis, DNA repair, iron uptake, and oxidative stress response. Despite the reduced transformability of the stkP mutant, we found that the competence regulon was derepressed in the stkP mutant under conditions that normally repress natural competence development. Furthermore, the competence regulon was expressed independently of exogenous competence-stimulating peptide. In summary, our studies show that a eukaryotic-type serine/threonine protein kinase functions as a global regulator of gene expression in S. pneumoniae.
Collapse
Affiliation(s)
- Lenka Sasková
- Cell and Molecular Microbiology Division, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídenská 1083, 142 20 Prague 4, Czech Republic
| | | | | | | |
Collapse
|
48
|
Matsumoto-Nakano M, Fujita K, Ooshima T. Comparison of glucan-binding proteins in cariogenicity of Streptococcus mutans. ACTA ACUST UNITED AC 2007; 22:30-5. [PMID: 17241168 DOI: 10.1111/j.1399-302x.2007.00318.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Streptococcus mutans has been implicated as a primary causative agent of dental caries in humans. Bacterial components associated with the adhesion phase of S. mutans include cell-associated and cell-free glucosyltransferases (GTFs), as well as protein antigen c and proteins that bind glucan. At least four types of S. mutans glucan-binding protein (Gbp) have been identified; GbpA, GbpB, GbpC and GbpD. In the present study, GbpA-, GbpB- and GbpC-deficient mutants (AD1, BD1 and CD1, respectively) were constructed, and their cariogenic properties were evaluated by comparing them to those of their parent strain MT8148. All of the Gbp mutants showed lower levels of dextran binding, while the sucrose-dependent adhesion levels of AD1 and CD1 were lower than in the parental strain. The expression of each GTF was detected in the Gbp mutants, however, they had lower levels of cell-free-GTF activity than the parental strain. On the other hand, in acid tolerance assays, BD1 was the most sensitive among all of the tested strains. These results suggest that GbpA and GbpC in S. mutans have strong relationships with cariogenicity, while GbpB may have another biological function.
Collapse
Affiliation(s)
- M Matsumoto-Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | | | | |
Collapse
|
49
|
Ahn SJ, Burne RA. The atlA operon of Streptococcus mutans: role in autolysin maturation and cell surface biogenesis. J Bacteriol 2006; 188:6877-88. [PMID: 16980491 PMCID: PMC1595523 DOI: 10.1128/jb.00536-06] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Smu0630 protein (AtlA) was recently shown to be involved in cell separation, biofilm formation, and autolysis. Here, transcriptional studies revealed that atlA is part of a multigene operon under the control of at least three promoters. The morphology and biofilm-forming capacity of a nonpolar altA mutant could be restored to that of the wild-type strain by adding purified AtlA protein to the medium. A series of truncated derivatives of AtlA revealed that full activity required the C terminus and repeat regions. AtlA was cell associated and readily extractable from with sodium dodecyl sulfate. Of particular interest, the surface protein profile of AtlA-deficient strains was dramatically altered compared to the wild-type strain, as was the nature of the association of the multifunctional adhesin P1 with the cell wall. In addition, AtlA-deficient strains failed to develop competence as effectively as the parental strain. Mutation of thmA, which can be cotranscribed with atlA and encodes a putative pore-forming protein, resulted in a phenotype very similar to that of the AtlA-deficient strain. ThmA was also shown to be required for efficient processing of AtlA to its mature form, and treatment of the thmA mutant strain with full-length AtlA protein did not restore normal cell separation and biofilm formation. The effects of mutating other genes in the operon on cell division, biofilm formation, or AtlA biogenesis were not as profound. This study reveals that AtlA is a surface-associated protein that plays a critical role in the network connecting cell surface biogenesis, biofilm formation, genetic competence, and autolysis.
Collapse
Affiliation(s)
- Sang-Joon Ahn
- Department of Oral Biology, University of Florida College of Dentistry, Room D5-18, Gainesville, FL 32610, USA
| | | |
Collapse
|
50
|
Mattos-Graner RO, Porter KA, Smith DJ, Hosogi Y, Duncan MJ. Functional analysis of glucan binding protein B from Streptococcus mutans. J Bacteriol 2006; 188:3813-25. [PMID: 16707674 PMCID: PMC1482924 DOI: 10.1128/jb.01845-05] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutans streptococci are major etiological agents of dental caries, and several of their secreted products contribute to bacterial accumulation on teeth. Of these, Streptococcus mutans glucan binding protein B (GbpB) is a novel, immunologically dominant protein. Its biological function is unclear, although GbpB shares homology with a putative peptidoglycan hydrolase from S. agalactiae and S. pneumoniae, indicative of a role in murein biosynthesis. To determine the cellular function of GbpB, we used several approaches to inactivate the gene, analyze its expression, and identify interacting proteins. None of the transformants analyzed were true gbpB mutants, since they all contained both disrupted and wild-type gene copies, and expression of functional GbpB was always conserved. Thus, the inability to obtain viable gbpB null mutants supports the notion that gbpB is an essential gene. Northern blot and real-time PCR analyses suggested that induction of gbpB expression in response to stress was a strain-dependent phenomenon. Proteins that interacted with GbpB were identified in pull-down and coimmunoprecipitation assays, and these data suggest that GbpB interacts with ribosomal protein L7/L12, possibly as part of a protein complex involved in peptidoglycan synthesis and cell division.
Collapse
Affiliation(s)
- Renata O Mattos-Graner
- Department of Molecular Genetics, The Forsyth Institute, 140 Fenway, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|