1
|
Lakey BD, Myers KS, Alberge F, Mettert EL, Kiley PJ, Noguera DR, Donohue TJ. The essential Rhodobacter sphaeroides CenKR two-component system regulates cell division and envelope biosynthesis. PLoS Genet 2022; 18:e1010270. [PMID: 35767559 PMCID: PMC9275681 DOI: 10.1371/journal.pgen.1010270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 07/12/2022] [Accepted: 05/20/2022] [Indexed: 12/13/2022] Open
Abstract
Bacterial two-component systems (TCSs) often function through the detection of an extracytoplasmic stimulus and the transduction of a signal by a transmembrane sensory histidine kinase. This kinase then initiates a series of reversible phosphorylation modifications to regulate the activity of a cognate, cytoplasmic response regulator as a transcription factor. Several TCSs have been implicated in the regulation of cell cycle dynamics, cell envelope integrity, or cell wall development in Escherichia coli and other well-studied Gram-negative model organisms. However, many α-proteobacteria lack homologs to these regulators, so an understanding of how α-proteobacteria orchestrate extracytoplasmic events is lacking. In this work we identify an essential TCS, CenKR (Cell envelope Kinase and Regulator), in the α-proteobacterium Rhodobacter sphaeroides and show that modulation of its activity results in major morphological changes. Using genetic and biochemical approaches, we dissect the requirements for the phosphotransfer event between CenK and CenR, use this information to manipulate the activity of this TCS in vivo, and identify genes that are directly and indirectly controlled by CenKR in Rb. sphaeroides. Combining ChIP-seq and RNA-seq, we show that the CenKR TCS plays a direct role in maintenance of the cell envelope, regulates the expression of subunits of the Tol-Pal outer membrane division complex, and indirectly modulates the expression of peptidoglycan biosynthetic genes. CenKR represents the first TCS reported to directly control the expression of Tol-Pal machinery genes in Gram-negative bacteria, and we predict that homologs of this TCS serve a similar function in other closely related organisms. We propose that Rb. sphaeroides genes of unknown function that are directly regulated by CenKR play unknown roles in cell envelope biosynthesis, assembly, and/or remodeling in this and other α-proteobacteria.
Collapse
Affiliation(s)
- Bryan D. Lakey
- Wisconsin Energy Institute, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kevin S. Myers
- Wisconsin Energy Institute, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - François Alberge
- Wisconsin Energy Institute, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Erin L. Mettert
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Patricia J. Kiley
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Daniel R. Noguera
- Wisconsin Energy Institute, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Timothy J. Donohue
- Wisconsin Energy Institute, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
2
|
Park JM, Lee HJ, Ahn J, Sekhon SS, Kim SY, Wee JH, Min J, Ahn JY, Kim YH. Effects of Light Regulation on Proteome Expression in Rhodobacter sphaeroides 2.4.1. Mol Biotechnol 2021; 63:437-445. [PMID: 33666852 DOI: 10.1007/s12033-021-00312-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 02/20/2021] [Indexed: 12/01/2022]
Abstract
Light plays an important role in the transcriptional regulation of photosynthetic apparatus. The influence of oxygen and light conditions on the protein expression of Rhodobacter sphaeroides was investigated using a proteomic approach. The R. sphaeroides was grown aerobically under dark cultivation (D24) and light cultivation (L24) for 24 h. An average of 950 distinguishable spots were obtained on 2-D analytic gel for D24 and L24 conditions, of which 48 proteins exhibited significant changes in protein expression levels. Among the 48, 31 proteins were upregulated and 17 proteins were downregulated in L24 when compared with D24. The results depict the comparative protein expression in R. sphaeroides mediated through growth under light or dark conditions. The data suggest that the overexpressed proteins, phosphoribosyl-ATP pyrophosphatase (HisE), in the D24/aerobic culture are involved in the positive regulation of PAC production can be functionally applied in metabolic engineering and industrial processes.
Collapse
Affiliation(s)
- Jae-Min Park
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, South Korea
| | - Hyun-Jeong Lee
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, 54896, Jeonju-si, Jeollabuk-do, South Korea
| | - Jinhee Ahn
- MEDICA KOREA Co., Ltd., 704ho, 2558, Nambusunhwan-ro, Seocho-gu, Seoul, 06750, South Korea
| | - Simranjeet Singh Sekhon
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, South Korea
| | - Sang Yong Kim
- Department of Food Science and Biotechnology, Shin Ansan University, 135 Sinansandaehak-Ro, Danwon-Gu, 15435, Ansan, South Korea
| | - Ji-Hyang Wee
- Department of Food Science and Biotechnology, Shin Ansan University, 135 Sinansandaehak-Ro, Danwon-Gu, 15435, Ansan, South Korea
| | - Jiho Min
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, 54896, Jeonju-si, Jeollabuk-do, South Korea.
| | - Ji-Young Ahn
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, South Korea.
| | - Yang-Hoon Kim
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, South Korea.
| |
Collapse
|
3
|
Jeong EL, Broad S, Moody R, Phillips-Jones M. The adherence-associated Fdp fasciclin I domain protein of the biohydrogen producer Rhodobacter sphaeroides is regulated by the global Prr pathway. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 2020; 45:26840-26854. [PMID: 33093750 PMCID: PMC7561615 DOI: 10.1016/j.ijhydene.2020.07.108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 07/07/2020] [Accepted: 07/12/2020] [Indexed: 05/23/2023]
Abstract
Expression of fdp, encoding a fasciclin I domain protein important for adherence in the hydrogen-producing bacterium Rhodobacter sphaeroides, was investigated under a range of conditions to gain insights into optimization of adherence for immobilization strategies suitable for H2 production. The fdp promoter was linked to a lacZ reporter and expressed in wild type and in PRRB and PRRA mutant strains of the Prr regulatory pathway. Expression was significantly negatively regulated by Prr under all conditions of aerobiosis tested including anaerobic conditions (required for H2 production), and aerobically regardless of growth phase, growth medium complexity or composition, carbon source, heat and cold shock and dark/light conditions. Negative fdp regulation by Prr was reflected in cellular levels of translated Fdp protein. Since Prr is required directly for nitrogenase expression, we propose optimization of Fdp-based adherence in R. sphaeroides for immobilized biohydrogen production by inactivation of the PrrA binding site(s) upstream of fdp.
Collapse
Affiliation(s)
- E.-L. Jeong
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - S.J. Broad
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - R.G. Moody
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
- Department of Molecular Biology & Biotechnology, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - M.K. Phillips-Jones
- National Centre for Macromolecular Hydrodynamics, School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire, LE12 5RD, United Kingdom
| |
Collapse
|
4
|
Reyes Ruiz LM, Fiebig A, Crosson S. Regulation of bacterial surface attachment by a network of sensory transduction proteins. PLoS Genet 2019; 15:e1008022. [PMID: 31075103 PMCID: PMC6530869 DOI: 10.1371/journal.pgen.1008022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/22/2019] [Accepted: 04/26/2019] [Indexed: 11/25/2022] Open
Abstract
Bacteria are often attached to surfaces in natural ecosystems. A surface-associated lifestyle can have advantages, but shifts in the physiochemical state of the environment may result in conditions in which attachment has a negative fitness impact. Therefore, bacteria employ numerous mechanisms to control the transition from an unattached to a sessile state. The Caulobacter crescentus protein HfiA is a potent developmental inhibitor of the secreted polysaccharide adhesin known as the holdfast, which enables permanent attachment to surfaces. Multiple environmental cues influence expression of hfiA, but mechanisms of hfiA regulation remain largely undefined. Through a forward genetic selection, we have discovered a multi-gene network encoding a suite of two-component system (TCS) proteins and transcription factors that coordinately control hfiA transcription, holdfast development and surface adhesion. The hybrid HWE-family histidine kinase, SkaH, is central among these regulators and forms heteromeric complexes with the kinases, LovK and SpdS. The response regulator SpdR indirectly inhibits hfiA expression by activating two XRE-family transcription factors that directly bind the hfiA promoter to repress its transcription. This study provides evidence for a model in which a consortium of environmental sensors and transcriptional regulators integrate environmental cues at the hfiA promoter to control the attachment decision. Living on a surface within a community of cells confers a number of advantages to a bacterium. However, the transition from a free-living, planktonic state to a surface-attached lifestyle should be tightly regulated to ensure that cells avoid adhering to toxic or resource-limited niches. Many bacteria build adhesive structures on the surface of their cell envelopes that enable attachment. We sought to discover genes that control development of the Caulobacter crescentus surface adhesin known as the holdfast. Our studies uncovered a network of signal transduction proteins that coordinately control the biosynthesis of the holdfast by regulating transcription of the holdfast inhibitor, hfiA. We conclude that C. crescentus uses a multi-component regulatory system to sense and integrate environmental information to determine whether to attach to a surface, or to remain in an unattached state.
Collapse
Affiliation(s)
- Leila M Reyes Ruiz
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Aretha Fiebig
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois United States of America
| | - Sean Crosson
- Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, Illinois, United States of America.,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois United States of America.,Department of Microbiology, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
5
|
Dual phosphorylation in response regulator protein PrrA is crucial for intracellular survival of mycobacteria consequent upon transcriptional activation. Biochem J 2017; 474:4119-4136. [PMID: 29101285 DOI: 10.1042/bcj20170596] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 01/05/2023]
Abstract
The remarkable ability of Mycobacterium tuberculosis (Mtb) to survive inside human macrophages is attributed to the presence of a complex sensory and regulatory network. PrrA is a DNA-binding regulatory protein, belonging to an essential two-component system (TCS), PrrA/B, which is required for early phase intracellular replication of Mtb. Despite its importance, the mechanism of PrrA/B-mediated signaling is not well understood. In the present study, we demonstrate that the binding of PrrA on the promoter DNA and its consequent activation is cumulatively controlled via dual phosphorylation of the protein. We have further characterized the role of terminal phospho-acceptor domain in the physical interaction of PrrA with its cognate kinase PrrB. The genetic deletion of prrA/B in Mycobacterium smegmatis was possible only in the presence of ectopic copies of the genes, suggesting the essentiality of this TCS in fast-growing mycobacterial strains as well. The overexpression of phospho-mimetic mutant (T6D) altered the growth of M. smegmatis in an in vitro culture and affected the replication of Mycobacterium bovis BCG in mouse peritoneal macrophages. Interestingly, the Thr6 site was found to be conserved in Mtb complex, whereas it was altered in some fast-growing mycobacterial strains, indicating that this unique phosphorylation might be predominant in employing the regulatory circuit in M. bovis BCG and presumably also in Mtb complex.
Collapse
|
6
|
Gopalani M, Dhiman A, Rahi A, Kandari D, Bhatnagar R. Identification, Functional Characterization and Regulon Prediction of a Novel Two Component System Comprising BAS0540-BAS0541 of Bacillus anthracis. PLoS One 2016; 11:e0158895. [PMID: 27392063 PMCID: PMC4938410 DOI: 10.1371/journal.pone.0158895] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 06/23/2016] [Indexed: 12/22/2022] Open
Abstract
Two component systems (TCSs) can be envisaged as complex molecular devices that help the bacteria to sense its environment and respond aptly. 41 TCSs are predicted in Bacillus anthracis, a potential bioterrorism agent, of which only four have been studied so far. Thus, the intricate signaling network contributed by TCSs remains largely unmapped in B. anthracis and needs comprehensive exploration. In this study, we functionally characterized one such system composed of BAS0540 (Response regulator) and BAS0541 (Histidine kinase). BAS0540-BAS0541, the closest homolog of CiaRH of Streptococcus in B. anthracis, forms a functional TCS with BAS0541 displaying autophosphorylation and subsequent phosphotransfer to BAS0540. BAS0540 was also found to accept phosphate from physiologically relevant small molecule phosphodonors like acetyl phosphate and carbamoyl phosphate. Results of qRT-PCR and immunoblotting demonstrated that BAS0540 exhibits a constitutive expression throughout the growth of B. anthracis. Regulon prediction for BAS0540 in B. anthracis was done in silico using the consensus DNA binding sequence of CiaR of Streptococcus. The predicted regulon of BAS0540 comprised of 23 genes, which could be classified into 8 functionally diverse categories. None of the proven virulence factors were a part of the predicted regulon, an observation contrasting with the regulon of CiaRH in Streptococci. Electrophoretic mobility shift assay was used to show direct binding of purified BAS0540 to the upstream regions of 5 putative regulon candidates- BAS0540 gene itself; a gene predicted to encode cell division protein FtsA; a self–immunity gene; a RND family transporter gene and a gene encoding stress (heat) responsive protein. A significant enhancement in the DNA binding ability of BAS0540 was observed upon phosphorylation. Overexpression of response regulator BAS0540 in B. anthracis led to a prodigious increase of ~6 folds in the cell length, thereby conferring it a filamentous phenotype. Furthermore, the sporulation titer of the pathogen also decreased markedly by ~16 folds. Thus, this study characterizes a novel TCS of B. anthracis and elucidates its role in two of the most important physiological processes of the pathogen: cell division and sporulation.
Collapse
Affiliation(s)
- Monisha Gopalani
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, India
| | - Alisha Dhiman
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, India
| | - Amit Rahi
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, India
| | - Divya Kandari
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, India
| | - Rakesh Bhatnagar
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi-110067, India
- * E-mail:
| |
Collapse
|
7
|
Oxygen-dependent regulation of bacterial lipid production. J Bacteriol 2015; 197:1649-58. [PMID: 25733615 DOI: 10.1128/jb.02510-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/22/2015] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED Understanding the mechanisms of lipid accumulation in microorganisms is important for several reasons. In addition to providing insight into assembly of biological membranes, lipid accumulation has important applications in the production of renewable fuels and chemicals. The photosynthetic bacterium Rhodobacter sphaeroides is an attractive organism to study lipid accumulation, as it has the ability to increase membrane production at low O2 tensions. Under these conditions, R. sphaeroides develops invaginations of the cytoplasmic membrane to increase its membrane surface area for housing of the membrane-bound components of its photosynthetic apparatus. Here we use fatty acid levels as a reporter of membrane lipid content. We show that, under low-O2 and anaerobic conditions, the total fatty acid content per cell increases 3-fold. We also find that the increases in the amount of fatty acid and photosynthetic pigment per cell are correlated as O2 tensions or light intensity are changed. To ask if lipid and pigment accumulation were genetically separable, we analyzed strains with mutations in known photosynthetic regulatory pathways. While a strain lacking AppA failed to induce photosynthetic pigment-protein complex accumulation, it increased fatty acid content under low-O2 conditions. We also found that an intact PrrBA pathway is required for low-O2-induced fatty acid accumulation. Our findings suggest a previously unknown role of R. sphaeroides transcriptional regulators in increasing fatty acid and phospholipid accumulation in response to decreased O2 tension. IMPORTANCE Lipids serve important functions in living systems, either as structural components of membranes or as a form of carbon storage. Understanding the mechanisms of lipid accumulation in microorganisms is important for providing insight into the assembly of biological membranes and additionally has important applications in the production of renewable fuels and chemicals. In this study, we investigate the ability of Rhodobacter sphaeroides to increase membrane production at low O2 tensions in order to house its photosynthetic apparatus. We demonstrate that this bacterium has a mechanism to increase lipid content in response to decreased O2 tension and identify a transcription factor necessary for this response. This is significant because it identifies a transcriptional regulatory pathway that can increase microbial lipid content.
Collapse
|
8
|
Imam S, Noguera DR, Donohue TJ. Global analysis of photosynthesis transcriptional regulatory networks. PLoS Genet 2014; 10:e1004837. [PMID: 25503406 PMCID: PMC4263372 DOI: 10.1371/journal.pgen.1004837] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 10/20/2014] [Indexed: 12/18/2022] Open
Abstract
Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888), which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis. Photosynthetic organisms are among the most abundant life forms on earth. Their unique ability to harvest solar energy and use it to fix atmospheric carbon dioxide is at the foundation of the global food chain. This paper reports the first comprehensive analysis of networks that control expression of photosynthesis genes using Rhodobacter sphaeroides, a microbe that has been studied for decades as a model of solar energy capture and other aspects of the photosynthetic lifestyle. We find a previously unappreciated complexity in the level of control of photosynthetic genes, while identifying new links between photosynthesis and central processes like iron availability. This organism is an ancestor of modern day plants, so our data can inform studies in other photosynthetic organisms and improve our ability to harness solar energy for food and industrial processes.
Collapse
Affiliation(s)
- Saheed Imam
- Program in Cellular and Molecular Biology, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- Department of Bacteriology, University of Wisconsin – Madison, Wisconsin Energy Institute, Madison, Wisconsin, United States of America
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Daniel R. Noguera
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- Department of Civil and Environmental Engineering, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Timothy J. Donohue
- Department of Bacteriology, University of Wisconsin – Madison, Wisconsin Energy Institute, Madison, Wisconsin, United States of America
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
9
|
Amino acid residues of RegA important for interactions with the CbbR-DNA complex of Rhodobacter sphaeroides. J Bacteriol 2014; 196:3179-90. [PMID: 24957624 DOI: 10.1128/jb.01842-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
CbbR and RegA (PrrA) are transcriptional regulators of the Calvin-Benson-Bassham (CBB) CO2 fixation pathway (cbbI and cbbII) operons of Rhodobacter sphaeroides. The CbbR and RegA proteins interact, but CbbR must be bound to the promoter DNA in order for RegA-CbbR protein-protein interactions to occur. RegA greatly enhances the ability of CbbR to bind the cbbI promoter or greatly enhances the stability of the CbbR/promoter complex. The N-terminal receiver domain and the DNA binding domain of RegA were shown to interact with CbbR. Residues in α-helix 7 and α-helix 8 of the DNA binding domain (helix-turn-helix) of RegA directly interacted with CbbR, with α-helix 7 positioned immediately above the DNA and α-helix 8 located in the major groove of the DNA. A CbbR protein containing only the DNA binding motif and the linker helix was capable of binding to RegA. In contrast, a truncated CbbR containing only the linker helix and recognition domains I and II (required for effector binding) was not able to interact with RegA. The accumulated results strongly suggest that the DNA binding domains of both proteins interact to facilitate optimal transcriptional control over the cbb operons. In vivo analysis, using constitutively active mutant CbbR proteins, further indicated that CbbR must interact with phosphorylated RegA in order to accomplish transcriptional activation.
Collapse
|
10
|
Convergence of the transcriptional responses to heat shock and singlet oxygen stresses. PLoS Genet 2012; 8:e1002929. [PMID: 23028346 PMCID: PMC3441632 DOI: 10.1371/journal.pgen.1002929] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 07/16/2012] [Indexed: 02/04/2023] Open
Abstract
Cells often mount transcriptional responses and activate specific sets of genes in response to stress-inducing signals such as heat or reactive oxygen species. Transcription factors in the RpoH family of bacterial alternative σ factors usually control gene expression during a heat shock response. Interestingly, several α-proteobacteria possess two or more paralogs of RpoH, suggesting some functional distinction. We investigated the target promoters of Rhodobacter sphaeroides RpoHI and RpoHII using genome-scale data derived from gene expression profiling and the direct interactions of each protein with DNA in vivo. We found that the RpoHI and RpoHII regulons have both distinct and overlapping gene sets. We predicted DNA sequence elements that dictate promoter recognition specificity by each RpoH paralog. We found that several bases in the highly conserved TTG in the −35 element are important for activity with both RpoH homologs; that the T-9 position, which is over-represented in the RpoHI promoter sequence logo, is critical for RpoHI–dependent transcription; and that several bases in the predicted −10 element were important for activity with either RpoHII or both RpoH homologs. Genes that are transcribed by both RpoHI and RpoHII are predicted to encode for functions involved in general cell maintenance. The functions specific to the RpoHI regulon are associated with a classic heat shock response, while those specific to RpoHII are associated with the response to the reactive oxygen species, singlet oxygen. We propose that a gene duplication event followed by changes in promoter recognition by RpoHI and RpoHII allowed convergence of the transcriptional responses to heat and singlet oxygen stress in R. sphaeroides and possibly other bacteria. An important property of living systems is their ability to survive under conditions of stress such as increased temperature or the presence of reactive oxygen species. Central to the function of these stress responses are transcription factors that activate specific sets of genes needed for this response. Despite the central role of stress responses across all forms of life, the processes driving their organization and evolution across organisms are poorly understood. This paper uses genomic, computational, and mutational analyses to dissect stress responses controlled by two proteins that are each members of the RpoH family of alternative σ factors. RpoH family members usually control gene expression during a heat shock response. However, the photosynthetic bacterium Rhodobacter sphaeroides and several other α-proteobacteria possess two or more paralogs of RpoH, suggesting some functional distinction. Our findings predict that a gene duplication event followed by changes in DNA recognition by RpoHI and RpoHII allowed convergence of the transcriptional responses to heat and singlet oxygen stress in R. sphaeroides and possibly other bacteria. Our approach and findings should interest those studying the evolution of transcription factors or the signal transduction pathways that control stress responses.
Collapse
|
11
|
|
12
|
Krell T, Lacal J, Busch A, Silva-Jiménez H, Guazzaroni ME, Ramos JL. Bacterial sensor kinases: diversity in the recognition of environmental signals. Annu Rev Microbiol 2010; 64:539-59. [PMID: 20825354 DOI: 10.1146/annurev.micro.112408.134054] [Citation(s) in RCA: 264] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria sense and respond to a wide range of physical and chemical signals. Central to sensing and responding to these signals are two-component systems, which have a sensor histidine kinase (SK) and a response regulator (RR) as basic components. Here we review the different molecular mechanisms by which these signals are integrated and modulate the phosphorylation state of SKs. Apart from the basic mechanism, which consists of signal recognition by the SK that leads to an alteration of its autokinase activity and subsequently a change in the RR phosphorylation state, a variety of alternative modes have evolved. The biochemical data available on SKs, particularly their molecular interactions with signals, nucleotides, and their cognate RRs, are also reviewed.
Collapse
Affiliation(s)
- Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain
| | | | | | | | | | | |
Collapse
|
13
|
Integrative Control of Carbon, Nitrogen, Hydrogen, and Sulfur Metabolism: The Central Role of the Calvin–Benson–Bassham Cycle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010. [DOI: 10.1007/978-1-4419-1528-3_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
14
|
Measurement of Response Regulator Autodephosphorylation Rates Spanning Six Orders of Magnitude. Methods Enzymol 2010; 471:89-114. [DOI: 10.1016/s0076-6879(10)71006-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Regulation of gene expression by PrrA in Rhodobacter sphaeroides 2.4.1: role of polyamines and DNA topology. J Bacteriol 2009; 191:4341-52. [PMID: 19411327 DOI: 10.1128/jb.00243-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In the present study, we show in vitro binding of PrrA, a global regulator in Rhodobacter sphaeroides 2.4.1, to the PrrA site 2, within the RSP3361 locus. Specific binding, as shown by competition experiments, requires the phosphorylation of PrrA. The binding affinity of PrrA for site 2 was found to increase 4- to 10-fold when spermidine was added to the binding reaction. The presence of extracellular concentrations of spermidine in growing cultures of R. sphaeroides gave rise to a twofold increase in the expression of the photosynthesis genes pucB and pufB, as well as the RSP3361 gene, under aerobic growth conditions, as shown by the use of lacZ transcriptional fusions, and led to the production of light-harvesting spectral complexes. In addition, we show that negative supercoiling positively regulates the expression of the RSP3361 gene, as well as pucB. We show the importance of supercoiling through an evaluation of the regulation of gene expression in situ by supercoiling, in the case of the former gene, as well as using the DNA gyrase inhibitor novobiocin. We propose that polyamines and DNA supercoiling act synergistically to regulate expression of the RSP3361 gene, partly by affecting the affinity of PrrA binding to the PrrA site 2 within the RSP3361 gene.
Collapse
|
16
|
Half-Site DNA sequence and spacing length contributions to PrrA binding to PrrA site 2 of RSP3361 in Rhodobacter sphaeroides 2.4.1. J Bacteriol 2009; 191:4353-64. [PMID: 19411326 DOI: 10.1128/jb.00244-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The consensus DNA binding sequence for PrrA, a global regulator in Rhodobacter sphaeroides 2.4.1, is poorly defined. We have performed mutational analysis of PrrA site 2, of the RSP3361 gene, to which PrrA binds in vitro (J. M. Eraso and S. Kaplan, J. Bacteriol. 191:4341-4352, 2009), to further define the consensus sequence for DNA binding. Two half-sites of equal length, containing 6 nucleotides each, were required for PrrA binding to this DNA sequence. Systematic nucleotide substitutions in both inverted half-sites led to a decrease in binding affinity of phosphorylated PrrA in vitro, the level of which was dependent on the substitution. The reduced binding affinities were confirmed by competition experiments and led to proportional decreases in the expression of lacZ transcriptional fusions to the RSP3361 gene in vivo. The 5-nucleotide spacer region between the half-sites was found to be optimal for PrrA binding to the wild-type half-sites, as shown by decreased PrrA DNA binding affinities to synthetic DNA sequences without spacer regions or with spacer regions ranging from 1 to 10 nucleotides. The synthetic spacer region alleles also showed decreased gene expression in vivo when analyzed using lacZ transcriptional fusions. We have studied three additional DNA sequences to which PrrA binds in vitro. They are located in the regulatory regions of genes positively regulated by PrrA and contain spacer regions with 5 or 8 nucleotides. We demonstrate that PrrA can bind in vitro to DNA sequences with different lengths in the spacer regions between the half-sites.
Collapse
|
17
|
Dangel AW, Tabita FR. Protein-protein interactions between CbbR and RegA (PrrA), transcriptional regulators of the cbb operons of Rhodobacter sphaeroides. Mol Microbiol 2008; 71:717-29. [PMID: 19077171 DOI: 10.1111/j.1365-2958.2008.06558.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CbbR and RegA (PrrA) are transcriptional regulators of the cbb(I) and cbb(II) (Calvin-Benson-Bassham CO(2) fixation pathway) operons of Rhodobacter sphaeroides. Both proteins interact specifically with promoter sequences of the cbb operons. RegA has four DNA binding sites within the cbb(I) promoter region, with the CbbR binding site and RegA binding site 1 overlapping each other. This study demonstrated that CbbR and RegA interact and form a discrete complex in vitro, as illustrated by gel mobility shift experiments, direct isolation of the proteins from DNA complexes, and chemical cross-linking analyses. For CbbR/RegA interactions to occur, CbbR must be bound to the DNA, with the ability of CbbR to bind the cbb(I) promoter enhanced by RegA. Conversely, interactions with CbbR did not require RegA to bind the cbb(I) promoter. RegA itself formed incrementally larger multimeric complexes with DNA as the concentration of RegA increased. The presence of RegA binding sites 1, 2 and 3 promoted RegA/DNA binding at significantly lower concentrations of RegA than when RegA binding site 3 was not present in the cbb(I) promoter. These studies support the premise that both CbbR and RegA are necessary for optimal transcription of the cbb(I) operon genes of R. sphaeroides.
Collapse
Affiliation(s)
- Andrew W Dangel
- Department of Microbiology and Plant Molecular Biology/Biotechnology Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA
| | | |
Collapse
|
18
|
RegB/RegA, A Global Redox-Responding Two-Component System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 631:131-48. [DOI: 10.1007/978-0-387-78885-2_9] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Gomelsky L, Moskvin OV, Stenzel RA, Jones DF, Donohue TJ, Gomelsky M. Hierarchical regulation of photosynthesis gene expression by the oxygen-responsive PrrBA and AppA-PpsR systems of Rhodobacter sphaeroides. J Bacteriol 2008; 190:8106-14. [PMID: 18931128 PMCID: PMC2593241 DOI: 10.1128/jb.01094-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 10/03/2008] [Indexed: 11/20/2022] Open
Abstract
In the facultatively phototrophic proteobacterium Rhodobacter sphaeroides, formation of the photosynthetic apparatus is oxygen dependent. When oxygen tension decreases, the response regulator PrrA of the global two-component PrrBA system is believed to directly activate transcription of the puf, puh, and puc operons, encoding structural proteins of the photosynthetic complexes, and to indirectly upregulate the photopigment biosynthesis genes bch and crt. Decreased oxygen also results in inactivation of the photosynthesis-specific repressor PpsR, bringing about derepression of the puc, bch, and crt operons. We uncovered a hierarchical relationship between these two regulatory systems, earlier thought to function independently. We also more accurately assessed the spectrum of gene targets of the PrrBA system. First, expression of the appA gene, encoding the PpsR antirepressor, is PrrA dependent, which establishes one level of hierarchical dominance of the PrrBA system over AppA-PpsR. Second, restoration of the appA transcript to the wild-type level is insufficient for rescuing phototrophic growth impairment of the prrA mutant, whereas inactivation of ppsR is sufficient. This suggests that in addition to controlling appA transcription, PrrA affects the activity of the AppA-PpsR system via an as yet unidentified mechanism(s). Third, PrrA directly activates several bch and crt genes, traditionally considered to be the PpsR targets. Therefore, in R. sphaeroides, the global PrrBA system regulates photosynthesis gene expression (i) by rigorous control over the photosynthesis-specific AppA-PpsR regulatory system and (ii) by extensive direct transcription activation of genes encoding structural proteins of photosynthetic complexes as well as genes encoding photopigment biosynthesis enzymes.
Collapse
Affiliation(s)
- Larissa Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Part of the oxygen responsiveness of Rhodobacter sphaeroides 2.4.1 tetrapyrrole production involves changes in transcription of the hemA gene, which codes for one of two isoenzymes catalyzing 5-aminolevulinic acid synthesis. Regulation of hemA transcription from its two promoters is mediated by the DNA binding proteins FnrL and PrrA. The two PrrA binding sites, binding sites I and II, which are located upstream of the more-5' hemA promoter (P1), are equally important to transcription under aerobic conditions, while binding site II is more important under anaerobic conditions. By using phosphoprotein affinity chromatography and immunoblot analyses, we showed that the phosphorylated PrrA levels in the cell increase with decreasing oxygen tensions. Then, using both in vivo and in vitro methods, we demonstrated that the relative affinities of phosphorylated and unphosphorylated PrrA for the two binding sites differ and that phosphorylated PrrA has greater affinity for site II. We also showed that PrrA regulation is directed toward the P1 promoter. We propose that the PrrA component of anaerobic induction of P1 transcription is attributable to higher affinity of phosphorylated PrrA than of unphosphorylated PrrA for binding site II. Anaerobic activation of the more-3' hemA promoter (P2) is thought to involve FnrL binding to an FNR consensuslike sequence located upstream of the P2 promoter, but the contribution of FnrL to P1 induction may be indirect since the P1 transcription start is within the putative FnrL binding site. We present evidence suggesting that the indirect action of FnrL works through PrrA and discuss possible mechanisms.
Collapse
|
21
|
Thomas SA, Brewster JA, Bourret RB. Two variable active site residues modulate response regulator phosphoryl group stability. Mol Microbiol 2008; 69:453-65. [PMID: 18557815 PMCID: PMC2700761 DOI: 10.1111/j.1365-2958.2008.06296.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many signal transduction networks control their output by switching regulatory elements on or off. To synchronize biological response with environmental stimulus, switching kinetics must be faster than changes in input. Two-component regulatory systems (used for signal transduction by bacteria, archaea and eukaryotes) switch via phosphorylation or dephosphorylation of the receiver domain in response regulator proteins. Although receiver domains share conserved active site residues and similar three-dimensional structures, rates of self-catalysed dephosphorylation span a >or= 40,000-fold range in response regulators that control diverse biological processes. For example, autodephosphorylation of the chemotaxis response regulator CheY is 640-fold faster than Spo0F, which controls sporulation. Here we demonstrate that substitutions at two variable active site positions decreased CheY autodephosphorylation up to 40-fold and increased the Spo0F rate up to 110-fold. Particular amino acids had qualitatively similar effects in different response regulators. However, mutant proteins matched to other response regulators at the two key variable positions did not always exhibit similar autodephosphorylation kinetics. Therefore, unknown factors also influence absolute rates. Understanding the effects that particular active site amino acid compositions have on autodephosphorylation rate may allow manipulation of phosphoryl group stability for useful purposes, as well as prediction of signal transduction kinetics from amino acid sequence.
Collapse
Affiliation(s)
- Stephanie A Thomas
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599-7290, USA
| | | | | |
Collapse
|
22
|
Role of the global transcriptional regulator PrrA in Rhodobacter sphaeroides 2.4.1: combined transcriptome and proteome analysis. J Bacteriol 2008; 190:4831-48. [PMID: 18487335 DOI: 10.1128/jb.00301-08] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The PrrBA two-component regulatory system is a major global regulator in Rhodobacter sphaeroides 2.4.1. Here we have compared the transcriptome and proteome profiles of the wild-type (WT) and mutant PrrA2 cells grown anaerobically in the dark with dimethyl sulfoxide as an electron acceptor. Approximately 25% of the genes present in the PrrA2 genome are regulated by PrrA at the transcriptional level, either directly or indirectly, by twofold or more relative to the WT. The genes affected are widespread throughout all COG (cluster of orthologous group) functional categories, with previously unsuspected "metabolic" genes affected in PrrA2 cells. PrrA was found to act as both an activator and a repressor of transcription, with more genes being repressed in the presence of PrrA (9:5 ratio). An analysis of the genes encoding the 1,536 peptides detected through our chromatographic study, which corresponds to 36% coverage of the genome, revealed that approximately 20% of the genes encoding these proteins were positively regulated, whereas approximately 32% were negatively regulated by PrrA, which is in excellent agreement with the percentages obtained for the whole-genome transcriptome profile. In addition, comparison of the transcriptome and proteome mean parameter values for WT and PrrA2 cells showed good qualitative agreement, indicating that transcript regulation paralleled the corresponding protein abundance, although not one for one. The microarray analysis was validated by direct mRNA measurement of randomly selected genes that were both positively and negatively regulated. lacZ transcriptional and kan translational fusions enabled us to map putative PrrA binding sites and revealed potential gene targets for indirect regulation by PrrA.
Collapse
|
23
|
Kim YJ, Ko IJ, Lee JM, Kang HY, Kim YM, Kaplan S, Oh JI. Dominant role of the cbb3 oxidase in regulation of photosynthesis gene expression through the PrrBA system in Rhodobacter sphaeroides 2.4.1. J Bacteriol 2007; 189:5617-25. [PMID: 17557830 PMCID: PMC1951837 DOI: 10.1128/jb.00443-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, the H303A mutant form of the cbb(3) oxidase (H303A oxidase), which has the H303A mutation in its catalytic subunit (CcoN), was purified from Rhodobacter sphaeroides. The H303A oxidase showed the same catalytic activity as did the wild-type form of the oxidase (WT oxidase). The heme contents of the mutant and WT forms of the cbb(3) oxidase were also comparable. However, the puf and puc operons, which are under the control of the PrrBA two-component system, were shown to be derepressed aerobically in the R. sphaeroides strain expressing the H303A oxidase. Since the strain harboring the H303A oxidase exhibited the same cytochrome c oxidase activity as the stain harboring the WT oxidase did, the aerobic derepression of photosynthesis gene expression observed in the H303A mutant appears to be the result of a defective signaling function of the H303A oxidase rather than reflecting any redox changes in the ubiquinone/ubiquinol pool. It was also demonstrated that ubiquinone inhibits not only the autokinase activity of full-length PrrB but also that of the truncated form of PrrB lacking its transmembrane domain, including the proposed quinone binding sequence. These results imply that the suggested ubiquinone binding site within the PrrB transmembrane domain is not necessary for the inhibition of PrrB kinase activity by ubiquinone. Instead, it is probable that signaling through H303 of the CcoN subunit of the cbb(3) oxidase is part of the pathway through which the cbb(3) oxidase affects the relative kinase/phosphatase activity of the membrane-bound PrrB.
Collapse
Affiliation(s)
- Yong-Jin Kim
- Department of Microbiology, Pusan National University, 30 Jangjeon-dong, Geumjeong-gu, 609-735 Busan, Korea
| | | | | | | | | | | | | |
Collapse
|
24
|
Xiao Y, Lan L, Yin C, Deng X, Baker D, Zhou JM, Tang X. Two-component sensor RhpS promotes induction of Pseudomonas syringae type III secretion system by repressing negative regulator RhpR. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:223-34. [PMID: 17378425 DOI: 10.1094/mpmi-20-3-0223] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The Pseudomonas syringae type III secretion system (T3SS) is induced during interaction with the plant or culture in minimal medium (MM). How the bacterium senses these environments to activate the T3SS is poorly understood. Here, we report the identification of a novel two-component system (TCS), RhpRS, that regulates the induction of P. syringae T3SS genes. The rhpR and rhpS genes are organized in an operon with rhpR encoding a putative TCS response regulator and rhpS encoding a putative biphasic sensor kinase. Transposon insertion in rhpS severely reduced the induction of P. syringae T3SS genes in the plant as well as in MM and significantly compromised the pathogenicity on host plants and hypersensitive response-inducing activity on nonhost plants. However, deletion of the rhpRS locus allowed the induction of T3SS genes to the same level as in the wild-type strain and the recovery of pathogenicity upon infiltration into plants. Overexpression of RhpR in the deltarhpRS deletion strain abolished the induction of T3SS genes. However, overexpression of RhpR in the wild-type strain or overexpression of RhpR(D70A), a mutant of the predicted phosphorylation site of RhpR, in the deltarhpRS deletion strain only slightly reduced the induction of T3SS genes. Based on these results, we propose that the phosphorylated RhpR represses the induction of T3SS genes and that RhpS reverses phosphorylation of RhpR under the T3SS-inducing conditions. Epistasis analysis indicated that rhpS and rhpR act upstream of hrpR to regulate T3SS genes.
Collapse
Affiliation(s)
- Yanmei Xiao
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506-5502, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Tavano CL, Donohue TJ. Development of the bacterial photosynthetic apparatus. Curr Opin Microbiol 2006; 9:625-31. [PMID: 17055774 PMCID: PMC2765710 DOI: 10.1016/j.mib.2006.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Accepted: 10/11/2006] [Indexed: 11/29/2022]
Abstract
Anoxygenic photosynthetic bacteria have provided us with crucial insights into the process of solar energy capture, pathways of metabolic and societal importance, specialized differentiation of membrane domains, function or assembly of bioenergetic enzymes, and into the genetic control of these and other activities. Recent insights into the organization of this bioenergetic membrane system, the genetic control of this specialized domain of the inner membrane and the process by which potentially photosynthetic and non-photosynthetic cells protect themselves from an important class of reactive oxygen species will provide an unparalleled understanding of solar energy capture and facilitate the design of solar-powered microbial biorefineries.
Collapse
Affiliation(s)
- Christine L Tavano
- Bacteriology Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
26
|
Seok JS, Kaplan S, Oh JI. Interacting specificity of a histidine kinase and its cognate response regulator: the PrrBA system of Rhodobacter sphaeroides. MICROBIOLOGY-SGM 2006; 152:2479-2490. [PMID: 16849810 DOI: 10.1099/mic.0.28961-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Using a yeast two-hybrid assay system, it was demonstrated that the four-helix bundle of the Rhodobacter sphaeroides PrrB histidine kinase both serves as the interaction site for the regulatory domain of its cognate response regulator PrrA and is the primary determinant of the interaction specificity. The alpha-helix 1 and its flanking turn region within the dimerization domain (DD) of the PrrB histidine kinase appear to play an important role in conferring the recognition specificity for the PrrA response regulator on the DD. The catalytic ATP-binding domain of the histidine kinase, which functions as the catalytic unit for the phosphotransfer reaction from ATP to the conserved histidine residue in the DD, also appears to contribute to the enhancement of the recognition specificity conferred by the DD. It was also revealed that replacement of Asp-63 and Lys-113 of the PrrA response regulator by alanine abolished protein-protein interactions between PrrA and its cognate histidine kinase PrrB, whereas mutations of Asp-19, Asp-20 and Thr-87 to alanine did not affect protein-protein interactions, indicating that among the active site residues of PrrA, Asp-63 and Lys-113 are important not only in the function of PrrA but also for protein-protein interactions between PrrA and PrrB.
Collapse
Affiliation(s)
- Jin-Sook Seok
- Department of Microbiology, Pusan National University, 609-735 Busan, South Korea
| | - Samuel Kaplan
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center Medical School, 6431 Fannin, Houston, TX 77030, USA
| | - Jeong-Il Oh
- Department of Microbiology, Pusan National University, 609-735 Busan, South Korea
| |
Collapse
|
27
|
Laguri C, Stenzel RA, Donohue TJ, Phillips-Jones MK, Williamson MP. Activation of the global gene regulator PrrA (RegA) from Rhodobacter sphaeroides. Biochemistry 2006; 45:7872-81. [PMID: 16784239 PMCID: PMC2517121 DOI: 10.1021/bi060683g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PrrA is a global transcription regulator activated upon phosphorylation by its cognate kinase PrrB in response to low oxygen levels in Rhodobacter sphaeroides. Here we show by gel filtration, analytical ultracentrifugation, and NMR diffusion measurements that treatment of PrrA with a phosphate analogue, BeF(3)(-), results in dimerization of the protein, producing a protein that binds DNA. No dimeric species was observed in the absence of BeF(3)(-). Upon addition of BeF(3)(-), the inhibitory activity of the N-terminal domain on the C-terminal DNA-binding domain is relieved, after which PrrA becomes capable of binding DNA as a dimer. The interaction surface of the DNA-binding domain with the regulatory domain of PrrA is identified by NMR as being a well-conserved region centered on helix alpha6, which is on the face opposite from the DNA recognition helix. This suggests that there is no direct blockage of DNA binding in the inactive state but rather that PrrA dimerization promotes a correct arrangement of two adjacent DNA-binding domains that recognizes specific DNA binding sequences.
Collapse
Affiliation(s)
- Cédric Laguri
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, UK
| | | | | | | | | |
Collapse
|
28
|
Ranson-Olson B, Jones DF, Donohue TJ, Zeilstra-Ryalls JH. In vitro and in vivo analysis of the role of PrrA in Rhodobacter sphaeroides 2.4.1 hemA gene expression. J Bacteriol 2006; 188:3208-18. [PMID: 16621813 PMCID: PMC1447469 DOI: 10.1128/jb.188.9.3208-3218.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Accepted: 02/24/2006] [Indexed: 11/20/2022] Open
Abstract
The hemA gene codes for one of two synthases in Rhodobacter sphaeroides 2.4.1 which catalyze the formation of 5-aminolevulinic acid. We have examined the role of PrrA, a DNA binding protein that is associated with the metabolic switch between aerobic growth and anoxygenic photosynthetic growth, in hemA expression and found that hemA transcription is directly activated by PrrA. Using electrophoretic mobility shift assays and DNase I protection assays, we have mapped two binding sites for PrrA within the hemA upstream sequences, each of which contains an identical 9-bp motif. Using lacZ transcription reporter plasmids in wild-type strain 2.4.1 and PrrA- mutant strain PRRA2, we showed that PrrA was required for maximal expression. We also found that the relative impacts of altering DNA sequences within the two binding sites are different depending on whether cells are growing aerobically or anaerobically. This reveals a greater level of complexity associated with PrrA-mediated regulation of transcription than has been heretofore described. Our findings are of particular importance with respect to those genes regulated by PrrA having more than one upstream binding site. In the case of the hemA gene, we discuss possibilities as to how these new insights can be accommodated within the context of what has already been established for hemA transcription regulation in R. sphaeroides.
Collapse
Affiliation(s)
- Britton Ranson-Olson
- Department of Biological Sciences, 374 Dodge Hall, Oakland University, Rochester, Michigan 48309, USA
| | | | | | | |
Collapse
|
29
|
Jones DF, Stenzel RA, Donohue TJ. Mutational analysis of the C-terminal domain of the Rhodobacter sphaeroides response regulator PrrA. MICROBIOLOGY (READING, ENGLAND) 2005; 151:4103-4110. [PMID: 16339955 PMCID: PMC2800098 DOI: 10.1099/mic.0.28300-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Rhodobacter sphaeroides response regulator PrrA directly activates transcription of genes necessary for energy conservation at low O2 tensions and under anaerobic conditions. It is proposed that PrrA homologues contain a C-terminal DNA-binding domain (PrrA-CTD) that lacks significant amino acid sequence similarity to those found in other response regulators. To test this hypothesis, single amino acid substitutions were created at 12 residues in the PrrA-CTD. These mutant PrrA proteins were purified and tested for the ability to be phosphorylated by the low-molecular-mass phosphate donor acetyl phosphate, to activate transcription and to bind promoter DNA. Each mutant PrrA protein accepted phosphate from 32P-labelled acetyl phosphate. At micromolar concentrations of acetyl phosphate-treated wild-type PrrA, a single 20 bp region in the PrrA-dependent cycA P2 promoter was protected from DNase I digestion. Of the mutant PrrA proteins tested, only acetyl phosphate-treated PrrA-N168A and PrrA-I177A protected cycA P2 from DNase I digestion at similar protein concentrations compared to wild-type PrrA. The use of in vitro transcription assays with the PrrA-dependent cycA P2 and puc promoters showed that acetyl phosphate-treated PrrA-N168A produced transcript levels similar to that of wild-type PrrA at comparable protein concentrations. Using concentrations of acetyl phosphate-treated PrrA that are saturating for the wild-type protein, PrrA-H170A and PrrA-I177A produced <45 % as much transcript as wild-type PrrA. Under identical conditions, the remaining mutant PrrA proteins produced little or no detectable transcripts from either promoter in vitro. Explanations are presented for why these amino acid side chains in the PrrA-CTD are important for its ability to activate transcription.
Collapse
Affiliation(s)
- Denise F Jones
- Department of Bacteriology, University of Wisconsin-Madison, Room 390B, 420 Henry Mall, Madison, WI 53706, USA
| | - Rachelle A Stenzel
- Department of Bacteriology, University of Wisconsin-Madison, Room 390B, 420 Henry Mall, Madison, WI 53706, USA
| | - Timothy J Donohue
- Department of Bacteriology, University of Wisconsin-Madison, Room 390B, 420 Henry Mall, Madison, WI 53706, USA
| |
Collapse
|
30
|
Mao L, Mackenzie C, Roh JH, Eraso JM, Kaplan S, Resat H. Combining microarray and genomic data to predict DNA binding motifs. Microbiology (Reading) 2005; 151:3197-3213. [PMID: 16207904 DOI: 10.1099/mic.0.28167-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability to detect regulatory elements within genome sequences is important in understanding how gene expression is controlled in biological systems. In this work, microarray data analysis is combined with genome sequence analysis to predict DNA sequences in the photosynthetic bacterium Rhodobacter sphaeroides that bind the regulators PrrA, PpsR and FnrL. These predictions were made by using hierarchical clustering to detect genes that share similar expression patterns. The DNA sequences upstream of these genes were then searched for possible transcription factor recognition motifs that may be involved in their co-regulation. The approach used promises to be widely applicable for the prediction of cis-acting DNA binding elements. Using this method the authors were independently able to detect and extend the previously described consensus sequences that have been suggested to bind FnrL and PpsR. In addition, sequences that may be recognized by the global regulator PrrA were predicted. The results support the earlier suggestions that the DNA binding sequence of PrrA may have a variable-sized gap between its conserved block elements. Using the predicted DNA binding sequences, a whole-genome-scale analysis was performed to determine the relative importance of the interplay between the three regulators PpsR, FnrL and PrrA. Results of this analysis showed that, compared to the regulation by PpsR and FnrL, a much larger number of genes are candidates to be regulated by PrrA. The study demonstrates by example that integration of multiple data types can be a powerful approach for inferring transcriptional regulatory patterns in microbial systems, and it allowed the detection of photosynthesis-related regulatory patterns in R. sphaeroides.
Collapse
Affiliation(s)
- Linyong Mao
- Pacific Northwest National Laboratory, Computational Biology and Bioinformatics Group, PO Box 999, MS: K7-90, Richland, WA 99352, USA
| | - Chris Mackenzie
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center, Medical School, Houston, TX 77030, USA
| | - Jung H Roh
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center, Medical School, Houston, TX 77030, USA
| | - Jesus M Eraso
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center, Medical School, Houston, TX 77030, USA
| | - Samuel Kaplan
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center, Medical School, Houston, TX 77030, USA
| | - Haluk Resat
- Pacific Northwest National Laboratory, Computational Biology and Bioinformatics Group, PO Box 999, MS: K7-90, Richland, WA 99352, USA
| |
Collapse
|
31
|
Abdel-Fattah WR, Chen Y, Eldakak A, Hulett FM. Bacillus subtilis phosphorylated PhoP: direct activation of the E(sigma)A- and repression of the E(sigma)E-responsive phoB-PS+V promoters during pho response. J Bacteriol 2005; 187:5166-78. [PMID: 16030210 PMCID: PMC1196004 DOI: 10.1128/jb.187.15.5166-5178.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phoB gene of Bacillus subtilis encodes an alkaline phosphatase (PhoB, formerly alkaline phosphatase III) that is expressed from separate promoters during phosphate deprivation in a PhoP-PhoR-dependent manner and at stage two of sporulation under phosphate-sufficient conditions independent of PhoP-PhoR. Isogenic strains containing either the complete phoB promoter or individual phoB promoter fusions were used to assess expression from each promoter under both induction conditions. The phoB promoter responsible for expression during sporulation, phoB-P(S), was expressed in a wild-type strain during phosphate deprivation, but induction occurred >3 h later than induction of Pho regulon genes and the levels were approximately 50-fold lower than that observed for the PhoPR-dependent promoter, phoB-P(V). E(sigma)E was necessary and sufficient for P(S) expression in vitro. P(S) expression in a phoPR mutant strain was delayed 2 to 3 h compared to the expression in a wild-type strain, suggesting that expression or activation of sigma(E) is delayed in a phoPR mutant under phosphate-deficient conditions, an observation consistent with a role for PhoPR in spore development under these conditions. Phosphorylated PhoP (PhoP approximately P) repressed P(S) in vitro via direct binding to the promoter, the first example of an E(sigma)E-responsive promoter that is repressed by PhoP approximately P. Whereas either PhoP or PhoP approximately P in the presence of E(sigma)A was sufficient to stimulate transcription from the phoB-P(V) promoter in vitro, roughly 10- and 17-fold-higher concentrations of PhoP than of PhoP approximately P were required for P(V) promoter activation and maximal promoter activity, respectively. The promoter for a second gene in the Pho regulon, ykoL, was also activated by elevated concentrations of unphosphorylated PhoP in vitro. However, because no Pho regulon gene expression was observed in vivo during P(i)-replete growth and PhoP concentrations increased only threefold in vivo during phoPR autoinduction, a role for unphosphorylated PhoP in Pho regulon activation in vivo is not likely.
Collapse
Affiliation(s)
- Wael R Abdel-Fattah
- Laboratory for Molecular Biology, Department of Biological Sciences, University of Illinois at Chicago, 900 S. Ashland Avenue (M/C 567), Chicago, IL 60607, USA
| | | | | | | |
Collapse
|
32
|
Abstract
To succeed, many cells must alternate between life-styles that permit rapid growth in the presence of abundant nutrients and ones that enhance survival in the absence of those nutrients. One such change in life-style, the "acetate switch," occurs as cells deplete their environment of acetate-producing carbon sources and begin to rely on their ability to scavenge for acetate. This review explains why, when, and how cells excrete or dissimilate acetate. The central components of the "switch" (phosphotransacetylase [PTA], acetate kinase [ACK], and AMP-forming acetyl coenzyme A synthetase [AMP-ACS]) and the behavior of cells that lack these components are introduced. Acetyl phosphate (acetyl approximately P), the high-energy intermediate of acetate dissimilation, is discussed, and conditions that influence its intracellular concentration are described. Evidence is provided that acetyl approximately P influences cellular processes from organelle biogenesis to cell cycle regulation and from biofilm development to pathogenesis. The merits of each mechanism proposed to explain the interaction of acetyl approximately P with two-component signal transduction pathways are addressed. A short list of enzymes that generate acetyl approximately P by PTA-ACKA-independent mechanisms is introduced and discussed briefly. Attention is then directed to the mechanisms used by cells to "flip the switch," the induction and activation of the acetate-scavenging AMP-ACS. First, evidence is presented that nucleoid proteins orchestrate a progression of distinct nucleoprotein complexes to ensure proper transcription of its gene. Next, the way in which cells regulate AMP-ACS activity through reversible acetylation is described. Finally, the "acetate switch" as it exists in selected eubacteria, archaea, and eukaryotes, including humans, is described.
Collapse
Affiliation(s)
- Alan J Wolfe
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA.
| |
Collapse
|
33
|
Hickman JW, Witthuhn VC, Dominguez M, Donohue TJ. Positive and negative transcriptional regulators of glutathione-dependent formaldehyde metabolism. J Bacteriol 2004; 186:7914-25. [PMID: 15547263 PMCID: PMC529062 DOI: 10.1128/jb.186.23.7914-7925.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A glutathione (GSH)-dependent pathway is used for formaldehyde metabolism by a wide variety of prokaryotes and eukaryotes. In this pathway, S-hydroxymethylglutathione, produced by the reaction of formaldehyde with the thiolate moiety of glutathione, is the substrate for a GSH-dependent formaldehyde dehydrogenase (GSH-FDH). While expression of GSH-FDH often increases in the presence of metabolic or exogenous sources of formaldehyde, little is known about the factors that regulate this response. Here, we identify two signal transduction pathways that regulate expression of adhI, the gene encoding GSH-FDH, in Rhodobacter sphaeroides. The loss of the histidine kinase response regulator pair RfdRS or the histidine kinase RfdS increases adhI transcription in the absence of metabolic sources of formaldehyde. Cells lacking RfdRS further increase adhI expression in the presence of metabolic sources of formaldehyde (methanol), suggesting that this negative regulator of GSH-FDH expression does not respond to this compound. In contrast, mutants lacking the histidine kinase response regulator pair AfdRS or the histidine kinase AfdS cannot induce adhI expression in the presence of either formaldehyde or metabolic sources of this compound. AfdR stimulates activity of the adhI promoter in vitro, indicating that this protein is a direct activator of GSH-FDH expression. Activation by AfdR is detectable only after incubation of the protein with acetyl phosphate, suggesting that phosphorylation is necessary for transcription activation. Activation of adhI transcription by acetyl-phosphate-treated AfdR in vitro is inhibited by a truncated RfdR protein, suggesting that this protein is a direct repressor of GSH-FDH expression. Together, the data indicate that AfdRS and RfdRS positively and negatively regulate adhI transcription in response to different signals.
Collapse
Affiliation(s)
- Jason W Hickman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
34
|
Dubbs JM, Tabita FR. Regulators of nonsulfur purple phototrophic bacteria and the interactive control of CO2 assimilation, nitrogen fixation, hydrogen metabolism and energy generation. FEMS Microbiol Rev 2004; 28:353-76. [PMID: 15449608 DOI: 10.1016/j.femsre.2004.01.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
For the metabolically diverse nonsulfur purple phototrophic bacteria, maintaining redox homeostasis requires balancing the activities of energy supplying and energy-utilizing pathways, often in the face of drastic changes in environmental conditions. These organisms, members of the class Alphaproteobacteria, primarily use CO2 as an electron sink to achieve redox homeostasis. After noting the consequences of inactivating the capacity for CO2 reduction through the Calvin-Benson-Bassham (CBB) pathway, it was shown that the molecular control of many additional important biological processes catalyzed by nonsulfur purple bacteria is linked to expression of the CBB genes. Several regulator proteins are involved, with the two component Reg/Prr regulatory system playing a major role in maintaining redox poise in these organisms. Reg/Prr was shown to be a global regulator involved in the coordinate control of a number of metabolic processes including CO2 assimilation, nitrogen fixation, hydrogen metabolism and energy-generation pathways. Accumulating evidence suggests that the Reg/Prr system senses the oxidation/reduction state of the cell by monitoring a signal associated with electron transport. The response regulator RegA/PrrA activates or represses gene expression through direct interaction with target gene promoters where it often works in concert with other regulators that can be either global or specific. For the key CO2 reduction pathway, which clearly triggers whether other redox balancing mechanisms are employed, the ability to activate or inactivate the specific regulator CbbR is of paramount importance. From these studies, it is apparent that a detailed understanding of how diverse regulatory elements integrate and control metabolism will eventually be achieved.
Collapse
Affiliation(s)
- James M Dubbs
- Laboratory of Biotechnology, Chulabhorn Research Institute, Lak Si, Bangkok 10210, Thailand
| | | |
Collapse
|
35
|
Tavano CL, Comolli JC, Donohue TJ. The role of dor gene products in controlling the P2 promoter of the cytochrome c2 gene, cycA, in Rhodobacter sphaeroides. MICROBIOLOGY-SGM 2004; 150:1893-1899. [PMID: 15184575 PMCID: PMC2802839 DOI: 10.1099/mic.0.26971-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study explores the regulatory networks controlling anaerobic energy production by the facultative phototroph Rhodobacter sphaeroides. The specific aim was to determine why activity of the P2 promoter for the gene (cycA) encoding the essential photosynthetic electron carrier, cytochrome c(2), is decreased when the alternative electron acceptor DMSO is added to photosynthetically grown cells. The presence of DMSO is believed to activate the DorR response regulator, which controls expression of proteins required to reduce DMSO. A DorR(-) strain showed no change in cycA P2 promoter activity when DMSO was added to photosynthetic cells, indicating that DorR was required for the decreased expression in wild-type cells. To test if DorR acted directly at this promoter to change gene expression, recombinant DorR was purified and studied in vitro. Preparations of DorR that were active at other target promoters showed no detectable interaction with cycA P2, suggesting that this protein is not a direct regulator of this promoter. We also found that cycA P2 activity in a DorA(-) strain was not decreased by the addition of DMSO to photosynthetic cells. A model is presented to explain why the presence of a functional DMSO reductase (DorA) is required for DMSO to decrease cycA P2 expression under photosynthetic conditions.
Collapse
Affiliation(s)
- Christine L Tavano
- Department of Bacteriology, University of Wisconsin - Madison, 420 Henry Mall, Madison, WI 53706, USA
| | - James C Comolli
- Department of Bacteriology, University of Wisconsin - Madison, 420 Henry Mall, Madison, WI 53706, USA
| | - Timothy J Donohue
- Department of Bacteriology, University of Wisconsin - Madison, 420 Henry Mall, Madison, WI 53706, USA
| |
Collapse
|
36
|
Oh JI, Ko IJ, Kaplan S. Reconstitution of the Rhodobacter sphaeroides cbb3-PrrBA signal transduction pathway in vitro. Biochemistry 2004; 43:7915-23. [PMID: 15196036 DOI: 10.1021/bi0496440] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The PrrBA two-component system in Rhodobacter sphaeroides 2.4.1, which is composed of the PrrB histidine kinase and the PrrA response regulator, controls the expression of all of the photosynthesis genes, either directly or indirectly, in response to changes in oxygen tension. In vivo under aerobic conditions it is the cbb(3) cytochrome c oxidase which generates an inhibitory signal preventing the accumulation of activated PrrA. Using purified cbb(3) cytochrome c oxidase, PrrB, and PrrA, we demonstrate in vitro that the cbb(3) oxidase inhibits PrrB activity by apparently increasing the intrinsic PrrB phosphatase activity, which dephosphorylates phosphorylated PrrA without alteration of the PrrB kinase activity. The transmembrane domain of PrrB is required for the enhancement of PrrB phosphatase activity by the cbb(3) oxidase. Full-length PrrB has a significantly greater ability to phosphorylate PrrA than does truncated PrrB lacking the transmembrane domain. This is at least in part due to the lower autophosphorylation rate of the truncated PrrB relative to the full-length PrrB. This finding provides evidence that the sensing domain (transmembrane domain) of PrrB plays an important role not only in optimally sensing the state of the cbb(3) oxidase but also in maintaining the correct conformation of PrrB, providing optimal autokinase activity.
Collapse
Affiliation(s)
- Jeong-Il Oh
- Department of Microbiology, Pusan National University, Busan, South Korea
| | | | | |
Collapse
|
37
|
Elsen S, Swem LR, Swem DL, Bauer CE. RegB/RegA, a highly conserved redox-responding global two-component regulatory system. Microbiol Mol Biol Rev 2004; 68:263-79. [PMID: 15187184 PMCID: PMC419920 DOI: 10.1128/mmbr.68.2.263-279.2004] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Reg regulon from Rhodobacter capsulatus and Rhodobacter sphaeroides encodes proteins involved in numerous energy-generating and energy-utilizing processes such as photosynthesis, carbon fixation, nitrogen fixation, hydrogen utilization, aerobic and anaerobic respiration, denitrification, electron transport, and aerotaxis. The redox signal that is detected by the membrane-bound sensor kinase, RegB, appears to originate from the aerobic respiratory chain, given that mutations in cytochrome c oxidase result in constitutive RegB autophosphorylation. Regulation of RegB autophosphorylation also involves a redox-active cysteine that is present in the cytosolic region of RegB. Both phosphorylated and unphosphorylated forms of the cognate response regulator RegA are capable of activating or repressing a variety of genes in the regulon. Highly conserved homologues of RegB and RegA have been found in a wide number of photosynthetic and nonphotosynthetic bacteria, with evidence suggesting that RegB/RegA plays a fundamental role in the transcription of redox-regulated genes in many bacterial species.
Collapse
Affiliation(s)
- Sylvie Elsen
- Laboratoire de Biochimie et de Biophysique des Systèmes Intégrés (UMR 5092 CNRS-CEA-UJF), Grenoble, France
| | | | | | | |
Collapse
|
38
|
Fenner BJ, Tiwari RP, Reeve WG, Dilworth MJ, Glenn AR. Sinorhizobium medicaegenes whose regulation involves the ActS and/or ActR signal transduction proteins. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09622.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
39
|
Laguri C, Phillips-Jones MK, Williamson MP. Solution structure and DNA binding of the effector domain from the global regulator PrrA (RegA) from Rhodobacter sphaeroides: insights into DNA binding specificity. Nucleic Acids Res 2004; 31:6778-87. [PMID: 14627811 PMCID: PMC290259 DOI: 10.1093/nar/gkg891] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Prr/RegA response regulator is a global transcription regulator in purple bacteria Rhodobacter sphaeroides and Rhodobacter capsulatus, and is essential in controlling the metabolic changes between aerobic and anaerobic environments. We report here the structure determination by NMR of the C-terminal effector domain of PrrA, PrrAC. It forms a three-helix bundle containing a helix-turn-helix DNA binding motif. The fold is similar to FIS protein, but the domain architecture is different from previously characterised response regulator effector domains, as it is shorter than any characterised so far. Alignment of Prr/RegA DNA targets permitted a refinement of the consensus sequence, which contains two GCGNC inverted repeats with variable half-site spacings. NMR titrations of PrrAC with specific and non-specific DNA show which surfaces are involved in DNA binding and suggest residues important for binding specificity. A model of the PrrAC/DNA complex was constructed in which two PrrAC molecules are bound to DNA in a symmetrical manner.
Collapse
Affiliation(s)
- Cédric Laguri
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2UH, UK
| | | | | |
Collapse
|
40
|
Geng H, Nakano S, Nakano MM. Transcriptional activation by Bacillus subtilis ResD: tandem binding to target elements and phosphorylation-dependent and -independent transcriptional activation. J Bacteriol 2004; 186:2028-37. [PMID: 15028686 PMCID: PMC374413 DOI: 10.1128/jb.186.7.2028-2037.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of genes involved in nitrate respiration in Bacillus subtilis is regulated by the ResD-ResE two-component signal transduction system. The membrane-bound ResE sensor kinase perceives a redox-related signal(s) and phosphorylates the cognate response regulator ResD, which enables interaction of ResD with ResD-dependent promoters to activate transcription. Hydroxyl radical footprinting analysis revealed that ResD tandemly binds to the -41 to -83 region of hmp and the -46 to -92 region of nasD. In vitro runoff transcription experiments showed that ResD is necessary and sufficient to activate transcription of the ResDE regulon. Although phosphorylation of ResD by ResE kinase greatly stimulated transcription, unphosphorylated ResD, as well as ResD with a phosphorylation site (Asp57) mutation, was able to activate transcription at a low level. The D57A mutant was shown to retain the activity in vivo to induce transcription of the ResDE regulon in response to oxygen limitation, suggesting that ResD itself, in addition to its activation through phosphorylation-mediated conformation change, senses oxygen limitation via an unknown mechanism leading to anaerobic gene activation.
Collapse
Affiliation(s)
- Hao Geng
- Department of Environmental and Biomolecular Systems, OGI School of Science & Engineering, Oregon Health & Science University, Beaverton, Oregon 97006, USA
| | | | | |
Collapse
|
41
|
Anthony JR, Green HA, Donohue TJ. Purification of Rhodobacter sphaeroides RNA polymerase and its sigma factors. Methods Enzymol 2004; 370:54-65. [PMID: 14712633 DOI: 10.1016/s0076-6879(03)70005-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
This article summarized methods to obtain RNA polymerase and sigma factors that can be used to analyze the in vitro control of gene expression by the facultative phototroph R. sphaeroides. While not a topic of this article, these purified components also allow one to analyze R. sphaeroides promoters that use activators to stimulate transcription. We expect that these approaches will be increasingly useful as investigators continue to dissect the number of unusual signal transduction pathways that control gene expression in this and other related species.
Collapse
Affiliation(s)
- Jennifer R Anthony
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
42
|
Oh JI, Ko IJ, Kaplan S. Digging deeper: uncovering genetic loci which modulate photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1. MICROBIOLOGY (READING, ENGLAND) 2003; 149:949-960. [PMID: 12686637 DOI: 10.1099/mic.0.26010-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A new genetic locus was identified in Rhodobacter sphaeroides which is required for optimal synthesis of the light-harvesting spectral complexes as well as for optimal growth under anaerobic conditions with dimethyl sulfoxide (DMSO) as a terminal electron acceptor. The primary structure of the deduced osp gene product shows significant homology to the receiver domain of known response regulators common to bacterial two-component systems. However, site-directed mutagenesis revealed that the Osp protein appears not to be involved in a phospho-relay signal transduction pathway. Paradoxically, the effect of the Osp protein upon spectral complex levels is exerted at the transcriptional level of photosynthesis gene expression. The absence of the Osp protein does not appear to have a general effect on house-keeping metabolism. In cells lacking Osp, the levels of DMSO reductase appear to be normal. The quaternary structure of the Osp protein was determined to be a homodimer and it was directly demonstrated that Osp does not bind to the promoter region of photosynthesis genes as judged by mobility-shift experiments and primary structure analysis.
Collapse
Affiliation(s)
- Jeong-Ii Oh
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center, Medical School, 6431 Fannin, Houston, TX 77030, USA
| | - In-Jeong Ko
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center, Medical School, 6431 Fannin, Houston, TX 77030, USA
| | - Samuel Kaplan
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center, Medical School, 6431 Fannin, Houston, TX 77030, USA
| |
Collapse
|
43
|
Gomelsky L, Sram J, Moskvin OV, Horne IM, Dodd HN, Pemberton JM, McEwan AG, Kaplan S, Gomelsky M. Identification and in vivo characterization of PpaA, a regulator of photosystem formation in Rhodobacter sphaeroides. MICROBIOLOGY (READING, ENGLAND) 2003; 149:377-388. [PMID: 12624200 DOI: 10.1099/mic.0.25972-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A regulatory protein, PpaA, involved in photosystem formation in the anoxygenic phototrophic proteobacterium Rhodobacter sphaeroides has been identified and characterized in vivo. Based on the phenotypes of cells expressing the ppaA gene in extra copy and on the phenotype of the ppaA null mutant, it was concluded that PpaA activates photopigment production and puc operon expression under aerobic conditions. This is in contrast to the function of the PpaA homologue from Rhodobacter capsulatus, AerR, which acts as a repressor under aerobic conditions [Dong, C., Elsen, S., Swem, L. R. & Bauer, C. E. (2002). J Bacteriol 184, 2805-2814]. The expression of the ppaA gene increases several-fold in response to a decrease in oxygen tension, suggesting that the PpaA protein is active under conditions of low or no oxygen. However, no discernible phenotype of a ppaA null mutant was observed under anaerobic conditions tested thus far. The photosystem gene repressor PpsR mediates repression of ppaA gene expression under aerobic conditions. Sequence analysis of PpaA homologues from several anoxygenic phototrophic bacteria revealed a putative corrinoid-binding domain. It is suggested that PpaA binds a corrinoid cofactor and the availability or structure of this cofactor affects PpaA activity.
Collapse
Affiliation(s)
- Larissa Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071-3944, USA
| | - Jakub Sram
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071-3944, USA
| | - Oleg V Moskvin
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071-3944, USA
| | - Irene M Horne
- Department of Microbiology and Parasitology, University of Queensland, Brisbane 4072, Australia
| | - Helen N Dodd
- Department of Microbiology and Parasitology, University of Queensland, Brisbane 4072, Australia
| | - John M Pemberton
- Department of Microbiology and Parasitology, University of Queensland, Brisbane 4072, Australia
| | - Alastair G McEwan
- Department of Microbiology and Parasitology, University of Queensland, Brisbane 4072, Australia
| | - Samuel Kaplan
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, TX 77030, USA
| | - Mark Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071-3944, USA
| |
Collapse
|
44
|
Bauer C, Elsen S, Swem LR, Swem DL, Masuda S. Redox and light regulation of gene expression in photosynthetic prokaryotes. Philos Trans R Soc Lond B Biol Sci 2003; 358:147-53; discussion 153-4. [PMID: 12594923 PMCID: PMC1693112 DOI: 10.1098/rstb.2002.1189] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
All photosynthetic organisms control expression of photosynthesis genes in response to alterations in light intensity as well as to changes in cellular redox potential. Light regulation in plants involves a well-defined set of red- and blue-light absorbing photoreceptors called phytochrome and cryptochrome. Less understood are the factors that control synthesis of the plant photosystem in response to changes in cellular redox. Among a diverse set of photosynthetic bacteria the best understood regulatory systems are those synthesized by the photosynthetic bacterium Rhodobacter capsulatus. This species uses the global two-component signal transduction cascade, RegB and RegA, to anaerobically de-repress anaerobic gene expression. Under reducing conditions, the phosphate on RegB is transferred to RegA, which then activates genes involved in photosynthesis, nitrogen fixation, carbon fixation, respiration and electron transport. In the presence of oxygen, there is a second regulator known as CrtJ, which is responsible for repressing photosynthesis gene expression. CrtJ responds to redox by forming an intramolecular disulphide bond under oxidizing, but not reducing, growth conditions. The presence of the disulphide bond stimulates DNA binding activity of the repressor. There is also a flavoprotein that functions as a blue-light absorbing anti-repressor of CrtJ in the related bacterial species Rhodobacter sphaeroides called AppA. AppA exhibits a novel long-lived photocycle that is initiated by blue-light absorption by the flavin. Once excited, AppA binds to CrtJ thereby inhibiting the repressor activity of CrtJ. Various mechanistic aspects of this photocycle will be discussed.
Collapse
Affiliation(s)
- Carl Bauer
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | | | | | | | |
Collapse
|
45
|
Comolli JC, Donohue TJ. Pseudomonas aeruginosa RoxR, a response regulator related to Rhodobacter sphaeroides PrrA, activates expression of the cyanide-insensitive terminal oxidase. Mol Microbiol 2002; 45:755-68. [PMID: 12139621 DOI: 10.1046/j.1365-2958.2002.03046.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The facultative anaerobe Pseudomonas aeruginosa has multiple aerobic electron transport pathways, one of which is terminated by a cyanide-insensitive oxidase (CIO). This study characterizes a P. aeruginosa two-component system that regulates CIO production. The response regulator of this system (RoxR) has significant amino acid sequence similarity to PrrA of Rhodobacter sphaeroides and related proteins in other alpha-proteobacteria. In heterologous complementation analysis, R. sphaeroides PrrA rescued the growth defect of a P. aeruginosa mutant lacking RoxR, and RoxR enabled photosynthetic growth of an R. sphaeroides PrrA mutant. Also, RoxR could substitute for PrrA in activating transcription in vitro, demonstrating that these proteins are functional homologues. P. aeruginosa strains lacking RoxR or the sensor kinase (RoxS) were more sensitive than wild type to the respiratory inhibitors cyanide and azide. The phenotypes of these mutant strains correlated with reduced cyanide-insensitive O2 utilization and less cyanide-dependent expression of the locus encoding the CIO (cioAB). The ability of purified RoxR to bind to the cioAB promoter region also suggests that this protein acts directly to regulate cioAB transcription. Therefore, RoxR appears to play a role in regulating the transcription of loci for P. aeruginosa energy-generating enzymes similar to that of its homologues in alpha-proteobacteria.
Collapse
Affiliation(s)
- James C Comolli
- Department of Bacteriology, University of Wisconsin - Madison, 53706, USA
| | | |
Collapse
|
46
|
Potter CA, Ward A, Laguri C, Williamson MP, Henderson PJF, Phillips-Jones MK. Expression, purification and characterisation of full-length histidine protein kinase RegB from Rhodobacter sphaeroides. J Mol Biol 2002; 320:201-13. [PMID: 12079379 DOI: 10.1016/s0022-2836(02)00424-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The global redox switch between aerobic and anaerobic growth in Rhodobacter sphaeroides is controlled by the RegA/RegB two-component system, in which RegB is the integral membrane histidine protein kinase, and RegA is the cytosolic response regulator. Despite the global regulatory importance of this system and its many homologues, there have been no reported examples to date of heterologous expression of full-length RegB or any histidine protein kinases. Here, we report the amplified expression of full-length functional His-tagged RegB in Escherichia coli, its purification, and characterisation of its properties. Both the membrane-bound and purified solubilised RegB protein demonstrate autophosphorylation activity, and the purified protein autophosphorylates at the same rate under both aerobic and anaerobic conditions confirming that an additional regulator is required to control/inhibit autophosphorylation. The intact protein has similar activity to previously characterised soluble forms, but is dephosphorylated more rapidly than the soluble form (half-life ca 30 minutes) demonstrating that the transmembrane segment present in the full-length RegB may be an important regulator of RegB activity. Phosphotransfer from RegB to RegA (overexpressed and purified from E. coli) by RegB is very rapid, as has been reported for the soluble domain. Dephosphorylation of active RegA by full-length RegB has a rate similar to that observed previously for soluble RegB.
Collapse
Affiliation(s)
- Christopher A Potter
- Division of Microbiology, School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | |
Collapse
|