1
|
Xu F, Thoma CJ, Zhao W, Zhu Y, Men Y, Wackett LP. Dual feedback inhibition of ATP-dependent caffeate activation economizes ATP in caffeate-dependent electron bifurcation. Appl Environ Microbiol 2024; 90:e0060224. [PMID: 39177329 PMCID: PMC11409703 DOI: 10.1128/aem.00602-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/01/2024] [Indexed: 08/24/2024] Open
Abstract
The acetogen Acetobacterium woodii couples caffeate reduction with ferredoxin reduction and NADH oxidation via electron bifurcation, providing additional reduced ferredoxin for energy conservation and cell synthesis. Caffeate is first activated by an acyl-CoA synthetase (CarB), which ligates CoA to caffeate at the expense of ATP. After caffeoyl-CoA is reduced to hydrocaffeoyl-CoA, the CoA moiety in hydrocaffeoyl-CoA could be recycled for caffeoyl-CoA synthesis by an ATP-independent CoA transferase (CarA) to save energy. However, given that CarA and CarB are co-expressed, it was not well understood how ATP could be saved when both two competitive pathways of caffeate activation are present. Here, we reported a dual feedback inhibition of the CarB-mediated caffeate activation by the intermediate hydrocaffeoyl-CoA and the end-product hydrocaffeate. As the product of CarA, hydrocaffeate inhibited CarB-mediated caffeate activation by serving as another substrate of CarB with hydrocaffeoyl-CoA produced. It effectively competed with caffeate even at a concentration much lower than caffeate. Hydrocaffeoyl-CoA formed in this process can also inhibit CarB-mediated caffeate activation. Thus, the dual feedback inhibition of CarB, together with the faster kinetics of CarA, makes the ATP-independent CarA-mediated CoA loop the major route for caffeoyl-CoA synthesis, further saving ATP in the caffeate-dependent electron-bifurcating pathway. A genetic architecture similar to carABC has been found in other anaerobic bacteria, suggesting that the feedback inhibition of acyl-CoA ligases could be a widely employed strategy for ATP conservation in those pathways requiring substrate activation by CoA. IMPORTANCE This study reports a dual feedback inhibition of caffeoyl-CoA synthetase by two downstream products, hydrocaffeate and hydrocaffeoyl-CoA. It elucidates how such dual feedback inhibition suppresses ATP-dependent caffeoyl-CoA synthesis, hence making the ATP-independent route the main pathway of caffeate activation. This newly discovered mechanism contributes to our current understanding of ATP conservation during the caffeate-dependent electron-bifurcating pathway in the ecologically important acetogen Acetobacterium woodii. Bioinformatic mining of microbial genomes revealed contiguous genes homologous to carABC within the genomes of other anaerobes from various environments, suggesting this mechanism may be widely used in other CoA-dependent electron-bifurcating pathways.
Collapse
Affiliation(s)
- Fengjun Xu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, USA
| | - Calvin J. Thoma
- Department of Biochemistry, Molecular Biology & Biophysics, BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
| | - Weiyang Zhao
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, USA
| | - Yiwen Zhu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, USA
| | - Yujie Men
- Department of Chemical and Environmental Engineering, University of California, Riverside, California, USA
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Lawrence P. Wackett
- Department of Biochemistry, Molecular Biology & Biophysics, BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
2
|
Dou Q, Yang J, Peng Y, Zhang L. Multipathway of Nitrogen Metabolism Revealed by Genome-Centered Metatranscriptomics from Pyrite-Guided Mixotrophic Partial Denitrification/Anammox Installations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21791-21800. [PMID: 38079570 DOI: 10.1021/acs.est.3c08192] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Further reducing the organic requirements is essential for the sustainable development of partial denitrification/anammox technology. Here, an innovative mixotrophic partial denitrification/anammox (MPD/A) installation fed with pyrite and few organics was realized, and the average nitrogen and phosphorus removal rates were as high as 96.24 ± 0.11% and 79.23 ± 2.06%, respectively, with a C/N ratio of 0.5. To understand the nature by which MPD/A achieves efficient nitrogen removal and organic conservation, the electron transfer-dependent nitrogen escape and energy metabolism were first elucidated using multiomics analysis. Apart from heterotrophic denitrification and anammox, the results revealed some unexpected metabolic couplings of MPD/A systems, in particular, putative nitrate-dependent organic and pyrite oxidation among nominally heterotrophic Denitratisoma (PRO3) strains, which accelerated nitrate gasification with a low-carbon supply. Additionally, Candidatus Brocadia (AMX) employed extracellular solid-state electron acceptors as terminal electron sinks for high-rate ammonium removal. AMX transported ammonium electrons to extracellular γFeO(OH) (generated from pyrite oxidation) through the transient storage of menaquinoline pools, cytoplasmic migration via multiheme cytochrome(s), and OmpA protein/nanowires-mediated electron hopping on cell surfaces. Further investigation observed that extracellular electron flux resulted in the transfer of more energy from the increased oxidation of the electron donor to the ATP, supporting nitrite-independent ammonium removal.
Collapse
Affiliation(s)
- Quanhao Dou
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
- College of Carbon Neutrality Future Technology, Beijing University of Technology, Beijing 100124, China
| | - Jiachun Yang
- China Coal Technology & Engineering Group Co., Ltd., Tokyo, 100-0011, Japan
- China Coal Technology & Engineering Group Co., Ltd., Beijing 100013, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| | - Li Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
- College of Carbon Neutrality Future Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
3
|
Rosenbaum FP, Poehlein A, Daniel R, Müller V. Energy‐conserving dimethyl sulfoxide reduction in the acetogenic bacterium
Moorella thermoacetica. Environ Microbiol 2022; 24:2000-2012. [DOI: 10.1111/1462-2920.15971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Florian P. Rosenbaum
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences Johann Wolfgang Goethe University Frankfurt Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics Georg‐August University Göttingen Göttingen 37077 Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics Georg‐August University Göttingen Göttingen 37077 Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences Johann Wolfgang Goethe University Frankfurt Germany
| |
Collapse
|
4
|
Rosenbaum FP, Poehlein A, Egelkamp R, Daniel R, Harder S, Schlüter H, Schoelmerich MC. Lactate metabolism in strictly anaerobic microorganisms with a soluble NAD + -dependent l-lactate dehydrogenase. Environ Microbiol 2021; 23:4661-4672. [PMID: 34190373 DOI: 10.1111/1462-2920.15657] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/28/2021] [Indexed: 11/30/2022]
Abstract
Lactate is a universal metabolite and energy source, yet the mode of lactate metabolism in many strictly anaerobic microorganisms is still enigmatic. This sparked us to investigate the biochemistry and bioenergetics of lactate metabolism in the model acetogenic bacterium Moorella thermoacetica. Growth and metabolism were dependent on CO2 and the chemiosmotic gradient. We discovered a l-lactate:NAD+ oxidoreductase (LDH) in cell-free extracts, exhibiting an average specific activity of 362.8 ± 22.9 mU mg-1 . The enzyme was reversible, most active at 65°C and pH 9, with Km values of 23.1 ± 3.7 mM for l-lactate and 273.3 ± 39.1 μM for NAD+ . In-gel activity assays and mass spectrometric proteomics revealed that the ldh gene encoded the characterized LDH. Transcriptomic and genomic analyses showed that ldh expression was induced by lactate and there was a single nucleotide polymorphism near the predicted NAD+ binding site. Genes encoding central redox and energy metabolism complexes, such as, the energetic coupling site Ech2, menaquinone, and the electron bifurcating EtfABCX and MTHFR were also upregulated in cells grown on lactate. These findings ultimately lead to a redox-balanced metabolic model that shows how growth on lactate can proceed in a microorganism that only has a conventional NAD+ -reducing LDH.
Collapse
Affiliation(s)
- Florian P Rosenbaum
- Microbiology & Biotechnology, Institute of Plant Sciences and Microbiology, University of Hamburg, Hamburg, 22609, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University Göttingen, Göttingen, 37077, Germany
| | - Richard Egelkamp
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University Göttingen, Göttingen, 37077, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August University Göttingen, Göttingen, 37077, Germany
| | - Sönke Harder
- Mass Spectrometric Proteomics Group, Department of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, 20246, Germany
| | - Hartmut Schlüter
- Mass Spectrometric Proteomics Group, Department of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, 20246, Germany
| | - Marie Charlotte Schoelmerich
- Microbiology & Biotechnology, Institute of Plant Sciences and Microbiology, University of Hamburg, Hamburg, 22609, Germany
| |
Collapse
|
5
|
Katsyv A, Müller V. Overcoming Energetic Barriers in Acetogenic C1 Conversion. Front Bioeng Biotechnol 2020; 8:621166. [PMID: 33425882 PMCID: PMC7793690 DOI: 10.3389/fbioe.2020.621166] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 11/19/2020] [Indexed: 11/13/2022] Open
Abstract
Currently one of the biggest challenges for society is to combat global warming. A solution to this global threat is the implementation of a CO2-based bioeconomy and a H2-based bioenergy economy. Anaerobic lithotrophic bacteria such as the acetogenic bacteria are key players in the global carbon and H2 cycle and thus prime candidates as driving forces in a H2- and CO2-bioeconomy. Naturally, they convert two molecules of CO2via the Wood-Ljungdahl pathway (WLP) to one molecule of acetyl-CoA which can be converted to different C2-products (acetate or ethanol) or elongated to C4 (butyrate) or C5-products (caproate). Since there is no net ATP generation from acetate formation, an electron-transport phosphorylation (ETP) module is hooked up to the WLP. ETP provides the cell with additional ATP, but the ATP gain is very low, only a fraction of an ATP per mol of acetate. Since acetogens live at the thermodynamic edge of life, metabolic engineering to obtain high-value products is currently limited by the low energy status of the cells that allows for the production of only a few compounds with rather low specificity. To set the stage for acetogens as production platforms for a wide range of bioproducts from CO2, the energetic barriers have to be overcome. This review summarizes the pathway, the energetics of the pathway and describes ways to overcome energetic barriers in acetogenic C1 conversion.
Collapse
Affiliation(s)
- Alexander Katsyv
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
6
|
Reductive metabolism of the important atmospheric gas isoprene by homoacetogens. ISME JOURNAL 2019; 13:1168-1182. [PMID: 30643199 PMCID: PMC6474224 DOI: 10.1038/s41396-018-0338-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 10/18/2018] [Accepted: 12/02/2018] [Indexed: 02/01/2023]
Abstract
Isoprene is the most abundant biogenic volatile organic compound (BVOC) in the Earth's atmosphere and plays important roles in atmospheric chemistry. Despite this, little is known about microbiological processes serving as a terrestrial sink for isoprene. While aerobic isoprene degrading bacteria have been identified, there are no known anaerobic, isoprene-metabolizing organisms. In this study an H2-consuming homoacetogenic enrichment was shown to utilize 1.6 μmoles isoprene h-1 as an electron acceptor in addition to HCO3-. The isoprene-reducing community was dominated by Acetobacterium spp. and isoprene was shown to be stoichiometrically reduced to three methylbutene isomers (2-methyl-1-butene (>97%), 3-methyl-1-butene (≤2%), 2-methyl-2-butene (≤1%). In the presence of isoprene, 40% less acetate was formed suggesting that isoprene reduction is coupled to energy conservation in Acetobacterium spp. This study improves our understanding of linkages and feedbacks between biogeochemistry and terrestrial microbial activity.
Collapse
|
7
|
Müller V, Chowdhury NP, Basen M. Electron Bifurcation: A Long-Hidden Energy-Coupling Mechanism. Annu Rev Microbiol 2018; 72:331-353. [PMID: 29924687 DOI: 10.1146/annurev-micro-090816-093440] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A decade ago, a novel mechanism to drive thermodynamically unfavorable redox reactions was discovered that is used in prokaryotes to drive endergonic electron transfer reactions by a direct coupling to an exergonic redox reaction in one soluble enzyme complex. This process is referred to as flavin-based electron bifurcation, or FBEB. An important function of FBEB is that it allows the generation of reduced low-potential ferredoxin (Fdred) from comparably high-potential electron donors such as NADH or molecular hydrogen (H2). Fdred is then the electron donor for anaerobic respiratory chains leading to the synthesis of ATP. In many metabolic scenarios, Fd is reduced by metabolic oxidoreductases and Fdred then drives endergonic metabolic reactions such as H2 production by the reverse, electron confurcation. FBEB is energetically more economical than ATP hydrolysis or reverse electron transport as a driving force for endergonic redox reactions; thus, it does "save" cellular ATP. It is essential for autotrophic growth at the origin of life and also allows for heterotrophic growth on certain low-energy substrates.
Collapse
Affiliation(s)
- Volker Müller
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, 60438 Frankfurt, Germany;
| | - Nilanjan Pal Chowdhury
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, 60438 Frankfurt, Germany;
| | - Mirko Basen
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, 60438 Frankfurt, Germany;
| |
Collapse
|
8
|
Mayer A, Weuster-Botz D. Reaction engineering analysis of the autotrophic energy metabolism of Clostridium aceticum. FEMS Microbiol Lett 2018; 364:4562590. [PMID: 29069379 DOI: 10.1093/femsle/fnx219] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/17/2017] [Indexed: 11/13/2022] Open
Abstract
Acetogenesis with CO2:H2 or CO via the reductive acetyl-CoA pathway does not provide any net ATP formation in homoacetogenic bacteria. Autotrophic energy conservation is coupled to the generation of chemiosmotic H+ or Na+ gradients across the cytoplasm membrane using either a ferredoxin:NAD+ oxidoreductase (Rnf), a ferredoxin:H+ oxidoreductase (Ech) or substrate-level phosphorylation via cytochromes. The first isolated acetogenic bacterium Clostridium aceticum shows both cytochromes and Rnf complex, putting it into an outstanding position. Autotrophic batch processes with continuous gas supply were performed in fully controlled stirred-tank bioreactors to elucidate energy metabolism of C. aceticum. Varying the initial Na+ concentration in the medium showed sodium-dependent growth of C. aceticum with a growth optimum between 60 and 90 mM Na+. The addition of the Na+-selective ionophore ETH2120 or the protonophore CCCP or the H+/cation-antiporter monensin revealed that an H+ gradient is used as primary energy conservation mechanism, which strengthens the exceptional position of C. aceticum as acetogenic bacterium showing an H+-dependent energy conservation mechanism as well as Na+-dependent growth.
Collapse
|
9
|
Kottenhahn P, Schuchmann K, Müller V. Efficient whole cell biocatalyst for formate-based hydrogen production. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:93. [PMID: 29619089 PMCID: PMC5879573 DOI: 10.1186/s13068-018-1082-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 03/14/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Molecular hydrogen (H2) is an attractive future energy carrier to replace fossil fuels. Biologically and sustainably produced H2 could contribute significantly to the future energy mix. However, biological H2 production methods are faced with multiple barriers including substrate cost, low production rates, and low yields. The C1 compound formate is a promising substrate for biological H2 production, as it can be produced itself from various sources including electrochemical reduction of CO2 or from synthesis gas. Many microbes that can produce H2 from formate have been isolated; however, in most cases H2 production rates cannot compete with other H2 production methods. RESULTS We established a formate-based H2 production method utilizing the acetogenic bacterium Acetobacterium woodii. This organism can use formate as sole energy and carbon source and possesses a novel enzyme complex, the hydrogen-dependent CO2 reductase that catalyzes oxidation of formate to H2 and CO2. Cell suspensions reached specific formate-dependent H2 production rates of 71 mmol gprotein-1 h-1 (30.5 mmol gCDW-1 h-1) and maximum volumetric H2 evolution rates of 79 mmol L-1 h-1. Using growing cells in a two-step closed batch fermentation, specific H2 production rates reached 66 mmol gCDW-1 h-1 with a volumetric H2 evolution rate of 7.9 mmol L-1 h-1. Acetate was the major side product that decreased the H2 yield. We demonstrate that inhibition of the energy metabolism by addition of a sodium ionophore is suitable to completely abolish acetate formation. Under these conditions, yields up to 1 mol H2 per mol formate were achieved. The same ionophore can be used in cultures utilizing formate as specific switch from a growing phase to a H2 production phase. CONCLUSIONS Acetobacterium woodii reached one of the highest formate-dependent specific H2 productivity rates at ambient temperatures reported so far for an organism without genetic modification and converted the substrate exclusively to H2. This makes this organism a very promising candidate for sustainable H2 production and, because of the reversibility of the A. woodii enzyme, also a candidate for reversible H2 storage.
Collapse
Affiliation(s)
- Patrick Kottenhahn
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60439 Frankfurt am Main, Germany
| | - Kai Schuchmann
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60439 Frankfurt am Main, Germany
| | - Volker Müller
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60439 Frankfurt am Main, Germany
| |
Collapse
|
10
|
De Tissera S, Köpke M, Simpson SD, Humphreys C, Minton NP, Dürre P. Syngas Biorefinery and Syngas Utilization. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017. [DOI: 10.1007/10_2017_5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Brandt K, Müller DB, Hoffmann J, Langer JD, Brutschy B, Morgner N, Müller V. Stoichiometry and deletion analyses of subunits in the heterotrimeric F-ATP synthasecring from the acetogenic bacteriumAcetobacterium woodii. FEBS J 2015; 283:510-20. [DOI: 10.1111/febs.13606] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/17/2015] [Accepted: 11/23/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Karsten Brandt
- Molecular Microbiology and Bioenergetics; Institute of Molecular Biosciences; Goethe University Frankfurt am Main; Germany
| | - Daniel B. Müller
- Molecular Microbiology and Bioenergetics; Institute of Molecular Biosciences; Goethe University Frankfurt am Main; Germany
| | - Jan Hoffmann
- Institute for Physical and Theoretical Chemistry; Goethe University Frankfurt am Main; Germany
| | - Julian D. Langer
- Department of Molecular Membrane Biology; Max-Planck-Institute of Biophysics; Frankfurt am Main Germany
| | - Bernd Brutschy
- Institute for Physical and Theoretical Chemistry; Goethe University Frankfurt am Main; Germany
| | - Nina Morgner
- Institute for Physical and Theoretical Chemistry; Goethe University Frankfurt am Main; Germany
| | - Volker Müller
- Molecular Microbiology and Bioenergetics; Institute of Molecular Biosciences; Goethe University Frankfurt am Main; Germany
| |
Collapse
|
12
|
CO Metabolism in the Acetogen Acetobacterium woodii. Appl Environ Microbiol 2015; 81:5949-56. [PMID: 26092462 DOI: 10.1128/aem.01772-15] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 06/17/2015] [Indexed: 01/07/2023] Open
Abstract
The Wood-Ljungdahl pathway allows acetogenic bacteria to grow on a number of one-carbon substrates, such as carbon dioxide, formate, methyl groups, or even carbon monoxide. Since carbon monoxide alone or in combination with hydrogen and carbon dioxide (synthesis gas) is an increasingly important feedstock for third-generation biotechnology, we studied CO metabolism in the model acetogen Acetobacterium woodii. When cells grew on H2-CO2, addition of 5 to 15% CO led to higher final optical densities, indicating the utilization of CO as a cosubstrate. However, the growth rate was decreased by the presence of small amounts of CO, which correlated with an inhibition of H2 consumption. Experiments with resting cells revealed that the degree of inhibition of H2 consumption was a function of the CO concentration. Since the hydrogen-dependent CO2 reductase (HDCR) of A. woodii is known to be very sensitive to CO, we speculated that cells may be more tolerant toward CO when growing on formate, the product of the HDCR reaction. Indeed, addition of up to 25% CO did not influence growth rates on formate, while the final optical densities and the production of acetate increased. Higher concentrations (75 and 100%) led to a slight inhibition of growth and to decreasing rates of formate and CO consumption. Experiments with resting cells revealed that the HDCR is a site of CO inhibition. In contrast, A. woodii was not able to grow on CO as a sole carbon and energy source, and growth on fructose-CO or methanol-CO was not observed.
Collapse
|
13
|
Spahn S, Brandt K, Müller V. A low phosphorylation potential in the acetogen Acetobacterium woodii reflects its lifestyle at the thermodynamic edge of life. Arch Microbiol 2015; 197:745-51. [PMID: 25820826 DOI: 10.1007/s00203-015-1107-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/04/2015] [Accepted: 03/17/2015] [Indexed: 11/26/2022]
Abstract
The anaerobic, acetogenic bacterium Acetobacterium woodii grows on hydrogen and carbon dioxide and uses the Wood-Ljungdahl pathway to fix carbon but also to synthesize ATP. The free energy change of acetogenesis from H2 + CO2 allows for synthesis of only a fraction of an ATP under environmental conditions, and A. woodii is clearly a paradigm for microbial life under extreme energy limitation. However, it was unknown how much energy is required to make ATP under these conditions. In the present study, we determined the phosphorylation potential in cells metabolizing three different acetogenic substrates. It accounts to 37.9 ± 1.3 kJ/mol ATP during acetogenesis from fructose, 32.1 ± 0.3 kJ/mol ATP during acetogenesis from H2 + CO2 and 30.2 ± 0.9 kJ/mol ATP during acetogenesis from CO, the lowest phosphorylation potential ever described. The physiological consequences in terms of energy conservation under extreme energy limitation are discussed.
Collapse
Affiliation(s)
- Sebastian Spahn
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | | | | |
Collapse
|
14
|
Heterotrimeric NADH-oxidizing methylenetetrahydrofolate reductase from the acetogenic bacterium Acetobacterium woodii. J Bacteriol 2015; 197:1681-9. [PMID: 25733614 DOI: 10.1128/jb.00048-15] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 02/24/2015] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED The methylenetetrahydrofolate reductase (MTHFR) of acetogenic bacteria catalyzes the reduction of methylene-THF, which is highly exergonic with NADH as the reductant. Therefore, the enzyme was suggested to be involved in energy conservation by reducing ferredoxin via electron bifurcation, followed by Na(+) translocation by the Rnf complex. The enzyme was purified from Acetobacterium woodii and shown to have an unprecedented subunit composition containing the three subunits RnfC2, MetF, and MetV. The stable complex contained 2 flavin mononucleotides (FMN), 23.5 ± 1.2 Fe and 24.5 ± 1.5 S, which fits well to the predicted six [4Fe4S] clusters in MetV and RnfC2. The enzyme catalyzed NADH:methylviologen and NADH:ferricyanide oxidoreductase activity but also methylene-tetrahydrofolate (THF) reduction with NADH as the reductant. The NADH:methylene-THF reductase activity was high (248 U/mg) and not stimulated by ferredoxin. Furthermore, reduction of ferredoxin, alone or in the presence of methylene-THF and NADH, was never observed. MetF or MetVF was not able to catalyze the methylene-THF-dependent oxidation of NADH, but MetVF could reduce methylene-THF using methyl viologen as the electron donor. The purified MTHFR complex did not catalyze the reverse reaction, the endergonic oxidation of methyl-THF with NAD(+) as the acceptor, and this reaction could not be driven by reduced ferredoxin. However, addition of protein fractions made the oxidation of methyl-THF to methylene-THF coupled to NAD(+) reduction possible. Our data demonstrate that the MTHFR of A. woodii catalyzes methylene-THF reduction according to the following reaction: NADH + methylene-THF → methyl-THF + NAD(+). The differences in the subunit compositions of MTHFRs of bacteria are discussed in the light of their different functions. IMPORTANCE Energy conservation in the acetogenic bacterium Acetobacterium woodii involves ferredoxin reduction followed by a chemiosmotic mechanism involving Na(+)-translocating ferredoxin oxidation and a Na(+)-dependent F1Fo ATP synthase. All redox enzymes of the pathway have been characterized except the methylenetetrahydrofolate reductase (MTHFR). Here we report the purification of the MTHFR of A. woodii, which has an unprecedented heterotrimeric structure. The enzyme reduces methylene-THF with NADH. Ferredoxin did not stimulate the reaction; neither was it oxidized or reduced with NADH. Since the last enzyme with a potential role in energy metabolism of A. woodii has now been characterized, we can propose a quantitative bioenergetic scheme for acetogenesis from H2 plus CO2 in the model acetogen A. woodii.
Collapse
|
15
|
Caffeate respiration in the acetogenic bacterium Acetobacterium woodii: a coenzyme A loop saves energy for caffeate activation. Appl Environ Microbiol 2013; 79:1942-7. [PMID: 23315745 DOI: 10.1128/aem.03604-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The anaerobic acetogenic bacterium Acetobacterium woodii couples reduction of caffeate with electrons derived from molecular hydrogen to the synthesis of ATP by a chemiosmotic mechanism with sodium ions as coupling ions. Caffeate is activated to caffeyl coenzyme A (caffeyl-CoA) prior to its reduction, and the caffeate reduction operon encodes an ATP-dependent caffeyl-CoA synthetase that is thought to catalyze the initial caffeate activation. The operon also encodes a potential CoA transferase, the product of carA, which was thought to be involved in subsequent ATP-independent caffeate activation. To prove the proposed function of carA, we overproduced its protein in Escherichia coli and then purified it. Purified CarA drives the formation of caffeyl-CoA from caffeate with hydrocaffeyl-CoA as the CoA donor. The dependence of the reaction on caffeate and hydrocaffeyl-CoA followed Michaelis-Menten kinetics, with apparent K(m) values of 75 ± 5 μM for caffeate and 8 ± 2 μM for hydrocaffeyl-CoA. The enzyme activity had broad ranges of pH and temperature optima. In addition to being able to use caffeate, CarA could use p-coumarate and ferulate but not cinnamate, sinapate, or p-hydroxybenzoate as a CoA acceptor. Neither acetyl-CoA nor butyryl-CoA served as the CoA donor for CarA. The enzyme uses a ping-pong mechanism for CoA transfer and is the first classified member of a new subclass of family I CoA transferases that has two catalytic domains on one polypeptide chain. Apparently, CarA catalyzes an energy-saving CoA loop for caffeate activation in the steady state of caffeate respiration.
Collapse
|
16
|
The Rnf complex of Clostridium ljungdahlii is a proton-translocating ferredoxin:NAD+ oxidoreductase essential for autotrophic growth. mBio 2012; 4:e00406-12. [PMID: 23269825 PMCID: PMC3531802 DOI: 10.1128/mbio.00406-12] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
It has been predicted that the Rnf complex of Clostridium ljungdahlii is a proton-translocating ferredoxin:NAD+ oxidoreductase which contributes to ATP synthesis by an H+-translocating ATPase under both autotrophic and heterotrophic growth conditions. The recent development of methods for genetic manipulation of C. ljungdahlii made it possible to evaluate the possible role of the Rnf complex in energy conservation. Disruption of the C. ljungdahlii rnf operon inhibited autotrophic growth. ATP synthesis, proton gradient, membrane potential, and proton motive force collapsed in the Rnf-deficient mutant with H2 as the electron source and CO2 as the electron acceptor. Heterotrophic growth was hindered in the absence of a functional Rnf complex, as ATP synthesis, proton gradient, and proton motive force were significantly reduced with fructose as the electron donor. Growth of the Rnf-deficient mutant was also inhibited when no source of fixed nitrogen was provided. These results demonstrate that the Rnf complex of C. ljungdahlii is responsible for translocation of protons across the membrane to elicit energy conservation during acetogenesis and is a multifunctional device also implicated in nitrogen fixation. Mechanisms for energy conservation in the acetogen Clostridium ljungdahlii are of interest because of its potential value as a chassis for the production of biocommodities with novel electron donors such as carbon monoxide, syngas, and electrons derived from electrodes. Characterizing the components implicated in the chemiosmotic ATP synthesis during acetogenesis by C. ljungdahlii is a prerequisite for the development of highly productive strains. The Rnf complex has been considered the prime candidate to be the pump responsible for the formation of an ion gradient coupled with ATP synthesis in multiple acetogens. However, experimental evidence for a proton-pumping Rnf complex has been lacking. This study establishes the C. ljungdahlii Rnf complex as a proton-translocating ferredoxin:NAD+ oxidoreductase and demonstrates that C. ljungdahlii has the potential of becoming a model organism to study proton translocation, electron transport, and other functions of the Rnf complex in energy conservation or other processes.
Collapse
|
17
|
Functional production of the Na+ F1FO ATP synthase from Acetobacterium woodii in Escherichia coli requires the native AtpI. J Bioenerg Biomembr 2012; 45:15-23. [DOI: 10.1007/s10863-012-9474-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 09/16/2012] [Indexed: 10/27/2022]
|
18
|
Biegel E, Schmidt S, González JM, Müller V. Biochemistry, evolution and physiological function of the Rnf complex, a novel ion-motive electron transport complex in prokaryotes. Cell Mol Life Sci 2011; 68:613-34. [PMID: 21072677 PMCID: PMC11115008 DOI: 10.1007/s00018-010-0555-8] [Citation(s) in RCA: 262] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 09/30/2010] [Accepted: 10/01/2010] [Indexed: 11/25/2022]
Abstract
Microbes have a fascinating repertoire of bioenergetic enzymes and a huge variety of electron transport chains to cope with very different environmental conditions, such as different oxygen concentrations, different electron acceptors, pH and salinity. However, all these electron transport chains cover the redox span from NADH + H(+) as the most negative donor to oxygen/H(2)O as the most positive acceptor or increments thereof. The redox range more negative than -320 mV has been largely ignored. Here, we have summarized the recent data that unraveled a novel ion-motive electron transport chain, the Rnf complex, that energetically couples the cellular ferredoxin to the pyridine nucleotide pool. The energetics of the complex and its biochemistry, as well as its evolution and cellular function in different microbes, is discussed.
Collapse
Affiliation(s)
- Eva Biegel
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Silke Schmidt
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - José M. González
- Department of Microbiology and Cell Biology, University of La Laguna, 38206 La Laguna, Tenerife Spain
| | - Volker Müller
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| |
Collapse
|
19
|
Abstract
Methanogens are the only significant biological producers of methane. A limited number of C(1) substrates, such as methanol, methylamines, methyl sulfate, formate, H(2)+CO(2) or CO, and acetate, serve as carbon and energy source. During degradation of these compounds, a primary proton as well as a primary sodium ion gradient is established, which is a unique feature of methanogens. This raises the question about the coupling ion for ATP synthesis by the unique A(1)A(o) ATP synthase. Here, we describe how to analyze and determine the Na(+) dependence of two model methanogens, the hydrogenotrophic Methanothermobacter thermautotrophicus and the methylotrophic Methanosarcina barkeri. Furthermore, the determination of important bioenergetic parameters like the ΔpH, ΔΨ, or the intracellular volume in M. barkeri is described. For the analyses of the A(1)A(O) ATP synthase, methods for measurement of ATP synthesis as well as ATP hydrolysis in Methanosarcina mazei Gö1 are described.
Collapse
|
20
|
Biegel E, Müller V. A Na+-translocating pyrophosphatase in the acetogenic bacterium Acetobacterium woodii. J Biol Chem 2010; 286:6080-4. [PMID: 21173152 DOI: 10.1074/jbc.m110.192823] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The anaerobic acetogenic bacterium Acetobacterium woodii employs a novel type of Na(+)-motive anaerobic respiration, caffeate respiration. However, this respiration is at the thermodynamic limit of energy conservation, and even worse, in the first step, caffeate is activated by caffeyl-CoA synthetase, which hydrolyzes ATP to AMP and pyrophosphate. Here, we have addressed whether or not the energy stored in the anhydride bond of pyrophosphate is conserved by A. woodii. Inverted membrane vesicles of A. woodii have a membrane-bound pyrophosphatase that catalyzes pyrophosphate hydrolysis at a rate of 70-120 milliunits/mg of protein. Pyrophosphatase activity was dependent on the divalent cation Mg(2+). In addition, activity was strictly dependent on Na(+) with a K(m) of 1.1 mM. Hydrolysis of pyrophosphate was accompanied by (22)Na(+) transport into the lumen of the inverted membrane vesicles. Inhibitor studies revealed that (22)Na(+) transport was primary and electrogenic. Next to the Na(+)-motive ferredoxin:NAD(+) oxidoreductase (Fno or Rnf), the Na(+)-pyrophosphatase is the second primary Na(+)-translocating enzyme in A. woodii.
Collapse
Affiliation(s)
- Eva Biegel
- Department of Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | | |
Collapse
|
21
|
A caffeyl-coenzyme A synthetase initiates caffeate activation prior to caffeate reduction in the acetogenic bacterium Acetobacterium woodii. J Bacteriol 2010; 193:971-8. [PMID: 21131487 DOI: 10.1128/jb.01126-10] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The anaerobic acetogenic bacterium Acetobacterium woodii couples the reduction of caffeate with electrons derived from hydrogen to the synthesis of ATP by a chemiosmotic mechanism using sodium ions as coupling ions, but the enzymes involved remain to be established. Previously, the electron transfer flavoproteins EtfA and EtfB were found to be involved in caffeate respiration. By inverse PCR, we identified three genes upstream of etfA and etfB: carA, carB, and carC. carA encodes a potential coenzyme A (CoA) transferase, carB an acyl-CoA synthetase, and carC an acyl-CoA dehydrogenase. carA, -B, and -C are located together with etfA/carE and etfB/carD on one polycistronic message, indicating that CarA, CarB, and CarC are also part of the caffeate respiration pathway. The genetic data suggest an initial ATP-dependent activation of caffeate by CarB. To prove the proposed function of CarB, the protein was overproduced in Escherichia coli, and the recombinant protein was purified. Purified CarB activates caffeate to caffeyl-CoA in an ATP- and CoA-dependent reaction. The enzyme has broad pH and temperature optima and requires K(+) for activity. In addition to caffeate, it can use ρ-coumarate, ferulate, and cinnamate as substrates, with 50, 15, and 9%, respectively, of the activity obtained with caffeate. Expression of the car operon is induced not only by caffeate, ρ-coumarate, ferulate, and cinnamate but also by sinapate. There is no induction by ρ-hydroxybenzoate or syringate.
Collapse
|
22
|
Abstract
The anaerobic acetogenic bacterium Acetobacterium woodii carries out a unique type of Na(+)-motive, anaerobic respiration with caffeate as electron acceptor, termed "caffeate respiration." Central, and so far the only identified membrane-bound reaction in this respiration pathway, is a ferredoxin:NAD(+) oxidoreductase (Fno) activity. Here we show that inverted membrane vesicles of A. woodii couple electron transfer from reduced ferredoxin to NAD(+) with the transport of Na(+) from the outside into the lumen of the vesicles. Na(+) transport was electrogenic, and accumulation was inhibited by sodium ionophores but not protonophores, demonstrating a direct coupling of Fno activity to Na(+) transport. Results from inhibitor studies are consistent with the hypothesis that Fno activity coupled to Na(+) translocation is catalyzed by the Rnf complex, a membrane-bound, iron-sulfur and flavin-containing electron transport complex encoded by many bacterial and some archaeal genomes. Fno is a unique type of primary Na(+) pump and represents an early evolutionary mechanism of energy conservation that expands the redox range known to support life. In addition, it explains the lifestyle of many anaerobic bacteria and gives a mechanistic explanation for the enigma of the energetic driving force for the endergonic reduction of ferredoxin with NADH plus H(+) as reductant in a number of aerobic bacteria.
Collapse
|
23
|
Biegel E, Schmidt S, Müller V. Genetic, immunological and biochemical evidence for a Rnf complex in the acetogen Acetobacterium woodii. Environ Microbiol 2009; 11:1438-43. [PMID: 19222539 DOI: 10.1111/j.1462-2920.2009.01871.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acetogenic bacteria grow by the oxidation of various substrates coupled to the reduction of carbon dioxide (acetogenesis) or other electron acceptors but the mechanisms of energy conservation are still enigmatic. Here, we report the presence of a rnf gene cluster rnfCDGEAB in Acetobacterium woodii that is speculated to encode a novel, energy-conserving ferredoxin:NAD(+)-oxidoreductase complex composed of at least six different subunits. Transcriptional analysis revealed that the genes constitute an operon. RnfC and RnfG were heterologously produced and antibodies were generated. Western blot analyses demonstrated that these subunits were produced and are associated with the cytoplasmic membrane. The subunits were present in cells respiring with either carbon dioxide or caffeate. A preparation with NADH dehydrogenase activity was obtained from detergent solubilized membranes that contained RnfC and RnfG.
Collapse
Affiliation(s)
- Eva Biegel
- Molecular Microbiology and Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt am Main, Frankfurt, Germany
| | | | | |
Collapse
|
24
|
Schmidt S, Biegel E, Müller V. The ins and outs of Na(+) bioenergetics in Acetobacterium woodii. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:691-6. [PMID: 19167341 DOI: 10.1016/j.bbabio.2008.12.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 12/30/2008] [Accepted: 12/30/2008] [Indexed: 12/15/2022]
Abstract
The acetogenic bacterium Acetobacterium woodii uses a transmembrane electrochemical sodium ion potential for bioenergetic reactions. A primary sodium ion potential is established during carbonate (acetogenesis) as well as caffeate respiration. The electrogenic Na(+) pump connected to the Wood-Ljungdahl pathway (acetogenesis) still remains to be identified. The pathway of caffeate reduction with hydrogen as electron donor was investigated and the only membrane-bound activity was found to be a ferredoxin-dependent NAD(+) reduction. This exergonic electron transfer reaction may be catalyzed by the membrane-bound Rnf complex that was discovered recently and is suggested to couple exergonic electron transfer from ferredoxin to NAD(+) to the vectorial transport of Na(+) across the cytoplasmic membrane. Rnf may also be involved in acetogenesis. The electrochemical sodium ion potential thus generated is used to drive endergonic reactions such as flagellar rotation and ATP synthesis. The ATP synthase is a member of the F(1)F(O) class of enzymes but has an unusual and exceptional feature. Its membrane-embedded rotor is a hybrid made of F(O) and V(O)-like subunits in a stoichiometry of 9:1. This stoichiometry is apparently not variable with the growth conditions. The structure and function of the Rnf complex and the Na(+) F(1)F(O) ATP synthase as key elements of the Na(+) cycle in A. woodii are discussed.
Collapse
Affiliation(s)
- Silke Schmidt
- Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | | | | |
Collapse
|
25
|
Müller V, Imkamp F, Biegel E, Schmidt S, Dilling S. Discovery of a ferredoxin:NAD+-oxidoreductase (Rnf) in Acetobacterium woodii: a novel potential coupling site in acetogens. Ann N Y Acad Sci 2008; 1125:137-46. [PMID: 18378592 DOI: 10.1196/annals.1419.011] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Acetogens use the Wood-Ljungdahl pathway for reduction of carbon dioxide to acetate. This pathway not only allows reoxidation of reducing equivalents during heterotrophic growth but also supports chemolithoautotrophic growth on H(2) + CO(2). The latter argues for this pathway being a source for net energy conservation, but the mechanism involved remains unknown. In addition to CO(2), acetogens can use alternative electron acceptors, such as nitrate or caffeate. Caffeate respiration in the model acetogen Acetobacterium woodii is coupled to energy conservation via a chemiosmotic mechanism, with Na(+) as coupling ion. The pathway and its bioenergetics were solved in some detail very recently. This review focuses on the regulation of caffeate respiration, describes the enyzmes involved, summarizes the evidence for a potential Na(+)-translocating ferredoxin:NAD(+)-oxidoreductase (Rnf complex) as a new coupling site, and hypothesizes on the role of this Rnf complex in the Wood-Ljungdahl pathway.
Collapse
Affiliation(s)
- Volker Müller
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Frankfurt am Main, Germany.
| | | | | | | | | |
Collapse
|
26
|
Fisher E, Dawson AM, Polshyna G, Lisak J, Crable B, Perera E, Ranganathan M, Thangavelu M, Basu P, Stolz JF. Transformation of Inorganic and Organic Arsenic byAlkaliphilus oremlandiisp. nov. Strain OhILAs. Ann N Y Acad Sci 2008; 1125:230-41. [DOI: 10.1196/annals.1419.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
27
|
Energy conservation via electron-transferring flavoprotein in anaerobic bacteria. J Bacteriol 2007; 190:784-91. [PMID: 18039764 DOI: 10.1128/jb.01422-07] [Citation(s) in RCA: 300] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
28
|
Imkamp F, Biegel E, Jayamani E, Buckel W, Müller V. Dissection of the caffeate respiratory chain in the acetogen Acetobacterium woodii: identification of an Rnf-type NADH dehydrogenase as a potential coupling site. J Bacteriol 2007; 189:8145-53. [PMID: 17873051 PMCID: PMC2168664 DOI: 10.1128/jb.01017-07] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The anaerobic acetogenic bacterium Acetobacterium woodii couples caffeate reduction with electrons derived from hydrogen to the synthesis of ATP by a chemiosmotic mechanism with sodium ions as coupling ions, a process referred to as caffeate respiration. We addressed the nature of the hitherto unknown enzymatic activities involved in this process and their cellular localization. Cell extract of A. woodii catalyzes H(2)-dependent caffeate reduction. This reaction is strictly ATP dependent but can be activated also by acetyl coenzyme A (CoA), indicating that there is formation of caffeyl-CoA prior to reduction. Two-dimensional gel electrophoresis revealed proteins present only in caffeate-grown cells. Two proteins were identified by electrospray ionization-mass spectrometry/mass spectrometry, and the encoding genes were cloned. These proteins are very similar to subunits alpha (EtfA) and beta (EtfB) of electron transfer flavoproteins present in various anaerobic bacteria. Western blot analysis demonstrated that they are induced by caffeate and localized in the cytoplasm. Etf proteins are known electron carriers that shuttle electrons from NADH to different acceptors. Indeed, NADH was used as an electron donor for cytosolic caffeate reduction. Since the hydrogenase was soluble and used ferredoxin as an electron acceptor, the missing link was a ferredoxin:NAD(+) oxidoreductase. This activity could be determined and, interestingly, was membrane bound. A search for genes that could encode this activity revealed DNA fragments encoding subunits C and D of a membrane-bound Rnf-type NADH dehydrogenase that is a potential Na(+) pump. These data suggest the following electron transport chain: H(2) --> ferredoxin --> NAD(+) --> Etf --> caffeyl-CoA reductase. They also imply that the sodium motive step in the chain is the ferredoxin-dependent NAD(+) reduction catalyzed by Rnf.
Collapse
Affiliation(s)
- Frank Imkamp
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University of Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
29
|
Dilling S, Imkamp F, Schmidt S, Müller V. Regulation of caffeate respiration in the acetogenic bacterium Acetobacterium woodii. Appl Environ Microbiol 2007; 73:3630-6. [PMID: 17416687 PMCID: PMC1932707 DOI: 10.1128/aem.02060-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The anaerobic acetogenic bacterium Acetobacterium woodii can conserve energy by oxidation of various substrates coupled to either carbonate or caffeate respiration. We used a cell suspension system to study the regulation and kinetics of induction of caffeate respiration. After addition of caffeate to suspensions of fructose-grown cells, there was a lag phase of about 90 min before caffeate reduction commenced. However, in the presence of tetracycline caffeate was not reduced, indicating that de novo protein synthesis is required for the ability to respire caffeate. Induction also took place in the presence of CO(2), and once a culture was induced, caffeate and CO(2) were used simultaneously as electron acceptors. Induction of caffeate reduction was also observed with H(2) plus CO(2) as the substrate, but the lag phase was much longer. Again, caffeate and CO(2) were used simultaneously as electron acceptors. In contrast, during oxidation of methyl groups derived from methanol or betaine, acetogenesis was the preferred energy-conserving pathway, and caffeate reduction started only after acetogenesis was completed. The differential flow of reductants was also observed with suspensions of resting cells in which caffeate reduction was induced prior to harvest of the cells. These cell suspensions utilized caffeate and CO(2) simultaneously with fructose or hydrogen as electron donors, but CO(2) was preferred over caffeate during methyl group oxidation. Caffeate-induced resting cells could reduce caffeate and also p-coumarate or ferulate with hydrogen as the electron donor. p-Coumarate or ferulate also served as an inducer for caffeate reduction. Interestingly, caffeate-induced cells reduced ferulate in the absence of an external reductant, indicating that caffeate also induces the enzymes required for oxidation of the methyl group of ferulate.
Collapse
Affiliation(s)
- Sabrina Dilling
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, D-60438 Frankfurt, Germany
| | | | | | | |
Collapse
|
30
|
Stolz JF, Perera E, Kilonzo B, Kail B, Crable B, Fisher E, Ranganathan M, Wormer L, Basu P. Biotransformation of 3-nitro-4-hydroxybenzene arsonic acid (roxarsone) and release of inorganic arsenic by Clostridium species. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:818-23. [PMID: 17328188 DOI: 10.1021/es061802i] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The extensive use of 3-nitro-4-hydroxybenzene arsonic acid (roxarsone) in the production of broiler chickens can lead to increased soil arsenic concentration and arsenic contaminated dust. While roxarsone is the dominant arsenic species in fresh litter, inorganic As (V) predominates in composted litter. Microbial activity has been implicated as the cause, but neither the specific processes nor the organisms have been identified. Here we demonstrate the rapid biotransformation of roxarsone under anaerobic conditions by Clostridium species in chicken litter enrichments and a pure culture of a fresh water arsenate respiring species (Clostridium sp. strain OhILAs). The main products were 3-amino-4-hydroxybenzene arsonic acid and inorganic arsenic. Growth experiments and genomic analysis indicate strain OhILAs may use roxarsone as a terminal electron acceptor for anaerobic respiration. Electronic structure analysis suggests that the reducing equivalents should go to the nitro group, while liberation of inorganic arsenic from the intact benzene ring by cleaving the C-As bond is unlikely. Clostridium and Lactobacillus species are common in the chicken cecum and litter. Thus, the organic-rich manure and anaerobic conditions typically associated with composting provide the conditions necessary for the native microbial populations to transform the roxarsone in the litter releasing the more toxic inorganic arsenic.
Collapse
Affiliation(s)
- John F Stolz
- Departments of Biology, and Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Schwarzenlander C, Averhoff B. Characterization of DNA transport in the thermophilic bacterium Thermus thermophilus HB27. FEBS J 2006; 273:4210-8. [PMID: 16939619 DOI: 10.1111/j.1742-4658.2006.05416.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Horizontal gene transfer has been a major force for genome plasticity over evolutionary history, and is largely responsible for fitness-enhancing traits, including antibiotic resistance and virulence factors. In particular, for adaptation of prokaryotes to extreme environments, lateral gene transfer seems to have played a crucial role. Recently, by performing a genome-wide mutagenesis approach with Thermus thermophilus HB27, we identified the first genes in a thermophilic bacterium for the uptake of free DNA, a process called natural transformation. Here, we present the first data on the biochemistry and bioenergetics of the DNA transport process in this thermophile. We report that linear and circular plasmid DNA are equally well taken up with a high maximal velocity of 1.5 microg DNA.(mg protein)(-1).min(-1), demonstrating an extremely efficient binding and uptake rate of 40 kb.s(-1).cell(-1). Uncouplers and ATPase inhibitors immediately inhibited DNA uptake, providing clear evidence that DNA translocation in HB27 is an energy-dependent process. DNA uptake studies with genomic DNA of Bacteria, Archaea and Eukarya revealed that Thermus thermophilus HB27 takes up DNA from members of all three domains of life. We propose that the extraordinary broad substrate specificity of the highly efficient Thermus thermophilus HB27 DNA uptake system may contribute significantly to thermoadaptation of Thermus thermophilus HB27 and to interdomain DNA transfer in hot environments.
Collapse
Affiliation(s)
- Cornelia Schwarzenlander
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Frankfurt, Germany
| | | |
Collapse
|
32
|
Foroughi F, Williams P, Stephens G. Reduction of carbon–carbon double bonds using Acetobacterium woodii: Determination of the optimum inducer structure. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2006.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Affiliation(s)
- Volker Müller
- Section of Microbiology, Department of Biology I, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|