1
|
Li Y, Zhang J, Wei K, Zhou D, Wang Z, Zeng Z, Han Y, Cao W. Multi-Lasso Peptide-Based Synergistic Nanocomposite: A High-Stability, Broad-Spectrum Antimicrobial Agent with Potential for Combined Antibacterial Therapy. ACS NANO 2024; 18:31435-31450. [PMID: 39475538 DOI: 10.1021/acsnano.4c11443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
Lasso peptides, natural biological microcins composed of small molecules, have demonstrated efficient bactericidal activity. However, a single lasso peptide is characterized by a narrow and targeted bactericidal spectrum. In this study, a chitosan (CN) derivative-based polymer nanomaterial incorporating three lasso peptides (MccY, MccJ25, and Klebsidin) was designed and synthesized to broaden its antimicrobial spectrum. To enhance resistance to acid and alkali conditions, arginine was appended to the terminus of conjugates, resulting in Chitosan-Lasso-Peptides-Arg (CN-LPs-Arg), and the nanomaterial biocompatibility and bactericidal activity were characterized. Chemical stability test results demonstrate that CN-LPs-Arg effectively buffered the acid-base effect of the compound. Notably, CN-LPs-Arg extended the antimicrobial spectrum of Gram-negative and Gram-positive strains including Klebsiella, Salmonella, and Staphylococcus (MIC = 0.01-1.0 μM). CN-LPs-Arg exerts its destructive effects on bacteria via a series of mechanisms; it adheres to and then penetrates the membrane, causes rupture, and leads to bacterial death. Transcriptomic data revealed that CN-LPs-Arg produced a distinct inhibitory effect on ribosomal protein subunits synthesis pathways and membrane metabolic inhibition. Furthermore, CN-LPs-Arg was nontoxic to cells and exhibited excellent biocompatibility. CN-LPs-Arg reduced bacterial burden in organs and the levels of inflammatory factors IL-6, IL-8, and TNF-α in tissues of mice with acute bacterial infections. Furthermore, it promoted the recovery of Klebsiella-infected C57BL/6 mice, demonstrating a favorable therapeutic effect in vivo. The multilasso peptide-based synergistic nanocomposite of CN-LPs-Arg exhibited high stability as a broad-spectrum antimicrobial agent with potential for combined antibacterial therapy and utilization in the fields of food, biomedicine, and public health.
Collapse
Affiliation(s)
- Yu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Jinyu Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Ke Wei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Di Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Zepeng Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Zhiwei Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Yu Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Weisheng Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, Guangdong, China
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, Guangzhou 510642, Guangdong, China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou 510642, Guangdong, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, Guangdong, China
| |
Collapse
|
2
|
Genetic analysis using vitamin B 6 antagonist 4-deoxypyridoxine uncovers a connection between pyridoxal 5'-phosphate and coenzyme A metabolism in Salmonella enterica. J Bacteriol 2022; 204:e0060721. [PMID: 35099985 DOI: 10.1128/jb.00607-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pyridoxal 5'-phosphate (PLP) is an essential cofactor for organisms in all three domains of life. Despite the central role of PLP, many aspects of vitamin B6 metabolism, including its integration with other biological pathways, are not fully understood. In this study, we examined the metabolic perturbations caused by the vitamin B6 antagonist 4-deoxypyridoxine (dPN) in a ptsJ mutant of Salmonella enterica serovar Typhimurium LT2. Our data suggest that PdxK (PL/PN/PM kinase, EC 2.7.1.35) phosphorylates dPN to 4-deoxypyridoxine 5'-phosphate (dPNP), which in turn can compromise the de novo biosynthesis of PLP. The data are consistent with the hypothesis that accumulated dPNP inhibits GlyA (serine hydroxymethyltransferase, EC 2.1.2.1) and/or GcvP (glycine decarboxylase, EC 1.4.4.2), two PLP-dependent enzymes involved in the generation of one-carbon units. Our data suggest this inhibition leads to reduced flux to coenzyme A precursors and subsequently lower synthesis of CoA and thiamine. This study uncovers a link between vitamin B6 metabolism and the biosynthesis of CoA and thiamine, highlighting the integration of biochemical pathways in microbes. IMPORTANCE PLP is a ubiquitous cofactor required by enzymes in diverse metabolic networks. The data herein expand our understanding of the toxic effects of dPN, a vitamin B6 antagonist often used to mimic vitamin B6 deficiency and to study PLP-dependent enzyme kinetics. In addition to de novo PLP biosynthesis, we define a metabolic connection between vitamin B6 metabolism and synthesis of thiamine and CoA. This work provides a foundation for the use of dPN to study vitamin B6 metabolism in other organisms.
Collapse
|
3
|
Aminoimidazole Carboxamide Ribotide Exerts Opposing Effects on Thiamine Synthesis in Salmonella enterica. J Bacteriol 2015; 197:2821-30. [PMID: 26100042 DOI: 10.1128/jb.00282-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 06/11/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED In Salmonella enterica, the thiamine biosynthetic intermediate 5-aminoimidazole ribotide (AIR) can be synthesized de novo independently of the early purine biosynthetic reactions. This secondary route to AIR synthesis is dependent on (i) 5-amino-4-imidazolecarboxamide ribotide (AICAR) accumulation, (ii) a functional phosphoribosylaminoimidazole-succinocarboxamide (SAICAR) synthetase (PurC; EC 6.3.2.6), and (iii) methionine and lysine in the growth medium. Studies presented here show that AICAR is a direct precursor to AIR in vivo. PurC-dependent conversion of AICAR to AIR was recreated in vitro. Physiological studies showed that exogenous nutrients (e.g., methionine and lysine) antagonize the inhibitory effects of AICAR on the ThiC reaction and decreased the cellular thiamine requirement. Finally, genetic results identified multiple loci that impacted the effect of AICAR on thiamine synthesis and implicated cellular aspartate levels in AICAR-dependent AIR synthesis. Together, the data here clarify the mechanism that allows conditional growth of a strain lacking the first five biosynthetic enzymes, and they provide additional insights into the complexity of the metabolic network and its plasticity. IMPORTANCE In bacteria, the pyrimidine moiety of thiamine is derived from aminoimidazole ribotide (AIR), an intermediate in purine biosynthesis. A previous study described conditions under which AIR synthesis is independent of purine biosynthesis. This work is an extension of that previous study and describes a new synthetic pathway to thiamine that depends on a novel thiamine precursor and a secondary activity of the biosynthetic enzyme PurC. These findings provide mechanistic details of redundancy in the synthesis of a metabolite that is essential for nucleotide and coenzyme biosynthesis. Metabolic modifications that allow the new pathway to function or enhance it are also described.
Collapse
|
4
|
Megger N, Johannsen S, Müller J, Sigel RKO. Synthesis and acid-base properties of an imidazole-containing nucleotide analog, 1-(2'-deoxy-β-D-ribofuranosyl)imidazole 5'-monophosphate (dImMP(2-)). Chem Biodivers 2013; 9:2050-63. [PMID: 22976990 DOI: 10.1002/cbdv.201100437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Deletion of the substituted pyrimidine ring in purine-2'-deoxynucleoside 5'-monophosphates leads to the artificial nucleotide analog dImMP(2-). This analog can be incorporated into DNA to yield, upon addition of Ag(+) ions, a molecular wire. Here, we measured the acidity constants of H(2)(dImMP)(±) having one proton at N(3) and one at the PO(3)(2-) group by potentiometric pH titrations in aqueous solution. The micro acidity constants show that N(3) is somewhat more basic than PO(3)(2-) and, consequently, the (H·dImMP)(-) tautomer with the proton at N(3) dominates to ca. 75%. The calculated micro acidity constants are confirmed by (31)P- and (1)H-NMR chemical shifts. The assembled data allow many quantitative comparisons, e.g., the N(3)-protonated and thus positively charged imidazole residue facilitates deprotonation of the P(O)(2)(OH)(-) group by 0.3 pK units. Information on the intrinsic site basicities also allows predictions about metal-ion binding; e.g., Mg(2+) and Mn(2+) will primarily coordinate to the phosphate group, whereas Ni(2+) and Cu(2+) will preferably bind to N(3). Macrochelate formation for these metal ions is also predicted. The micro acidity constant for N(3)H(+) deprotonation in the (H·dImMP·H)(±) species (pk(a) 6.46) and the M(n+)-binding properties are of relevance for understanding the behavior of dImMP units present in DNA hairpins and metalated duplexes.
Collapse
Affiliation(s)
- Nicole Megger
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstrasse 28/30, D-48149 Münster
| | | | | | | |
Collapse
|
5
|
Van Parys A, Boyen F, Leyman B, Verbrugghe E, Haesebrouck F, Pasmans F. Tissue-specific Salmonella Typhimurium gene expression during persistence in pigs. PLoS One 2011; 6:e24120. [PMID: 21887378 PMCID: PMC3161100 DOI: 10.1371/journal.pone.0024120] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 08/05/2011] [Indexed: 01/08/2023] Open
Abstract
Salmonellosis caused by Salmonella Typhimurium is one of the most important bacterial zoonotic diseases. The bacterium persists in pigs resulting in asymptomatic 'carrier pigs', generating a major source for Salmonella contamination of pork. Until now, very little is known concerning the mechanisms used by Salmonella Typhimurium during persistence in pigs. Using in vivo expression technology (IVET), a promoter-trap method based on ΔpurA attenuation of the parent strain, we identified 37 Salmonella Typhimurium genes that were expressed 3 weeks post oral inoculation in the tonsils, ileum and ileocaecal lymph nodes of pigs. Several genes were expressed in all three analyzed organs, while other genes were only expressed in one or two organs. Subsequently, the identified IVET transformants were pooled and reintroduced in pigs to detect tissue-specific gene expression patterns. We found that efp and rpoZ were specifically expressed in the ileocaecal lymph nodes during Salmonella peristence in pigs. Furthermore, we compared the persistence ability of substitution mutants for the IVET-identified genes sifB and STM4067 to that of the wild type in a mixed infection model. The ΔSTM4067::kanR was significantly attenuated in the ileum contents, caecum and caecum contents and faeces of pigs 3 weeks post inoculation, while deletion of the SPI-2 effector gene sifB did not affect Salmonella Typhimurium persistence. Although our list of identified genes is not exhaustive, we found that efp and rpoZ were specifically expressed in the ileocaecal lymph nodes of pigs and we identified STM4067 as a factor involved in Salmonella persistence in pigs. To our knowledge, our study is the first to identify Salmonella Typhimurium genes expressed during persistence in pigs.
Collapse
Affiliation(s)
- Alexander Van Parys
- Ghent University, Faculty of Veterinary Medicine, Department of Pathology, Bacteriology and Avian Diseases, Merelbeke, Belgium.
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
Metabolism encompasses the biochemical basis of life and as such spans all biological disciplines. Many decades of basic research, primarily in microbes, have resulted in extensive characterization of metabolic components and regulatory paradigms. With this basic knowledge in hand and the technologies currently available, it has become feasible to move toward an understanding of microbial metabolism as a system rather than as a collection of component parts. Insight into the system will be generated by continued efforts to rigorously define metabolic components combined with renewed efforts to discover components and connections using in vivo-driven approaches. On the tail of a detailed understanding of components and connections that comprise metabolism will come the ability to generate a comprehensive mathematical model that describes the system. While microbes provide the logical organism for this work, the value of such a model would span biological disciplines. Described herein are approaches that can provide insight into metabolism and caveats of their use. The goal of this review is to emphasize that in silico, in vitro, and in vivo approaches must be used in combination to achieve a full understanding of microbial metabolism.
Collapse
Affiliation(s)
- Diana M Downs
- Department of Bacteriology, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
| |
Collapse
|
7
|
Dougherty MJ, Downs DM. A connection between iron-sulfur cluster metabolism and the biosynthesis of 4-amino-5-hydroxymethyl-2-methylpyrimidine pyrophosphate in Salmonella enterica. MICROBIOLOGY-SGM 2006; 152:2345-2353. [PMID: 16849799 DOI: 10.1099/mic.0.28926-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Several cellular pathways have been identified which affect the efficiency of thiamine biosynthesis in Salmonella enterica. Mutants defective in iron-sulfur (Fe-S) cluster metabolism are less efficient at synthesis of the pyrimidine moiety of thiamine. These mutants are compromised for the conversion of aminoimidazole ribotide (AIR) to 4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate (HMP-P), not the synthesis of AIR. The gene product ThiC contains potential ligands for an Fe-S cluster that are required for function in vivo. The conversion of AIR to HMP-P is sensitive to oxidative stress, and variants of ThiC have been identified that have increased sensitivity to oxidative growth conditions. The data are consistent with ThiC or an as-yet-unidentified protein involved in HMP-P synthesis containing an Fe-S cluster required for its physiological function.
Collapse
Affiliation(s)
- Michael J Dougherty
- Department of Bacteriology, University of Wisconsin, 420 Henry Mall, Madison, WI 53706-1502, USA
| | - Diana M Downs
- Department of Bacteriology, University of Wisconsin, 420 Henry Mall, Madison, WI 53706-1502, USA
| |
Collapse
|
8
|
Zhang Y, Dougherty M, Downs DM, Ealick SE. Crystal structure of an aminoimidazole riboside kinase from Salmonella enterica: implications for the evolution of the ribokinase superfamily. Structure 2005; 12:1809-21. [PMID: 15458630 DOI: 10.1016/j.str.2004.07.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Revised: 07/13/2004] [Accepted: 07/13/2004] [Indexed: 11/23/2022]
Abstract
The crystal structures of a Salmonella enterica aminoimidazole riboside (AIRs) kinase, its complex with the substrate AIRs, and its complex with AIRs and an ATP analog were determined at 2.6 angstroms, 2.9 angstroms, and 2.7 angstroms, respectively. The product of the Salmonella-specific gene stm4066, AIRs kinase, is a homodimer with one active site per monomer. The core structure, consisting of an eight-stranded beta sheet flanked by eight alpha helices, indicates that AIRs kinase is a member of the ribokinase superfamily. Unlike ribokinase and adenosine kinase in this superfamily, AIRs kinase does not show significant conformational changes upon substrate binding. The active site is covered by a lid formed by residues 16-28 and 86-100. A comparison of the structure of AIRs kinase with other ribokinase superfamily members suggests that the active site lid and conformational changes that occur upon substrate binding may be advanced features in the evolution of the ribokinase superfamily.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
9
|
Affiliation(s)
- Diana M Downs
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53726, USA
| | | | | |
Collapse
|
10
|
Dougherty MJ, Downs DM. A mutant allele of rpoD results in increased conversion of aminoimidazole ribotide to hydroxymethyl pyrimidine in Salmonella enterica. J Bacteriol 2004; 186:4034-7. [PMID: 15175319 PMCID: PMC419934 DOI: 10.1128/jb.186.12.4034-4037.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An allele of rpoD (rpoD1181) that results in increased synthesis of the pyrimidine moiety of thiamine in Salmonella enterica was identified. The S508Y substitution caused by rpoD1181 is analogous to the S506F derivative of the Escherichia coli protein. The properties of this E. coli mutant protein have been well characterized in vitro. Identification of a metabolic phenotype caused by the rpoD1181 allele of S. enterica allows past in vitro results to be incorporated in continuing efforts to understand cellular processes that are integrated with the thiamine biosynthetic pathway.
Collapse
Affiliation(s)
- Michael J Dougherty
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, WI 53706, USA
| | | |
Collapse
|
11
|
Rollenhagen C, Sörensen M, Rizos K, Hurvitz R, Bumann D. Antigen selection based on expression levels during infection facilitates vaccine development for an intracellular pathogen. Proc Natl Acad Sci U S A 2004; 101:8739-44. [PMID: 15173591 PMCID: PMC423265 DOI: 10.1073/pnas.0401283101] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Indexed: 01/09/2023] Open
Abstract
Vaccines effective against intracellular pathogens could save the lives of millions of people every year, but vaccine development has been hampered by the slow largely empirical search for protective antigens. In vivo highly expressed antigens might represent a small attractive antigen subset that could be rapidly evaluated, but experimental evidence supporting this rationale, as well as practical strategies for its application, is largely lacking because of technical difficulties. Here, we used Salmonella strains expressing differential amounts of a fluorescent model antigen during infection to show that, in a mouse typhoid fever model, CD4 T cells preferentially recognize abundant Salmonella antigens. To identify a large number of natural Salmonella antigens with high expression levels during infection, we used a quantitative in vivo screening strategy. Immunization studies with five particularly attractive candidates revealed two highly protective antigens that might permit the development of an improved typhoid fever vaccine. In conclusion, we have established a rationale and an experimental strategy that will substantially facilitate vaccine development for Salmonella and possibly other intracellular pathogens.
Collapse
Affiliation(s)
- Claudia Rollenhagen
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Schumannstrasse 21/22, D-10117 Berlin, Germany
| | | | | | | | | |
Collapse
|