1
|
Scott JW, Steel JJ. Extremophile enzyme activity lab: using catalase from Pyrobaculum calidifontis to highlight temperature sensitivity and thermostable enzyme activity. JOURNAL OF MICROBIOLOGY & BIOLOGY EDUCATION 2024; 25:e0006523. [PMID: 38661418 PMCID: PMC11044630 DOI: 10.1128/jmbe.00065-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 12/01/2023] [Indexed: 04/26/2024]
Abstract
There are places on earth that are considered to possess extreme physico-chemical characteristics as they relate to life. Surprisingly, there are microbes that have adapted various strategies that enable them to form robust communities in these environments. The microbes that live in these environments, called extremophiles, are described as being thermophilic, psychrophilic, halophilic, acidophilic, alkaliphilic, barophilic, and so on. Given that extremophiles were not discovered until relatively recently due to a view point that the environments in which they inhabited were not conducive to life, it is reasonable to conclude that the concept of extremophiles may be hard to grasp for students. Herein is described a laboratory exercise adapted from laboratory exercises that use mesophilic catalase enzymes to illustrate the influence of physico-chemical parameters on enzyme activity. Catalase is an enzyme that accelerates the degradation of hydrogen peroxide to water and oxygen gas. In addition to mesophilic catalases, the catalase from Pyrobaculum calidifontis, a hyperthermophile with an optimal growth temperature of 90°C, is used to highlight the adaptation of an enzyme to an extreme environment. A visual comparison of bubble production by the hyperthermophilic and mesophilic enzymes after heating at high temperatures dramatically illustrates differences in thermostability that will likely reinforce concepts that are given in a pre-laboratory lecture that discusses not only the extremophiles themselves but also their applications in biotechnology and possible role in the field of astrobiology.
Collapse
Affiliation(s)
- Joseph W. Scott
- Life Science Research Center, United States Air Force Academy, Colorado Springs, Colorado, USA
| | - J. Jordan Steel
- Department of Biology, United States Air Force Academy, Colorado Springs, Colorado, USA
| |
Collapse
|
2
|
Török P, Lakk-Bogáth D, Kaizer J. Effect of Redox Potential on Diiron-Mediated Disproportionation of Hydrogen Peroxide. Molecules 2023; 28:molecules28072905. [PMID: 37049667 PMCID: PMC10096046 DOI: 10.3390/molecules28072905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Heme and nonheme dimanganese catalases are widely distributed in living organisms to participate in antioxidant defenses that protect biological systems from oxidative stress. The key step in these processes is the disproportionation of H2O2 to O2 and water, which can be interpreted via two different mechanisms, namely via the formation of high-valent oxoiron(IV) and peroxodimanganese(III) or diiron(III) intermediates. In order to better understand the mechanism of this important process, we have chosen such synthetic model compounds that can be used to map the nature of the catalytically active species and the factors influencing their activities. Our previously reported μ-1,2-peroxo-diiron(III)-containing biomimics are good candidates, as both proposed reactive intermediates (FeIVO and FeIII2(μ-O2)) can be derived from them. Based on this, we have investigated and compared five heterobidentate-ligand-containing model systems including the previously reported and fully characterized [FeII(L1-4)3]2+ (L1 = 2-(2'-pyridyl)-1H-benzimidazole, L2 = 2-(2'-pyridyl)-N-methyl-benzimidazole, L3 = 2-(4-thiazolyl)-1H-benzimidazole and L4 = 2-(4'-methyl-2'-pyridyl)-1H-benzimidazole) and the novel [FeII(L5)3]2+ (L5 = 2-(1H-1,2,4-triazol-3-yl)-pyridine) precursor complexes with their spectroscopically characterized μ-1,2-peroxo-diiron(III) intermediates. Based on the reaction kinetic measurements and previous computational studies, it can be said that the disproportionation reaction of H2O2 can be interpreted through the formation of an electrophilic oxoiron(IV) intermediate that can be derived from the homolysis of the O-O bond of the forming μ-1,2-peroxo-diiron(III) complexes. We also found that the disproportionation rate of the H2O2 shows a linear correlation with the FeIII/FeII redox potential (in the range of 804 mV-1039 mV vs. SCE) of the catalysts controlled by the modification of the ligand environment. Furthermore, it is important to note that the two most active catalysts with L3 and L5 ligands have a high-spin electronic configuration.
Collapse
Affiliation(s)
- Patrik Török
- Research Group of Bioorganic and Biocoordination Chemistry, University of Pannonia, H-8201 Veszprém, Hungary
| | - Dóra Lakk-Bogáth
- Research Group of Bioorganic and Biocoordination Chemistry, University of Pannonia, H-8201 Veszprém, Hungary
| | - József Kaizer
- Research Group of Bioorganic and Biocoordination Chemistry, University of Pannonia, H-8201 Veszprém, Hungary
| |
Collapse
|
3
|
Pcal_0976, a pullulanase homologue from Pyrobaculum calidifontis, displays a glycoside hydrolase activity but no pullulanase activity. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-022-01309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
4
|
Role of C-terminal domain in a manganese-catalase from Geobacillus thermopakistaniensis. J Biosci Bioeng 2022; 134:203-212. [PMID: 35811183 DOI: 10.1016/j.jbiosc.2022.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/03/2022] [Accepted: 06/17/2022] [Indexed: 11/21/2022]
Abstract
Catalases catalyze the decomposition of hydrogen peroxide into water and oxygen. We have characterized two manganese-catalases from Geobacillus thermopakistaniensis, CatGt and Cat-IIGt, which exhibited significant variation in their sequence, structure and properties. There was only 23% sequence identity between the two. The striking structural difference was the presence of an extended C-terminal domain in CatGt. Molecular modelling and docking studies revealed that deletion of the C-terminal domain removes non-specific binding, which results in increased substrate affinity. To verify experimentally, a C-terminal truncated version of CatGt, named as CatGt-ΔC, was produced in Escherichia coli and effects of deletion were analyzed. There was no significant difference in optimal pH, optimal temperature and substrate specificity of CatGt and CatGt-ΔC. However, Km value was reduced from 259 to 157 mM and CatGt-ΔC exhibited ∼1.5-fold higher catalytic efficiency as compared to CatGt. Furthermore, removal of the C-terminal domain converted the tetrameric nature to monomeric, and reduced the thermostability of the truncated protein. These results demonstrate that C-terminal domain of CatGt might have little role in maintaining enzyme function but provides additional structural stability to the protein, which is a desired property for industrial applications.
Collapse
|
5
|
Substrate Specificity of an Aminopropyltransferase and the Biosynthesis Pathway of Polyamines in the Hyperthermophilic Crenarchaeon Pyrobaculum calidifontis. Catalysts 2022. [DOI: 10.3390/catal12050567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The facultative anaerobic hyperthermophilic crenarchaeon Pyrobaculum calidifontis possesses norspermine (333), norspermidine (33), and spermidine (34) as intracellular polyamines (where the number in parentheses represents the number of methylene CH2 chain units between NH2, or NH). In this study, the polyamine biosynthesis pathway of P. calidifontis was predicted on the basis of the enzymatic properties and crystal structures of an aminopropyltransferase from P. calidifontis (Pc-SpeE). Pc-SpeE shared 75% amino acid identity with the thermospermine synthase from Pyrobaculum aerophilum, and recombinant Pc-SpeE could synthesize both thermospermine (334) and spermine (343) from spermidine and decarboxylated S-adenosyl methionine (dcSAM). Recombinant Pc-SpeE showed high enzymatic activity when aminopropylagmatine and norspermidine were used as substrates. By comparison, Pc-SpeE showed low affinity toward putrescine, and putrescine was not stably bound in its active site. Norspermidine was produced from thermospermine by oxidative degradation using a cell-free extract of P. calidifontis, whereas 1,3-diaminopropane (3) formation was not detected. These results suggest that thermospermine was mainly produced from arginine via agmatine, aminopropylagmatine, and spermidine. Norspermidine was produced from thermospermine by an unknown polyamine oxidase/dehydrogenase followed by norspermine formation by Pc-SpeE.
Collapse
|
6
|
Looking into a highly thermostable and efficient recombinant manganese-catalase from Geobacillusthermopakistaniensis. J Biosci Bioeng 2021; 133:25-32. [PMID: 34642121 DOI: 10.1016/j.jbiosc.2021.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/09/2021] [Accepted: 09/17/2021] [Indexed: 01/17/2023]
Abstract
Catalases, heme or non-heme, are catalysts that decompose hydrogen peroxide. Among them, non-heme or manganese-catalases have been studied from limited organisms. We report here heterologous production of a manganese-catalase, Cat-IIGt, previously annotated as a hypothetical protein, from a thermophilic bacterium Geobacillus thermopakistaniensis. Recombinant Cat-IIGt, produced as inactive inclusion bodies in Escherichia coli, was solubilized and refolded into a soluble and highly active form. Sequence homology, absorption spectra, resistance to sodium azide inhibition and activation by Mn2+ indicated that it was a manganese-catalase. Metal analysis revealed the presence of ∼2 Mn2+ and ∼2 Ca2+ per subunit of Cat-IIGt. Recombinant Cat-IIGt exhibited highest activity at pH 10.0 and 70°C. The enzyme was highly active with a specific activity of 40,529 μmol min-1 mg-1. The apparent Km and kcat values were 75 mM and 1.5 × 104 s-1 subunit-1, respectively. Recombinant Cat-IIGt was highly thermostable with a half-life of 30 min at 100°C. The structural attributes of Cat-IIGt, including the metal and substrate binding residues, were predicted by homology modeling and molecular docking studies. High activity and thermostability and alkaline nature make Cat-IIGt a potential candidate for textile and paper processing industries.
Collapse
|
7
|
Espina G, Atalah J, Blamey JM. Extremophilic Oxidoreductases for the Industry: Five Successful Examples With Promising Projections. Front Bioeng Biotechnol 2021; 9:710035. [PMID: 34458243 PMCID: PMC8387880 DOI: 10.3389/fbioe.2021.710035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/30/2021] [Indexed: 11/29/2022] Open
Abstract
In a global context where the development of more environmentally conscious technologies is an urgent need, the demand for enzymes for industrial processes is on the rise. Compared to conventional chemical catalysts, the implementation of biocatalysis presents important benefits including higher selectivity, increased sustainability, reduction in operating costs and low toxicity, which translate into cleaner production processes, lower environmental impact as well as increasing the safety of the operating staff. Most of the currently available commercial enzymes are of mesophilic origin, displaying optimal activity in narrow ranges of conditions, which limits their actual application under industrial settings. For this reason, enzymes from extremophilic microorganisms stand out for their specific characteristics, showing higher stability, activity and robustness than their mesophilic counterparts. Their unique structural adaptations allow them to resist denaturation at high temperatures and salinity, remain active at low temperatures, function at extremely acidic or alkaline pHs and high pressure, and participate in reactions in organic solvents and unconventional media. Because of the increased interest to replace chemical catalysts, the global enzymes market is continuously growing, with hydrolases being the most prominent type of enzymes, holding approximately two-third share, followed by oxidoreductases. The latter enzymes catalyze electron transfer reactions and are one of the most abundant classes of enzymes within cells. They hold a significant industrial potential, especially those from extremophiles, as their applications are multifold. In this article we aim to review the properties and potential applications of five different types of extremophilic oxidoreductases: laccases, hydrogenases, glutamate dehydrogenases (GDHs), catalases and superoxide dismutases (SODs). This selection is based on the extensive experience of our research group working with these particular enzymes, from the discovery up to the development of commercial products available for the research market.
Collapse
Affiliation(s)
| | | | - Jenny M. Blamey
- Fundación Biociencia, Santiago, Chile
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
8
|
Disproportionation of H 2O 2 Mediated by Diiron-Peroxo Complexes as Catalase Mimics. Molecules 2021; 26:molecules26154501. [PMID: 34361652 PMCID: PMC8347308 DOI: 10.3390/molecules26154501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 11/17/2022] Open
Abstract
Heme iron and nonheme dimanganese catalases protect biological systems against oxidative damage caused by hydrogen peroxide. Rubrerythrins are ferritine-like nonheme diiron proteins, which are structurally and mechanistically distinct from the heme-type catalase but similar to a dimanganese KatB enzyme. In order to gain more insight into the mechanism of this curious enzyme reaction, non-heme structural and functional models were carried out by the use of mononuclear [FeII(L1-4)(solvent)3](ClO4)2 (1-4) (L1 = 1,3-bis(2-pyridyl-imino)isoindoline, L2 = 1,3-bis(4'-methyl-2-pyridyl-imino)isoindoline, L3 = 1,3-bis(4'-Chloro-2-pyridyl-imino)isoindoline, L4 = 1,3-bis(5'-chloro-2-pyridyl-imino)isoindoline) complexes as catalysts, where the possible reactive intermediates, diiron-perroxo [FeIII2(μ-O)(μ-1,2-O2)(L1-L4)2(Solv)2]2+ (5-8) complexes are known and well-characterized. All the complexes displayed catalase-like activity, which provided clear evidence for the formation of diiron-peroxo species during the catalytic cycle. We also found that the fine-tuning of iron redox states is a critical issue, both the formation rate and the reactivity of the diiron-peroxo species showed linear correlation with the FeIII/FeII redox potentials. Their stability and reactivity towards H2O2 was also investigated and based on kinetic and mechanistic studies a plausible mechanism, including a rate-determining hydrogen atom transfer between the H2O2 and diiron-peroxo species, was proposed. The present results provide one of the first examples of a nonheme diiron-peroxo complex, which shows a catalase-like reaction.
Collapse
|
9
|
Shaeer A, Aslam M, Rashid N. Structural and functional analyses of a novel manganese-catalase from Bacillus subtilis R5. Int J Biol Macromol 2021; 180:222-233. [PMID: 33737179 DOI: 10.1016/j.ijbiomac.2021.03.074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/13/2021] [Accepted: 03/13/2021] [Indexed: 12/24/2022]
Abstract
Catalases catalyze the decomposition of hydrogen peroxide into water and oxygen. Limited reports are available on characterization of manganese-catalases. We describe here molecular cloning and expression in Escherichia coli of a putative manganese-catalase gene from mesophilic bacterium, Bacillus subtilis R5. The gene product, CatBsu, produced as a soluble protein, was purified to apparent homogeneity and biochemically characterized. The absorption spectra and nonsignificant inhibition by sodium azide indicated that it is a manganese-catalase. The protein was in homohexameric form in solution, with a subunit molecular weight of 30 kDa, containing ~2 Mn2+ and ~1 Ca2+ per subunit. CatBsu showed highest activity at pH 8.0 and 55 °C. It was found to be highly active with a specific activity of 25,290 μmol min-1 mg-1 and apparent Km and kcat values of 98 mM and 1.27 × 104 s-1 subunit-1, respectively. Although from a mesophilic source, it exhibited a half-life of 2 h at 80 °C. Furthermore, the active site and metal binding residues in CatBsu were predicted by homology modelling and molecular docking. To the best of our knowledge, this is the first characterization of a manganese-catalase from genus Bacillus.
Collapse
Affiliation(s)
- Abeera Shaeer
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Mehwish Aslam
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan.
| |
Collapse
|
10
|
Chabot M, Morales E, Cummings J, Rios N, Giatpaiboon S, Mogul R. Simple kinetics, assay, and trends for soil microbial catalases. Anal Biochem 2020; 610:113901. [PMID: 32841648 DOI: 10.1016/j.ab.2020.113901] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/03/2020] [Indexed: 12/17/2022]
Abstract
In this report, we expand upon the enzymology and ecology of soil catalases through development and application of a simple kinetic model and field-amenable assay based upon volume displacement. Through this approach, we (A) directly relate apparent Michaelis-Menten terms to the catalase reaction mechanism, (B) obtain upper estimates of the intrinsic rate constants for the catalase community (k3'), along with moles of catalase per 16S rRNA gene copy number, (C) utilize catalase specific activities (SAs) to obtain biomass estimates of soil and permafrost communities (LOD, ~104 copy number gdw-1), and (D) relate kinetic trends to changes in bacterial community structure. In addition, this novel kinetic approach simultaneously incorporates barometric adjustments to afford comparisons across field measurements. As per our model, and when compared to garden soils, biological soil crusts exhibited ~2-fold lower values for k3', ≥105-fold higher catalase moles per biomass (250-1200 zmol copy number-1), and ~104-fold higher SAs per biomass (74-230 fkat copy number-1); whereas the highest SAs were obtained from permafrost and high-elevation soil communities (5900-6700 fkat copy number-1). In sum, the total trends suggest that microbial communities which experience higher degrees of native oxidative stress possess higher basal intracellular catalase concentrations and SAs per biomass.
Collapse
Affiliation(s)
- Michael Chabot
- Cal Poly Pomona, Chemistry & Biochemistry Department, 3801 W. Temple Ave., Pomona, CA, 91768, USA
| | - Ernesto Morales
- Cal Poly Pomona, Chemistry & Biochemistry Department, 3801 W. Temple Ave., Pomona, CA, 91768, USA
| | - Jacob Cummings
- Cal Poly Pomona, Chemistry & Biochemistry Department, 3801 W. Temple Ave., Pomona, CA, 91768, USA
| | - Nicholas Rios
- Cal Poly Pomona, Chemistry & Biochemistry Department, 3801 W. Temple Ave., Pomona, CA, 91768, USA
| | - Scott Giatpaiboon
- Cal Poly Pomona, Chemistry & Biochemistry Department, 3801 W. Temple Ave., Pomona, CA, 91768, USA
| | - Rakesh Mogul
- Cal Poly Pomona, Chemistry & Biochemistry Department, 3801 W. Temple Ave., Pomona, CA, 91768, USA.
| |
Collapse
|
11
|
Ballal A, Chakravarty D, Bihani SC, Banerjee M. Gazing into the remarkable world of non-heme catalases through the window of the cyanobacterial Mn-catalase 'KatB'. Free Radic Biol Med 2020; 160:480-487. [PMID: 32858159 DOI: 10.1016/j.freeradbiomed.2020.08.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/09/2020] [Accepted: 08/18/2020] [Indexed: 10/23/2022]
Abstract
Catalases, enzymes that decompose H2O2, are broadly categorized as heme catalases or non-heme catalases. The non-heme catalases are also known as Mn-catalases as they have Mn atoms in their active sites. However, unlike the well characterized heme-catalases, the study of Mn-catalases has gained importance only in the last few years. The filamentous, heterocystous, N2-fixing cyanobacterium Anabaena PCC 7120, shows the presence of two Mn-catalases, KatA and KatB, but lacks heme catalases. Of the two Mn-catalases, KatB, which is induced by salt/desiccation, plays a major role in overcoming salinity/oxidative stress. In this mini review, we have summarized the recent advances made in the field of Mn-catalases, particularly KatB, and have interpreted these results in the larger context of stress physiology. These aspects bring to the fore the distinctive biochemical/structural properties of Mn-catalases and furthermore highlight the in vivo importance of these enzymes in adapting to oxidative stresses.
Collapse
Affiliation(s)
- Anand Ballal
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| | - Dhiman Chakravarty
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Subhash C Bihani
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Manisha Banerjee
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| |
Collapse
|
12
|
Pedone E, Fiorentino G, Bartolucci S, Limauro D. Enzymatic Antioxidant Signatures in Hyperthermophilic Archaea. Antioxidants (Basel) 2020; 9:antiox9080703. [PMID: 32756530 PMCID: PMC7465337 DOI: 10.3390/antiox9080703] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/17/2022] Open
Abstract
To fight reactive oxygen species (ROS) produced by both the metabolism and strongly oxidative habitats, hyperthermophilic archaea are equipped with an array of antioxidant enzymes whose role is to protect the biological macromolecules from oxidative damage. The most common ROS, such as superoxide radical (O2-.) and hydrogen peroxide (H2O2), are scavenged by superoxide dismutase, peroxiredoxins, and catalase. These enzymes, together with thioredoxin, protein disulfide oxidoreductase, and thioredoxin reductase, which are involved in redox homeostasis, represent the core of the antioxidant system. In this review, we offer a panorama of progression of knowledge on the antioxidative system in aerobic or microaerobic (hyper)thermophilic archaea and possible industrial applications of these enzymes.
Collapse
Affiliation(s)
- Emilia Pedone
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134 Napoli, Italy;
| | - Gabriella Fiorentino
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso universitario Monte S. Angelo, Via Cinthia, 80126 Napoli, Italy; (G.F.); (S.B.)
| | - Simonetta Bartolucci
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso universitario Monte S. Angelo, Via Cinthia, 80126 Napoli, Italy; (G.F.); (S.B.)
| | - Danila Limauro
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso universitario Monte S. Angelo, Via Cinthia, 80126 Napoli, Italy; (G.F.); (S.B.)
- Correspondence:
| |
Collapse
|
13
|
Kripli B, Garda Z, Sólyom B, Tircsó G, Kaizer J. Formation, stability and catalase-like activity of mononuclear manganese( ii) and oxomanganese( iv) complexes in protic and aprotic solvents. NEW J CHEM 2020. [DOI: 10.1039/c9nj06004a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Catalytic and stoichiometric H2O2oxidation by [MnII(N4Py*)]2+and [MnIV(N4Py*)(O)]2+complexes as catalase mimics have been carried out.
Collapse
Affiliation(s)
- Balázs Kripli
- Department of Chemistry
- University of Pannonia
- 8201 Veszprém
- Hungary
| | - Zoltán Garda
- Department of Physical Chemistry
- Faculty of Science and Technology
- University of Debrecen
- Debrecen
- Hungary
| | - Bernadett Sólyom
- Department of Chemistry
- University of Pannonia
- 8201 Veszprém
- Hungary
| | - Gyula Tircsó
- Department of Physical Chemistry
- Faculty of Science and Technology
- University of Debrecen
- Debrecen
- Hungary
| | - József Kaizer
- Department of Chemistry
- University of Pannonia
- 8201 Veszprém
- Hungary
| |
Collapse
|
14
|
Stability and Catalase-Like Activity of a Mononuclear Non-Heme Oxoiron(IV) Complex in Aqueous Solution. Molecules 2019; 24:molecules24183236. [PMID: 31491998 PMCID: PMC6766873 DOI: 10.3390/molecules24183236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 01/09/2023] Open
Abstract
Heme-type catalase is a class of oxidoreductase enzymes responsible for the biological defense against oxidative damage of cellular components caused by hydrogen peroxide, where metal-oxo species are proposed as reactive intermediates. To get more insight into the mechanism of this curious reaction a non-heme structural and functional model was carried out by the use of a mononuclear complex [FeII(N4Py*)(CH3CN)](CF3SO3)2 (N4Py* = N,N-bis(2-pyridylmethyl)- 1,2-di(2-pyridyl)ethylamine) as a catalyst, where the possible reactive intermediates, high-valent FeIV=O and FeIII–OOH are known and spectroscopically well characterized. The kinetics of the dismutation of H2O2 into O2 and H2O was investigated in buffered water, where the reactivity of the catalyst was markedly influenced by the pH, and it revealed Michaelis–Menten behavior with KM = 1.39 M, kcat = 33 s−1 and k2(kcat/KM) = 23.9 M−1s−1 at pH 9.5. A mononuclear [(N4Py)FeIV=O]2+ as a possible intermediate was also prepared, and the pH dependence of its stability and reactivity in aqueous solution against H2O2 was also investigated. Based on detailed kinetic, and mechanistic studies (pH dependence, solvent isotope effect (SIE) of 6.2 and the saturation kinetics for the initial rates versus the H2O2 concentration with KM = 18 mM) lead to the conclusion that the rate-determining step in these reactions above involves hydrogen-atom transfer between the iron-bound substrate and the Fe(IV)-oxo species.
Collapse
|
15
|
Sellaththurai S, Priyathilaka TT, Lee J. Molecular cloning, characterization, and expression level analysis of a marine teleost homolog of catalase from big belly seahorse (Hippocampus abdominalis). FISH & SHELLFISH IMMUNOLOGY 2019; 89:647-659. [PMID: 30936047 DOI: 10.1016/j.fsi.2019.03.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/24/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Organisms possess a cellular antioxidant defense system inclusive of ROS scavengers to maintain the homeostasis of antioxidant levels. Catalase is a major ROS scavenger enzyme that plays a significant role in the antioxidant defense mechanism of organisms by reducing toxic hydrogen peroxide molecules into a nontoxic form of oxygen and water with a high turnover rate. In the present study, we performed molecular and functional characterization of the catalase homolog from Hippocampus abdominalis (HaCat). The HaCat cDNA sequence was identified as a 1578 bp ORF (open reading frame) that encodes a polypeptide of 526 amino acids with 59.33 kDa molecular weight. Its estimated pI value is 7.7, and it does not have any signal sequences. HaCat shared a conserved domain arrangement including the catalase proximal active site signature and heme ligand signature domain with the previously identified catalase counterparts. Phylogenetic analysis displayed close evolutionary relationships between HaCat and catalases from other teleost fish. According to our qPCR results, ubiquitous expression of HaCat transcripts were observed in all the tested tissues with high expression in the kidney followed by liver. Significant modulations of HaCat transcription were observed in blood, liver, and kidney tissues post-challenge with Streptococcus iniae, Edwardsiella tarda, poly I:C, and LPS. Peroxidase activity of recombinant HaCat (rHaCat) was evaluated using an ABTS assay and the ROS removal effect was further confirmed by oxidative DNA damage protection and cell viability assays. The rHaCat showed more than 97% activity over a temperature and pH range of 10 °C-40 °C and 5 to 6, respectively. The above results suggest that HaCat plays an indispensable role in the oxidative homeostasis of the seahorse during pathogenic attack.
Collapse
Affiliation(s)
- Sarithaa Sellaththurai
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Thanthrige Thiunuwan Priyathilaka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
16
|
Biswas S, Das P, Rasaily S, Pariyar A, Biswas AN. Synthesis, structures and catalase activities of bis(µ-oxo)diMnIII,III and bis(µ-acetato)diMnII,II complexes bearing a quinolyl donor tripod ligand. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Procópio L, Pádula M, van Elsas JD, Seldin L. Oxidative damage induced by H2O2 reveals SOS adaptive transcriptional response of Dietzia cinnamea strain P4. World J Microbiol Biotechnol 2019; 35:53. [DOI: 10.1007/s11274-019-2628-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 03/08/2019] [Indexed: 11/28/2022]
|
18
|
Theoretical study of the mechanism of the manganese catalase KatB. J Biol Inorg Chem 2018; 24:103-115. [DOI: 10.1007/s00775-018-1631-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 11/14/2018] [Indexed: 11/30/2022]
|
19
|
Raveendran S, Parameswaran B, Ummalyma SB, Abraham A, Mathew AK, Madhavan A, Rebello S, Pandey A. Applications of Microbial Enzymes in Food Industry. Food Technol Biotechnol 2018; 56:16-30. [PMID: 29795993 DOI: 10.17113/ftb.56.01.18.5491] [Citation(s) in RCA: 282] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The use of enzymes or microorganisms in food preparations is an age-old process. With the advancement of technology, novel enzymes with wide range of applications and specificity have been developed and new application areas are still being explored. Microorganisms such as bacteria, yeast and fungi and their enzymes are widely used in several food preparations for improving the taste and texture and they offer huge economic benefits to industries. Microbial enzymes are the preferred source to plants or animals due to several advantages such as easy, cost-effective and consistent production. The present review discusses the recent advancement in enzyme technology for food industries. A comprehensive list of enzymes used in food processing, the microbial source of these enzymes and the wide range of their application are discussed.
Collapse
Affiliation(s)
- Sindhu Raveendran
- Centre for Biofuels, National Institute for Interdisciplinary Science and Technology, CSIR, 695019 Trivandrum, India
| | - Binod Parameswaran
- Centre for Biofuels, National Institute for Interdisciplinary Science and Technology, CSIR, 695019 Trivandrum, India
| | - Sabeela Beevi Ummalyma
- Centre for Biofuels, National Institute for Interdisciplinary Science and Technology, CSIR, 695019 Trivandrum, India.,Institute of Bioresources and Sustainable Development, 795001 Imphal, India
| | - Amith Abraham
- Centre for Biofuels, National Institute for Interdisciplinary Science and Technology, CSIR, 695019 Trivandrum, India
| | - Anil Kuruvilla Mathew
- Centre for Biofuels, National Institute for Interdisciplinary Science and Technology, CSIR, 695019 Trivandrum, India
| | | | - Sharrel Rebello
- Communicable Disease Research Laboratory, St. Joseph's College, 680121 Irinjalakuda, India
| | - Ashok Pandey
- CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 226001 Lucknow, India
| |
Collapse
|
20
|
Olson TL, Espiritu E, Edwardraja S, Canarie E, Flores M, Williams JC, Ghirlanda G, Allen JP. Biochemical and spectroscopic characterization of dinuclear Mn-sites in artificial four-helix bundle proteins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2017; 1858:945-954. [PMID: 28882760 DOI: 10.1016/j.bbabio.2017.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/28/2017] [Accepted: 08/31/2017] [Indexed: 01/18/2023]
Abstract
To better understand metalloproteins with Mn-clusters, we have designed artificial four-helix bundles to have one, two, or three dinuclear metal centers able to bind Mn(II). Circular dichroism measurements showed that the Mn-proteins have substantial α-helix content, and analysis of electron paramagnetic resonance spectra is consistent with the designed number of bound Mn-clusters. The Mn-proteins were shown to catalyze the conversion of hydrogen peroxide into molecular oxygen. The loss of hydrogen peroxide was dependent upon the concentration of protein with bound Mn, with the proteins containing multiple Mn-clusters showing greater activity. Using an oxygen sensor, the oxygen concentration was found to increase with a rate up to 0.4μM/min, which was dependent upon the concentrations of hydrogen peroxide and the Mn-protein. In addition, the Mn-proteins were shown to serve as electron donors to bacterial reaction centers using optical spectroscopy. Similar binding of the Mn-proteins to reaction centers was observed with an average dissociation constant of 2.3μM. The Mn-proteins with three metal centers were more effective at this electron transfer reaction than the Mn-proteins with one or two metal centers. Thus, multiple Mn-clusters can be incorporated into four-helix bundles with the capability of performing catalysis and electron transfer to a natural protein.
Collapse
Affiliation(s)
- Tien L Olson
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Eduardo Espiritu
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | | | - Elizabeth Canarie
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Marco Flores
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - JoAnn C Williams
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Giovanna Ghirlanda
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA
| | - James P Allen
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA.
| |
Collapse
|
21
|
|
22
|
Gene regulation of two ferredoxin:NADP + oxidoreductases by the redox-responsive regulator SurR in Thermococcus kodakarensis. Extremophiles 2017; 21:903-917. [PMID: 28688056 DOI: 10.1007/s00792-017-0952-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 07/02/2017] [Indexed: 01/21/2023]
Abstract
The redox-responsive regulator SurR in the hyperthermophilic archaea Pyrococcus furiosus and Thermococcus kodakarensis binds to the SurR-binding consensus sequence (SBS) by responding to the presence of elemental sulfur. Here we constructed a surR gene disruption strain (DTS) in T. kodakarensis, and identified the genes that were under SurR control by comparing the transcriptomes of DTS and parent strains. Among these genes, transcript levels of ferredoxin:NADP+ oxidoreductases 1 and 2 (FNOR1 and FNOR2) genes displayed opposite responses to surR deletion, indicating that SurR repressed FNOR1 transcription while enhancing FNOR2 transcription. Each promoter region contains an SBS upstream (uSBS) and downstream (dSBS) of TATA. In addition to in vitro binding assays, we examined the roles of each SBS in vivo. In FNOR1, mutations in either one of the SBSs resulted in a complete loss of repression, indicating that the presence of both SBSs was essential for repression. In FNOR2, uSBS indeed functioned to enhance gene expression, whereas dSBS functioned in gene repression. SurR bound to uSBS2 of FNOR2 more efficiently than to dSBS2 in vitro, which may explain why SurR overall enhances FNOR2 transcription. Further analyses indicated the importance in the distance between uSBS and TATA for transcriptional activation in FNOR2.
Collapse
|
23
|
Watanabe A, Kaneko C, Hamada Y, Takeda K, Kimata S, Matsumoto T, Abe A, Tanaka N, Okada S, Uchino M, Satoh J, Nakagawa J, Niimura Y. Isolation of lactic acid bacteria exhibiting high scavenging activity for environmental hydrogen peroxide from fermented foods and its two scavenging enzymes for hydrogen peroxide. J GEN APPL MICROBIOL 2017; 62:75-82. [PMID: 27118075 DOI: 10.2323/jgam.62.75] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
To obtain lactic acid bacteria that scavenge environmental hydrogen peroxide, we developed a specialized enrichment medium and successfully isolated Pediococcus pentosaceus Be1 strain from a fermented food. This strain showed vigorous environmental hydrogen peroxide scavenging activity over a wide range of hydrogen peroxide concentrations. High Mn-catalase and NADH peroxidase activities were found in the cell-free extract of the P. pentosaceus Be1 strain, and these two hydrogen peroxide scavenging enzymes were purified from the cell-free extract of the strain. Mn-catalase has been purified from several microorganisms by several researchers, and the NADH peroxidase was first purified from the original strain in this report. After cloning the genes of the Mn-catalase and the NADH peroxidase, the deduced amino acid sequences were compared with those of known related enzymes.
Collapse
Affiliation(s)
- Akio Watanabe
- Department of Bio-Science, Tokyo University of Agriculture
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
A manganese catalase from Thermomicrobium roseum with peroxidase and catecholase activity. Extremophiles 2016; 21:201-210. [DOI: 10.1007/s00792-016-0896-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/18/2016] [Indexed: 01/12/2023]
|
25
|
Zhou Z, Song J, Nie L, Chen X. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem Soc Rev 2016; 45:6597-6626. [PMID: 27722328 PMCID: PMC5118097 DOI: 10.1039/c6cs00271d] [Citation(s) in RCA: 1317] [Impact Index Per Article: 146.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The reactive oxygen species (ROS)-mediated mechanism is the major cause underlying the efficacy of photodynamic therapy (PDT). The PDT procedure is based on the cascade of synergistic effects between light, a photosensitizer (PS) and oxygen, which greatly favors the spatiotemporal control of the treatment. This procedure has also evoked several unresolved challenges at different levels including (i) the limited penetration depth of light, which restricts traditional PDT to superficial tumours; (ii) oxygen reliance does not allow PDT treatment of hypoxic tumours; (iii) light can complicate the phototherapeutic outcomes because of the concurrent heat generation; (iv) specific delivery of PSs to sub-cellular organelles for exerting effective toxicity remains an issue; and (v) side effects from undesirable white-light activation and self-catalysation of traditional PSs. Recent advances in nanotechnology and nanomedicine have provided new opportunities to develop ROS-generating systems through photodynamic or non-photodynamic procedures while tackling the challenges of the current PDT approaches. In this review, we summarize the current status and discuss the possible opportunities for ROS generation for cancer therapy. We hope this review will spur pre-clinical research and clinical practice for ROS-mediated tumour treatments.
Collapse
Affiliation(s)
- Zijian Zhou
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China. and Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Jibin Song
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Liming Nie
- Center for Molecular Imaging and Translational Medicine, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
26
|
Zhang Y, Li X, Hao Z, Xi R, Cai Y, Liao X. Hydrogen Peroxide-Resistant CotA and YjqC of Bacillus altitudinis Spores Are a Promising Biocatalyst for Catalyzing Reduction of Sinapic Acid and Sinapine in Rapeseed Meal. PLoS One 2016; 11:e0158351. [PMID: 27362423 PMCID: PMC4928806 DOI: 10.1371/journal.pone.0158351] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 06/14/2016] [Indexed: 11/19/2022] Open
Abstract
For the more efficient detoxification of phenolic compounds, a promising avenue would be to develop a multi-enzyme biocatalyst comprising peroxidase, laccase and other oxidases. However, the development of this multi-enzyme biocatalyst is limited by the vulnerability of fungal laccases and peroxidases to hydrogen peroxide (H2O2)-induced inactivation. Therefore, H2O2-resistant peroxidase and laccase should be exploited. In this study, H2O2-stable CotA and YjqC were isolated from the outer coat of Bacillus altitudinis SYBC hb4 spores. In addition to the thermal and alkali stability of catalytic activity, CotA also exhibited a much higher H2O2 tolerance than fungal laccases from Trametes versicolor and Trametes trogii. YjqC is a sporulation-related manganese (Mn) catalase with striking peroxidase activity for sinapic acid (SA) and sinapine (SNP). In contrast to the typical heme-containing peroxidases, the peroxidase activity of YjqC was also highly resistant to inhibition by H2O2 and heat. CotA could also catalyze the oxidation of SA and SNP. CotA had a much higher affinity for SA than B. subtilis CotA. CotA and YjqC rendered from B. altitudinis spores had promising laccase and peroxidase activities for SA and SNP. Specifically, the B. altitudinis spores could be regarded as a multi-enzyme biocatalyst composed of CotA and YjqC. The B. altitudinis spores were efficient for catalyzing the degradation of SA and SNP in rapeseed meal. Moreover, efficiency of the spore-catalyzed degradation of SA and SNP was greatly improved by the presence of 15 mM H2O2. This effect was largely attributed to synergistic biocatalysis of the H2O2-resistant CotA and YjqC toward SA and SNP.
Collapse
Affiliation(s)
- Yanzhou Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Xunhang Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- The Bioscience and Engineering College, Jiangxi Agriculture University, Nanchang, 330045, China
| | - Zhikui Hao
- Institute of Applied Biotechnology, Taizhou Vocational & Technical College, Taizhou, 318000, China
| | - Ruchun Xi
- College of Forestry, South China Agricultural University, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, 510642, China
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Xiangru Liao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| |
Collapse
|
27
|
Bihani SC, Chakravarty D, Ballal A. KatB, a cyanobacterial Mn-catalase with unique active site configuration: Implications for enzyme function. Free Radic Biol Med 2016; 93:118-29. [PMID: 26826576 DOI: 10.1016/j.freeradbiomed.2016.01.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/07/2016] [Accepted: 01/25/2016] [Indexed: 01/14/2023]
Abstract
Manganese catalases (Mn-catalases), a class of H2O2 detoxifying proteins, are structurally and mechanistically distinct from the commonly occurring catalases, which contain heme. Active site of Mn-catalases can serve as template for the synthesis of catalase mimetics for therapeutic intervention in oxidative stress related disorders. However, unlike the heme catalases, structural aspects of Mn-catalases remain inadequately explored. The genome of the ancient cyanobacterium Anabaena PCC7120, shows the presence of two Mn-catalases, KatA and KatB. Here, we report the biochemical and structural characterization of KatB. The KatB protein (with a C-terminal his-tag) was over-expressed in Escherichia coli and purified by affinity chromatography. On the addition of Mn(2+) to the E. coli growth medium, a substantial increase in production of the soluble KatB protein was observed. The purified KatB protein was an efficient catalase, which was relatively insensitive to inhibition by azide. Crystal structure of KatB showed a hexameric assembly with four-helix bundle fold, characteristic of the Ferritin-like superfamily. With canonical Glu4His2 coordination geometry and two terminal water ligands, the KatB active site was distinctly different from that of other Mn-catalases. Interestingly, the KatB active site closely resembled the active sites of ruberythrin/bacterioferritin, bi-iron members of the Ferritin-like superfamily. The KatB crystal structure provided fundamental insights into the evolutionary relationship within the Ferritin-like superfamily and further showed that Mn-catalases can be sub-divided into two groups, each with a distinct active site configuration.
Collapse
Affiliation(s)
- Subhash C Bihani
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Dhiman Chakravarty
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Anand Ballal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
28
|
Chakravarty D, Banerjee M, Bihani SC, Ballal A. A Salt-Inducible Mn-Catalase (KatB) Protects Cyanobacterium from Oxidative Stress. PLANT PHYSIOLOGY 2016; 170:761-773. [PMID: 26645454 PMCID: PMC4734574 DOI: 10.1104/pp.15.01632] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/03/2015] [Indexed: 06/05/2023]
Abstract
Catalases, enzymes that detoxify H2O2, are widely distributed in all phyla, including cyanobacteria. Unlike the heme-containing catalases, the physiological roles of Mn-catalases remain inadequately characterized. In the cyanobacterium Anabaena, pretreatment of cells with NaCl resulted in unusually enhanced tolerance to oxidative stress. On exposure to H2O2, the NaCl-treated Anabaena showed reduced formation of reactive oxygen species, peroxides, and oxidized proteins than the control cells (i.e. not treated with NaCl) exposed to H2O2. This protective effect correlated well with the substantial increase in production of KatB, a Mn-catalase. Addition of NaCl did not safeguard the katB mutant from H2O2, suggesting that KatB was indeed responsible for detoxifying the externally added H2O2. Moreover, Anabaena deficient in KatB was susceptible to oxidative effects of salinity stress. The katB gene was strongly induced in response to osmotic stress or desiccation. Promoter-gfp analysis showed katB to be expressed only in the vegetative cells but not in heterocysts. Biochemically, KatB was an efficient, robust catalase that remained active in the presence of high concentrations of NaCl. Our findings unravel the role of Mn-catalase in acclimatization to salt/oxidative stress and demonstrate that the oxidative stress resistance of an organism can be enhanced by a simple compound such as NaCl.
Collapse
Affiliation(s)
- Dhiman Chakravarty
- Molecular Biology Division (D.C., M.B., A.B.) and Solid State Physics Division (S.C.B.), Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; andHomi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India (D.C., A.B.)
| | - Manisha Banerjee
- Molecular Biology Division (D.C., M.B., A.B.) and Solid State Physics Division (S.C.B.), Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; andHomi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India (D.C., A.B.)
| | - Subhash C Bihani
- Molecular Biology Division (D.C., M.B., A.B.) and Solid State Physics Division (S.C.B.), Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; andHomi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India (D.C., A.B.)
| | - Anand Ballal
- Molecular Biology Division (D.C., M.B., A.B.) and Solid State Physics Division (S.C.B.), Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; andHomi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India (D.C., A.B.)
| |
Collapse
|
29
|
Abdolahzadeh S, de Boer JW, Browne WR. Redox-State Dependent Ligand Exchange in Manganese-Based Oxidation Catalysis. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
30
|
Palopoli C, Duhayon C, Tuchagues JP, Signorella S. Synthesis, characterization, and reactivity studies of a water-soluble bis(alkoxo)(carboxylato)-bridged diMn(III) complex modeling the active site in catalase. Dalton Trans 2015; 43:17145-55. [PMID: 25315041 DOI: 10.1039/c4dt01907e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new diMn(III) complex, Na[Mn2(5-SO3-salpentO)(μ-OAc)(μ-OMe)(H2O)]·4H2O, where 5-SO3-salpentOH = 1,5-bis(5-sulphonatosalicylidenamino)pentan-3-ol, has been prepared and characterized. ESI-mass spectrometry, paramagnetic (1)H NMR, EPR and UV-visible spectroscopic studies on freshly prepared solutions of the complex in methanol and 9 : 1 methanol-water mixtures showed that the compound retains the triply bridged bis(μ-alkoxo)(μ-acetato)Mn2(3+) core in solution. In the 9 : 1 methanol-water mixture, slow substitution of acetate by water molecules took place, and after one month, the doubly bridged diMn(III) complex, [Mn2(5-SO3-salpentO)(μ-OMe)(H2O)3]·5H2O, formed and could be characterized by X-ray diffraction analysis. In methanolic or aqueous basic media, acetate shifts from a bridging to a terminal coordination mode, affording the highly stable [Mn2(5-SO3-salpentO)(μ-OMe)(OAc)](-) anion. The efficiency of the complex in disproportionating H2O2 depends on the solvent and correlates with the stability of the complex (towards metal dissociation) in each medium: basic buffer > aqueous base > water. The buffer preserves the integrity of the catalyst and the rate of O2 evolution remains essentially constant after successive additions of excess of H2O2. Turnovers as high as 3000 mol H2O2 per mol of catalyst, without significant decomposition and with an efficiency of k(cat)/K(M) = 1028 M(-1) s(-1), were measured for the complex in aqueous buffers of pH 11. Kinetic and spectroscopic results suggest a catalytic cycle that runs between Mn(III)2 and Mn(IV)2 oxidation states, which is consistent with the low redox potential observed for the Mn(III)2/Mn(III)Mn(IV) couple of the catalyst in basic medium.
Collapse
Affiliation(s)
- Claudia Palopoli
- IQUIR (Instituto de Química Rosario), CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, (S2002LRK) Rosario, Argentina.
| | | | | | | |
Collapse
|
31
|
Sooch BS, Kauldhar BS, Puri M. Recent insights into microbial catalases: Isolation, production and purification. Biotechnol Adv 2014; 32:1429-47. [DOI: 10.1016/j.biotechadv.2014.09.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 09/10/2014] [Accepted: 09/18/2014] [Indexed: 01/08/2023]
|
32
|
Abrashev R, Krumova E, Dishliska V, Eneva R, Engibarov S, Abrashev I, Angelova M. Differential Effect of Paraquat and Hydrogen Peroxide on the Oxidative Stress Response inVibrio CholeraeNon O1 26/06. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2011.0118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
33
|
Different roles of two transcription factor B proteins in the hyperthermophilic archaeon Thermococcus kodakarensis. Extremophiles 2014; 18:573-88. [DOI: 10.1007/s00792-014-0638-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/03/2014] [Indexed: 11/26/2022]
|
34
|
Bihani SC, Chakravarty D, Ballal A. Purification, crystallization and preliminary crystallographic analysis of KatB, a manganese catalase from Anabaena PCC 7120. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1299-302. [PMID: 24192374 PMCID: PMC3818058 DOI: 10.1107/s1744309113028017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/11/2013] [Indexed: 11/11/2022]
Abstract
Catalases are enzymes that play an important role in the detoxification of hydrogen peroxide (H2O2) in aerobic organisms. Among catalases, haem-containing catalases are ubiquitously distributed and their enzymatic mechanism is very well understood. On the other hand, manganese catalases that contain a bimanganese core in the active site have been less well characterized and their mode of action is not fully understood. The genome of Anabaena PCC 7120 does not show the presence of a haem catalase-like gene; instead, two ORFs encoding manganese catalases (Mn-catalases) are present. Here, the crystallization and preliminary X-ray crystallographic analysis of KatB, one of the two Mn-catalases from Anabaena, are reported. KatB was crystallized using the hanging-drop vapour-diffusion method with PEG 400 as a precipitant and calcium acetate as an additive. Diffraction data were collected in-house on an Agilent SuperNova system using a microfocus sealed-tube X-ray source. The crystal diffracted to 2.2 Å resolution at 100 K. The tetragonal crystal belonged to space group P4(1)2(1)2 (or enantiomer), with unit-cell parameters a = b = 101.87, c = 138.86 Å. Preliminary X-ray diffraction analysis using the Matthews coefficient and self-rotation function suggests the presence of a trimer in the asymmetric unit.
Collapse
Affiliation(s)
- Subhash Chandra Bihani
- Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra 400 085, India
| | - Dhiman Chakravarty
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra 400 085, India
| | - Anand Ballal
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, Maharashtra 400 085, India
| |
Collapse
|
35
|
Importance and determinants of induction of cold-induced DEAD RNA helicase in the hyperthermophilic archaeon Thermococcus kodakarensis. J Bacteriol 2013; 195:3442-50. [PMID: 23729644 DOI: 10.1128/jb.00332-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Thermococcus kodakarensis, which grows optimally at 85°C, expresses cold stress-inducible DEAD box RNA helicase (Tk-deaD) when shifted to 60°C. A DDA1 deletion (ΔTk-deaD) mutant exhibited decreased cell growth, and cells underwent lysis at 60°C in nutrient broth in the absence of elemental sulfur. In contrast, cells in medium containing elemental sulfur at 60°C did not undergo lysis, suggesting that Tk-deaD is necessary for cell growth in sulfur-free medium. To identify the element responsible for the cold response, a pTKR expression probe plasmid was constructed using thermostable catalase from Pyrobaculum calidifontis as a reporter. The plasmid pTKRD, which contained the transcription factor B recognition element, TATA region, and Shine-Dalgarno (SD) region, including the initiation codon of the Tk-deaD gene, exhibited cold inducibility. We also constructed a series of deletion and chimeric constructs with the glutamate dehydrogenase (gdh) promoter, whose expression is constitutive independent of culture temperatures and catalase expression. Reporter assay experiments indicated that the regulatory element is located in the region between the SD region and the initiation codon (ATG). Nucleotide sequences in the upstream regions of Tk-deaD and gdh were compared and revealed a five-adenosine (AAAAA) sequence between SD and ATG of Tk-deaD that was not present in gdh. Replacement of the repeated adenosine sequence with other sequences revealed that the AAAAA sequence is important for cold induction. This sequence-specific mechanism is unique and is one that has not been identified in other known cold-inducible genes.
Collapse
|
36
|
Pap JS, Kripli B, Bors I, Bogáth D, Giorgi M, Kaizer J, Speier G. Transition metal complexes bearing flexible N₃ or N₃O donor ligands: reactivity toward superoxide radical anion and hydrogen peroxide. J Inorg Biochem 2012; 117:60-70. [PMID: 23078775 DOI: 10.1016/j.jinorgbio.2012.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 08/22/2012] [Accepted: 08/24/2012] [Indexed: 01/25/2023]
Abstract
Mononuclear complexes of N-methylpropanoate-N,N-bis-(2-pyridylmethyl)amine (MPBMPA) and N-propanoate-N,N-bis-(2-pyridylmethyl)amine (HPBMPA) with first row transition metals from Mn to Cu were synthesized and characterized by spectroscopy (infrared, UV-visible), electrochemistry (cyclic voltammetry), microanalysis and in four cases X-ray crystallography. Structure of the complexes revealed high flexibility of these ligands that can adopt facial (Fe) and meridional (Cu) geometry. Activity in the degradation of reactive oxygen species (superoxide radical anion: superoxide dismutase (SOD)-like activity and hydrogen peroxide: catalase-like activity) was tested throughout the complex series in aqueous solutions. In connection with the catalytic dismutation of H(2)O(2), bleaching tests with morin were also conducted in water. Comparison of the two ligands helped in elucidating the possible role of the carboxylate moiety in the different catalytic reactions. Although no general trends could be revealed between reactivity and constitution of the first coordination sphere, plausible explanations for differences are discussed individually for SOD like, catalase-like and bleaching activity.
Collapse
Affiliation(s)
- József S Pap
- Department of Chemistry, University of Pannonia, 8201 Veszprém, Hungary
| | | | | | | | | | | | | |
Collapse
|
37
|
Banerjee M, Ballal A, Apte SK. Mn-catalase (Alr0998) protects the photosynthetic, nitrogen-fixing cyanobacterium Anabaena PCC7120 from oxidative stress. Environ Microbiol 2012; 14:2891-900. [PMID: 22897147 DOI: 10.1111/j.1462-2920.2012.02847.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Role of the non-haem, manganese catalase (Mn-catalase) in oxidative stress tolerance is unknown in cyanobacteria. The ORF alr0998 from the Anabaena PCC7120, which encodes a putative Mn-catalase, was constitutively overexpressed in Anabaena PCC7120 to generate a recombinant strain, AnKat(+). The Alr0998 protein could be immunodetected in AnKat(+) cells and zymographic analysis showed a distinct thermostable catalase activity in the cytosol of AnKat(+) cells but not in the wild-type Anabaena PCC7120. The observed catalase activity was insensitive to inhibition by azide indicating that Alr0998 protein is indeed a Mn-catalase. In response to oxidative stress, the AnKat(+) showed reduced levels of intracellular ROS which was also corroborated by decreased production of an oxidative stress-inducible 2-Cys-Prx protein. Treatment of wild-type Anabaena PCC7120 with H(2)O(2) caused (i) RNA degradation in vivo, (ii) severe reduction of photosynthetic pigments and CO(2) fixation, (iii) fragmentation and lysis of filaments and (iv) loss of viability. In contrast, the AnKat(+) strain was protected from all the aforesaid deleterious effect under oxidative stress. This is the first report on protection of an organism from oxidative stress by overexpression of a Mn-catalase.
Collapse
Affiliation(s)
- Manisha Banerjee
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai- 400 085, India
| | | | | |
Collapse
|
38
|
Bidaud P, Hébert L, Barbey C, Appourchaux AC, Torelli R, Sanguinetti M, Laugier C, Petry S. Rhodococcus equi's extreme resistance to hydrogen peroxide is mainly conferred by one of its four catalase genes. PLoS One 2012; 7:e42396. [PMID: 22879963 PMCID: PMC3412833 DOI: 10.1371/journal.pone.0042396] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 07/04/2012] [Indexed: 12/19/2022] Open
Abstract
Rhodococcus equi is one of the most widespread causes of disease in foals aged from 1 to 6 months. R. equi possesses antioxidant defense mechanisms to protect it from reactive oxygen metabolites such as hydrogen peroxide (H(2)O(2)) generated during the respiratory burst of phagocytic cells. These defense mechanisms include enzymes such as catalase, which detoxify hydrogen peroxide. Recently, an analysis of the R. equi 103 genome sequence revealed the presence of four potential catalase genes. We first constructed ΔkatA-, ΔkatB-, ΔkatC-and ΔkatD-deficient mutants to study the ability of R. equi to survive exposure to H(2)O(2)in vitro and within mouse peritoneal macrophages. Results showed that ΔkatA and, to a lesser extent ΔkatC, were affected by 80 mM H(2)O(2). Moreover, katA deletion seems to significantly affect the ability of R. equi to survive within murine macrophages. We finally investigated the expression of the four catalases in response to H(2)O(2) assays with a real time PCR technique. Results showed that katA is overexpressed 367.9 times (± 122.6) in response to exposure to 50 mM of H(2)O(2) added in the stationary phase, and 3.11 times (± 0.59) when treatment was administered in the exponential phase. In untreated bacteria, katB, katC and katD were overexpressed from 4.3 to 17.5 times in the stationary compared to the exponential phase. Taken together, our results show that KatA is the major catalase involved in the extreme H(2)O(2) resistance capability of R. equi.
Collapse
Affiliation(s)
- Pauline Bidaud
- Dozulé Laboratory for Equine Diseases, Unit Bacteriology and Parasitology, ANSES, Goustranville, France
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Bacillus pumilus SAFR-032, isolated at spacecraft assembly facilities of the National Aeronautics and Space Administration Jet Propulsion Laboratory, is difficult to kill by the sterilization method of choice, which uses liquid or vapor hydrogen peroxide. We identified two manganese catalases, YjqC and BPUM_1305, in spore protein extracts of several B. pumilus strains by using PAGE and mass spectrometric analyses. While the BPUM_1305 catalase was present in six of the B. pumilus strains tested, YjqC was not detected in ATCC 7061 and BG-B79. Furthermore, both catalases were localized in the spore coat layer along with laccase and superoxide dismutase. Although the initial catalase activity in ATCC 7061 spores was higher, it was less stable over time than the SAFR-032 enzyme. We propose that synergistic activity of YjqC and BPUM_1305, along with other coat oxidoreductases, contributes to the enhanced resistance of B. pumilus spores to hydrogen peroxide. We observed that the product of the catalase reaction, gaseous oxygen, forms expanding vesicles on the spore surface, affecting the mechanical integrity of the coat layer, resulting in aggregation of the spores. The accumulation of oxygen gas and aggregations may play a crucial role in limiting further exposure of Bacilli spore surfaces to hydrogen peroxide or other toxic chemicals when water is present.
Collapse
|
40
|
|
41
|
Mishra S, Imlay J. Why do bacteria use so many enzymes to scavenge hydrogen peroxide? Arch Biochem Biophys 2012; 525:145-60. [PMID: 22609271 DOI: 10.1016/j.abb.2012.04.014] [Citation(s) in RCA: 272] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/13/2012] [Accepted: 04/14/2012] [Indexed: 12/16/2022]
Abstract
Hydrogen peroxide (H(2)O(2)) is continuously formed by the autoxidation of redox enzymes in aerobic cells, and it also enters from the environment, where it can be generated both by chemical processes and by the deliberate actions of competing organisms. Because H(2)O(2) is acutely toxic, bacteria elaborate scavenging enzymes to keep its intracellular concentration at nanomolar levels. Mutants that lack such enzymes grow poorly, suffer from high rates of mutagenesis, or even die. In order to understand how bacteria cope with oxidative stress, it is important to identify the key enzymes involved in H(2)O(2) degradation. Catalases and NADH peroxidase (Ahp) are primary scavengers in many bacteria, and their activities and physiological impacts have been unambiguously demonstrated through phenotypic analysis and through direct measurements of H(2)O(2) clearance in vivo. Yet a wide variety of additional enzymes have been proposed to serve similar roles: thiol peroxidase, bacterioferritin comigratory protein, glutathione peroxidase, cytochrome c peroxidase, and rubrerythrins. Each of these enzymes can degrade H(2)O(2) in vitro, but their contributions in vivo remain unclear. In this review we examine the genetic, genomic, regulatory, and biochemical evidence that each of these is a bonafide scavenger of H(2)O(2) in the cell. We also consider possible reasons that bacteria might require multiple enzymes to catalyze this process, including differences in substrate specificity, compartmentalization, cofactor requirements, kinetic optima, and enzyme stability. It is hoped that the resolution of these issues will lead to an understanding of stress resistance that is more accurate and perceptive.
Collapse
Affiliation(s)
- Surabhi Mishra
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | | |
Collapse
|
42
|
Whittaker JW. Non-heme manganese catalase--the 'other' catalase. Arch Biochem Biophys 2011; 525:111-20. [PMID: 22198285 DOI: 10.1016/j.abb.2011.12.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 12/09/2011] [Accepted: 12/10/2011] [Indexed: 12/24/2022]
Abstract
Non-heme manganese catalases are widely distributed over microbial life and represent an environmentally important alternative to heme-containing catalases in antioxidant defense. Manganese catalases contain a binuclear manganese complex as their catalytic active site rather than a heme, and cycle between Mn(2)(II,II) and Mn(2)(III,III) states during turnover. X-ray crystallography has revealed the key structural elements of the binuclear manganese active site complex that can serve as the starting point for computational studies on the protein. Four manganese catalase enzymes have been isolated and characterized, and the enzyme appears to have a broad phylogenetic distribution including both bacteria and archae. More than 100 manganese catalase genes have been annotated in genomic databases, although the assignment of many of these putative manganese catalases needs to be experimentally verified. Iron limitation, exposure to low levels of peroxide stress, thermostability and cyanide resistance may provide the biological and environmental context for the occurrence of manganese catalases.
Collapse
Affiliation(s)
- James W Whittaker
- Institute for Environmental Health, Division of Environmental and Biomolecular Systems, Oregon Health and Science University, 20000 N.W. Walker Road, Beaverton, OR 97006-8921, USA.
| |
Collapse
|
43
|
Ovchenkova EN, Lomova TN, Klyueva ME. Role of the central manganese(III) ion in the hydrogen peroxide oxidation mechanism of (2,3,7,8,12,13,17,18-octaalkyl-5(5,10)(5,15)-phenyl(diphenyl)porphinato)chloromanganese(III). RUSS J INORG CHEM+ 2011. [DOI: 10.1134/s0036023611120424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Palopoli C, Bruzzo N, Hureau C, Ladeira S, Murgida D, Signorella S. Synthesis, Characterization, and Catalase Activity of a Water-Soluble diMnIII Complex of a Sulphonato-Substituted Schiff Base Ligand: An Efficient Catalyst for H2O2 Disproportionation. Inorg Chem 2011; 50:8973-83. [DOI: 10.1021/ic2011452] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Claudia Palopoli
- Departamento de Química Física/IQUIR-CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Natalia Bruzzo
- Departamento de Química Física/IQUIR-CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Christelle Hureau
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205, route de Narbonne, F-31077 Toulouse, France and Université de Toulouse, UPS, INPT, LCC, F-31077 Toulouse, France
| | - Sonia Ladeira
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205, route de Narbonne, F-31077 Toulouse, France and Université de Toulouse, UPS, INPT, LCC, F-31077 Toulouse, France
- Institut de Chimie de Toulouse, FR2599, 118 route de Narbonne, F-31062 Toulouse, France
| | - Daniel Murgida
- Departamento de Química Inorgánica, Analítica y Química Física/INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires C1428EHA, Argentina
| | - Sandra Signorella
- Departamento de Química Física/IQUIR-CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| |
Collapse
|
45
|
Najafpour MM, Kozlevčar B, McKee V, Jagličić Z, Jagodič M. The first pentanuclear heterobimetallic coordination cation with CeIII, CeIV and MnII. INORG CHEM COMMUN 2011. [DOI: 10.1016/j.inoche.2010.10.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
|
47
|
|
48
|
Raymond J. The role of horizontal gene transfer in photosynthesis, oxygen production, and oxygen tolerance. Methods Mol Biol 2009; 532:323-38. [PMID: 19271194 DOI: 10.1007/978-1-60327-853-9_19] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
One of the pivotal events during the early evolution of life was the advent of oxygenic photosynthesis, responsible for producing essentially all of the free oxygen in Earth's atmosphere. This molecular innovation required the development of two tandemly linked photosystems that generate a redox potential strong enough to oxidize water and then funnel those electrons ultimately to cellular processes like carbon and nitrogen fixation. The by-product of this reaction, molecular oxygen, spawned an entirely new realm of enzymatic reactions that served to mitigate its potential toxicity, as well as to take advantage of the free energy available from using O(2) as an electron acceptor. These ensuing events ultimately gave rise to aerobic, multicelled eukaryotes and new levels of biological complexity. Remarkably, instances of horizontal gene transfer have been identified at nearly every step in this transformation of the biosphere, from the evolution and radiation of photosynthesis to the development of biological pathways dependent on oxygen. This chapter discusses the evidence and examples of some of these occurrences that have been elucidated in recent years.
Collapse
Affiliation(s)
- Jason Raymond
- School of Natural Sciences, University of California, Merced, CA, USA
| |
Collapse
|
49
|
Transcriptional map of respiratory versatility in the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. J Bacteriol 2008; 191:782-94. [PMID: 19047344 DOI: 10.1128/jb.00965-08] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hyperthermophilic crenarchaea in the genus Pyrobaculum are notable for respiratory versatility, but relatively little is known about the genetics or regulation of crenarchaeal respiratory pathways. We measured global gene expression in Pyrobaculum aerophilum cultured with oxygen, nitrate, arsenate and ferric iron as terminal electron acceptors to identify transcriptional patterns that differentiate these pathways. We also compared genome sequences for four closely related species with diverse respiratory characteristics (Pyrobaculum arsenaticum, Pyrobaculum calidifontis, Pyrobaculum islandicum, and Thermoproteus neutrophilus) to identify genes associated with different respiratory capabilities. Specific patterns of gene expression in P. aerophilum were associated with aerobic respiration, nitrate respiration, arsenate respiration, and anoxia. Functional predictions based on these patterns include separate cytochrome oxidases for aerobic growth and oxygen scavenging, a nitric oxide-responsive transcriptional regulator, a multicopper oxidase involved in denitrification, and an archaeal arsenate respiratory reductase. We were unable to identify specific genes for iron respiration, but P. aerophilum exhibited repressive transcriptional responses to iron remarkably similar to those controlled by the ferric uptake regulator in bacteria. Together, these analyses present a genome-scale view of crenarchaeal respiratory flexibility and support a large number of functional and regulatory predictions for further investigation. The complete gene expression data set can be viewed in genomic context with the Archaeal Genome Browser at archaea.ucsc.edu.
Collapse
|
50
|
Synthesis and catalase-like activity of a dimanganese(II) complex with a pentadentate L-prolin-based ligand. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/s11144-008-5320-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|