1
|
El Kafsi H, Loux V, Mariadassou M, Blin C, Chiapello H, Abraham AL, Maguin E, van de Guchte M. Unprecedented large inverted repeats at the replication terminus of circular bacterial chromosomes suggest a novel mode of chromosome rescue. Sci Rep 2017; 7:44331. [PMID: 28281695 PMCID: PMC5345009 DOI: 10.1038/srep44331] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/07/2017] [Indexed: 12/29/2022] Open
Abstract
The first Lactobacillus delbrueckii ssp. bulgaricus genome sequence revealed the presence of a very large inverted repeat (IR), a DNA sequence arrangement which thus far seemed inconceivable in a non-manipulated circular bacterial chromosome, at the replication terminus. This intriguing observation prompted us to investigate if similar IRs could be found in other bacteria. IRs with sizes varying from 38 to 76 kbp were found at the replication terminus of all 5 L. delbrueckii ssp. bulgaricus chromosomes analysed, but in none of 1373 other chromosomes. They represent the first naturally occurring very large IRs detected in circular bacterial genomes. A comparison of the L. bulgaricus replication terminus regions and the corresponding regions without IR in 5 L. delbrueckii ssp. lactis genomes leads us to propose a model for the formation and evolution of the IRs. The DNA sequence data are consistent with a novel model of chromosome rescue after premature replication termination or irreversible chromosome damage near the replication terminus, involving mechanisms analogous to those proposed in the formation of very large IRs in human cancer cells. We postulate that the L. delbrueckii ssp. bulgaricus-specific IRs in different strains derive from a single ancestral IR of at least 93 kbp.
Collapse
Affiliation(s)
- Hela El Kafsi
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Valentin Loux
- MaIAGE, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | | | - Camille Blin
- MaIAGE, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Hélène Chiapello
- MaIAGE, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Anne-Laure Abraham
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Emmanuelle Maguin
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Maarten van de Guchte
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| |
Collapse
|
2
|
Nindita Y, Nishikawa T, Arakawa K, Wang G, Ochi K, Qin Z, Kinashi H. Chromosomal circularization of the model Streptomyces species, Streptomyces coelicolor A3(2). FEMS Microbiol Lett 2013; 347:149-55. [PMID: 23915258 DOI: 10.1111/1574-6968.12228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 06/10/2013] [Accepted: 07/30/2013] [Indexed: 12/14/2022] Open
Abstract
Streptomyces linear chromosomes frequently cause deletions at both ends spontaneously or by various mutagenic treatments, leading to chromosomal circularization and arm replacement. However, chromosomal circularization has not been confirmed at a sequence level in the model species, Streptomyces coelicolor A3(2). In this work, we have cloned and sequenced a fusion junction of a circularized chromosome in an S. coelicolor A3(2) mutant and found a 6-bp overlap between the left and right deletion ends. This result shows that chromosomal circularization occurred by nonhomologous recombination of the deletion ends in this species, too. At the end of the study, we discuss on stability and evolution of Streptomyces chromosomes.
Collapse
Affiliation(s)
- Yosi Nindita
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | | | | | | | | | | | | |
Collapse
|
3
|
Murata M, Uchida T, Yang Y, Lezhava A, Kinashi H. A large inversion in the linear chromosome of Streptomyces griseus caused by replicative transposition of a new Tn3 family transposon. Arch Microbiol 2011; 193:299-306. [PMID: 21234748 DOI: 10.1007/s00203-010-0674-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/02/2010] [Accepted: 12/27/2010] [Indexed: 10/18/2022]
Abstract
We have comprehensively analyzed the linear chromosomes of Streptomyces griseus mutants constructed and kept in our laboratory. During this study, macrorestriction analysis of AseI and DraI fragments of mutant 402-2 suggested a large chromosomal inversion. The junctions of chromosomal inversion were cloned and sequenced and compared with the corresponding target sequences in the parent strain 2247. Consequently, a transposon-involved mechanism was revealed. Namely, a transposon originally located at the left target site was replicatively transposed to the right target site in an inverted direction, which generated a second copy and at the same time caused a 2.5-Mb chromosomal inversion. The involved transposon named TnSGR was grouped into a new subfamily of the resolvase-encoding Tn3 family transposons based on its gene organization. At the end, terminal diversity of S. griseus chromosomes is discussed by comparing the sequences of strains 2247 and IFO13350.
Collapse
Affiliation(s)
- M Murata
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530, Japan
| | | | | | | | | |
Collapse
|
4
|
|
5
|
Petković H, Cullum J, Hranueli D, Hunter IS, Perić-Concha N, Pigac J, Thamchaipenet A, Vujaklija D, Long PF. Genetics of Streptomyces rimosus, the oxytetracycline producer. Microbiol Mol Biol Rev 2006; 70:704-28. [PMID: 16959966 PMCID: PMC1594589 DOI: 10.1128/mmbr.00004-06] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
From a genetic standpoint, Streptomyces rimosus is arguably the best-characterized industrial streptomycete as the producer of oxytetracycline and other tetracycline antibiotics. Although resistance to these antibiotics has reduced their clinical use in recent years, tetracyclines have an increasing role in the treatment of emerging infections and noninfective diseases. Procedures for in vivo and in vitro genetic manipulations in S. rimosus have been developed since the 1950s and applied to study the genetic instability of S. rimosus strains and for the molecular cloning and characterization of genes involved in oxytetracycline biosynthesis. Recent advances in the methodology of genome sequencing bring the realistic prospect of obtaining the genome sequence of S. rimosus in the near term.
Collapse
Affiliation(s)
- Hrvoje Petković
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
van de Guchte M, Penaud S, Grimaldi C, Barbe V, Bryson K, Nicolas P, Robert C, Oztas S, Mangenot S, Couloux A, Loux V, Dervyn R, Bossy R, Bolotin A, Batto JM, Walunas T, Gibrat JF, Bessières P, Weissenbach J, Ehrlich SD, Maguin E. The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution. Proc Natl Acad Sci U S A 2006; 103:9274-9. [PMID: 16754859 PMCID: PMC1482600 DOI: 10.1073/pnas.0603024103] [Citation(s) in RCA: 291] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Lactobacillus delbrueckii ssp. bulgaricus (L. bulgaricus) is a representative of the group of lactic acid-producing bacteria, mainly known for its worldwide application in yogurt production. The genome sequence of this bacterium has been determined and shows the signs of ongoing specialization, with a substantial number of pseudogenes and incomplete metabolic pathways and relatively few regulatory functions. Several unique features of the L. bulgaricus genome support the hypothesis that the genome is in a phase of rapid evolution. (i) Exceptionally high numbers of rRNA and tRNA genes with regard to genome size may indicate that the L. bulgaricus genome has known a recent phase of important size reduction, in agreement with the observed high frequency of gene inactivation and elimination; (ii) a much higher GC content at codon position 3 than expected on the basis of the overall GC content suggests that the composition of the genome is evolving toward a higher GC content; and (iii) the presence of a 47.5-kbp inverted repeat in the replication termination region, an extremely rare feature in bacterial genomes, may be interpreted as a transient stage in genome evolution. The results indicate the adaptation of L. bulgaricus from a plant-associated habitat to the stable protein and lactose-rich milk environment through the loss of superfluous functions and protocooperation with Streptococcus thermophilus.
Collapse
Affiliation(s)
- M van de Guchte
- Génétique Microbienne and Mathématique, Informatique et Génome, Institut National de la Recherche Agronomique, 78352 Jouy en Josas Cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Yamasaki M, Kinashi H. Two chimeric chromosomes of Streptomyces coelicolor A3(2) generated by single crossover of the wild-type chromosome and linear plasmid scp1. J Bacteriol 2004; 186:6553-9. [PMID: 15375137 PMCID: PMC516589 DOI: 10.1128/jb.186.19.6553-6559.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Accepted: 07/09/2004] [Indexed: 11/20/2022] Open
Abstract
Streptomyces coelicolor A3(2) strain 2106 carries a 1.85-Mb linear plasmid, SCP1'-cysD, in addition to a 7.2-Mb linear chromosome. Macrorestriction analysis indicated that both linear DNAs are hybrids of the wild-type chromosome and the linear plasmid SCP1 on each side. Nucleotide sequencing of the fusion junctions revealed no homology between the recombination regions. SCP1'-cysD contains an SCP1 telomere and a chromosomal telomere at each end and therefore does not have terminal inverted repeats. In addition, SCP1'-cysD could not be eliminated from strain 2106 by various mutagenic treatments. Thus, we concluded that both the 7.2-Mb chromosome and SCP1'-cysD are chimeric chromosomes generated by a single crossover of the wild-type chromosome and SCP1. This may be regarded as a model of chromosomal duplication in genome evolution.
Collapse
Affiliation(s)
- Masayuki Yamasaki
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | | |
Collapse
|