1
|
Myxobacterial Genomics and Post-Genomics: A Review of Genome Biology, Genome Sequences and Related 'Omics Studies. Microorganisms 2021; 9:microorganisms9102143. [PMID: 34683464 PMCID: PMC8538405 DOI: 10.3390/microorganisms9102143] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/27/2022] Open
Abstract
Myxobacteria are fascinating and complex microbes. They prey upon other members of the soil microbiome by secreting antimicrobial proteins and metabolites, and will undergo multicellular development if starved. The genome sequence of the model myxobacterium Myxococcus xanthus DK1622 was published in 2006 and 15 years later, 163 myxobacterial genome sequences have now been made public. This explosion in genomic data has enabled comparative genomics analyses to be performed across the taxon, providing important insights into myxobacterial gene conservation and evolution. The availability of myxobacterial genome sequences has allowed system-wide functional genomic investigations into entire classes of genes. It has also enabled post-genomic technologies to be applied to myxobacteria, including transcriptome analyses (microarrays and RNA-seq), proteome studies (gel-based and gel-free), investigations into protein–DNA interactions (ChIP-seq) and metabolism. Here, we review myxobacterial genome sequencing, and summarise the insights into myxobacterial biology that have emerged as a result. We also outline the application of functional genomics and post-genomic approaches in myxobacterial research, highlighting important findings to emerge from seminal studies. The review also provides a comprehensive guide to the genomic datasets available in mid-2021 for myxobacteria (including 24 genomes that we have sequenced and which are described here for the first time).
Collapse
|
2
|
Three PilZ Domain Proteins, PlpA, PixA, and PixB, Have Distinct Functions in Regulation of Motility and Development in Myxococcus xanthus. J Bacteriol 2021; 203:e0012621. [PMID: 33875546 PMCID: PMC8316039 DOI: 10.1128/jb.00126-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In bacteria, the nucleotide-based second messenger bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) binds to effectors to generate outputs in response to changes in the environment. In Myxococcus xanthus, c-di-GMP regulates type IV pilus-dependent motility and the starvation-induced developmental program that results in formation of spore-filled fruiting bodies; however, little is known about the effectors that bind c-di-GMP. Here, we systematically inactivated all 24 genes encoding PilZ domain-containing proteins, which are among the most common c-di-GMP effectors. We confirm that the stand-alone PilZ domain protein PlpA is important for regulation of motility independently of the Frz chemosensory system and that Pkn1, which is composed of a Ser/Thr kinase domain and a PilZ domain, is specifically important for development. Moreover, we identify two PilZ domain proteins that have distinct functions in regulating motility and development. PixB, which is composed of two PilZ domains and an acetyltransferase domain, binds c-di-GMP in vitro and regulates type IV pilus-dependent and gliding motility in a Frz-dependent manner as well as development. The acetyltransferase domain is required and sufficient for function during growth, while all three domains and c-di-GMP binding are essential for PixB function during development. PixA is a response regulator composed of a PilZ domain and a receiver domain, binds c-di-GMP in vitro, and regulates motility independently of the Frz system, likely by setting up the polarity of the two motility systems. Our results support a model whereby PlpA, PixA, and PixB act in independent pathways and have distinct functions in regulation of motility. IMPORTANCE c-di-GMP signaling controls bacterial motility in many bacterial species by binding to downstream effector proteins. Here, we identify two PilZ domain-containing proteins in Myxococcus xanthus that bind c-di-GMP. We show that PixB, which contains two PilZ domains and an acetyltransferase domain, acts in a manner that depends on the Frz chemosensory system to regulate motility via the acetyltransferase domain, while the intact protein and c-di-GMP binding are essential for PixB to support development. In contrast, PixA acts in a Frz-independent manner to regulate motility. Taking our results together with previous observations, we conclude that PilZ domain proteins and c-di-GMP act in multiple independent pathways to regulate motility and development in M. xanthus.
Collapse
|
3
|
Sharma G, Yao AI, Smaldone GT, Liang J, Long M, Facciotti MT, Singer M. Global gene expression analysis of the Myxococcus xanthus developmental time course. Genomics 2020; 113:120-134. [PMID: 33276008 DOI: 10.1016/j.ygeno.2020.11.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/06/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022]
Abstract
To accurately identify the genes and pathways involved in the initiation of the Myxococcus xanthus multicellular developmental program, we have previously reported a method of growing vegetative populations as biofilms within a controllable environment. Using a modified approach to remove up to ~90% rRNAs, we report a comprehensive transcriptional analysis of the M. xanthus developmental cycle while comparing it with the vegetative biofilms grown in rich and poor nutrients. This study identified 1522 differentially regulated genes distributed within eight clusters during development. It also provided a comprehensive overview of genes expressed during a nutrient-stress response, specific development time points, and during development initiation and regulation. We identified several differentially expressed genes involved in key central metabolic pathways suggesting their role in regulating myxobacterial development. Overall, this study will prove an important resource for myxobacterial researchers to delineate the regulatory and functional pathways responsible for development from those of the general nutrient stress response.
Collapse
Affiliation(s)
- Gaurav Sharma
- Department of Microbiology and Molecular Genetics, University of California - Davis, One Shields Avenue, Davis, CA 95616, United States of America; Institute of Bioinformatics and Applied Biotechnology, Electronic City, Bengaluru, Karnataka, India
| | - Andrew I Yao
- Department of Biomedical Engineering, University of California-Davis, One Shields Avenue, Davis, CA 95616, United States of America; Genome Center, University of California-Davis, One Shields Avenue, Davis CA 95616 Zymergen, Inc., Emeryville, CA, United States of America
| | - Gregory T Smaldone
- Department of Microbiology and Molecular Genetics, University of California - Davis, One Shields Avenue, Davis, CA 95616, United States of America
| | - Jennifer Liang
- Department of Microbiology and Molecular Genetics, University of California - Davis, One Shields Avenue, Davis, CA 95616, United States of America
| | - Matt Long
- Department of Microbiology and Molecular Genetics, University of California - Davis, One Shields Avenue, Davis, CA 95616, United States of America
| | - Marc T Facciotti
- Department of Biomedical Engineering, University of California-Davis, One Shields Avenue, Davis, CA 95616, United States of America; Genome Center, University of California-Davis, One Shields Avenue, Davis CA 95616 Zymergen, Inc., Emeryville, CA, United States of America
| | - Mitchell Singer
- Department of Microbiology and Molecular Genetics, University of California - Davis, One Shields Avenue, Davis, CA 95616, United States of America.
| |
Collapse
|
4
|
Muñoz-Dorado J, Moraleda-Muñoz A, Marcos-Torres FJ, Contreras-Moreno FJ, Martin-Cuadrado AB, Schrader JM, Higgs PI, Pérez J. Transcriptome dynamics of the Myxococcus xanthus multicellular developmental program. eLife 2019; 8:e50374. [PMID: 31609203 PMCID: PMC6791715 DOI: 10.7554/elife.50374] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/04/2019] [Indexed: 01/09/2023] Open
Abstract
The bacterium Myxococcus xanthus exhibits a complex multicellular life cycle. In the presence of nutrients, cells prey cooperatively. Upon starvation, they enter a developmental cycle wherein cells aggregate to produce macroscopic fruiting bodies filled with resistant myxospores. We used RNA-Seq technology to examine the transcriptome of the 96 hr developmental program. These data revealed that 1415 genes were sequentially expressed in 10 discrete modules, with expression peaking during aggregation, in the transition from aggregation to sporulation, or during sporulation. Analysis of genes expressed at each specific time point provided insights as to how starving cells obtain energy and precursors necessary for assembly of fruiting bodies and into developmental production of secondary metabolites. This study offers the first global view of developmental transcriptional profiles and provides important tools and resources for future studies.
Collapse
Affiliation(s)
- José Muñoz-Dorado
- Departamento de Microbiología, Facultad de CienciasUniversidad de GranadaGranadaSpain
| | | | | | | | | | - Jared M Schrader
- Department of Biological SciencesWayne State UniversityDetroitUnited States
| | - Penelope I Higgs
- Department of Biological SciencesWayne State UniversityDetroitUnited States
| | - Juana Pérez
- Departamento de Microbiología, Facultad de CienciasUniversidad de GranadaGranadaSpain
| |
Collapse
|
5
|
Levy L, Anavy L, Solomon O, Cohen R, Brunwasser-Meirom M, Ohayon S, Atar O, Goldberg S, Yakhini Z, Amit R. A Synthetic Oligo Library and Sequencing Approach Reveals an Insulation Mechanism Encoded within Bacterial σ 54 Promoters. Cell Rep 2017; 21:845-858. [DOI: 10.1016/j.celrep.2017.09.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/30/2017] [Accepted: 09/18/2017] [Indexed: 10/18/2022] Open
|
6
|
Spontaneous Reversions of an Evolutionary Trait Loss Reveal Regulators of a Small RNA That Controls Multicellular Development in Myxobacteria. J Bacteriol 2016; 198:3142-3151. [PMID: 27621281 PMCID: PMC5105895 DOI: 10.1128/jb.00389-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/26/2016] [Indexed: 11/20/2022] Open
Abstract
Lost traits can reevolve, but the probability of trait reversion depends partly on a trait's genetic complexity. Myxobacterial fruiting body development is a complex trait controlled by the small RNA (sRNA) Pxr, which blocks development under conditions of nutrient abundance. In developmentally proficient strains of Myxococcus xanthus, starvation relaxes the inhibition by Pxr, thereby allowing development to proceed. In contrast, the lab-evolved strain OC does not develop because it fails to relay an early starvation signal that alleviates inhibition by Pxr. A descendant of OC, strain PX, previously reevolved developmental proficiency via a mutation in pxr that inactivates its function. A single-colony screen was used to test whether reversion of OC to developmental proficiency occurs only by mutation of pxr or might also occur through alternative regulatory loci. Five spontaneous mutants of OC that exhibited restored development were isolated, and all five showed defects in Pxr synthesis, structure, or processing, including one that incurred an eight-nucleotide deletion in pxr Two mutations occurred in the σ54 response regulator (RR) gene MXAN_1078 (named pxrR here), immediately upstream of pxr PxrR was found to positively regulate pxr transcription, presumably via the σ54 promoter of pxr Two other mutations were identified in a histidine kinase (HK) gene (MXAN_1077; named pxrK here) immediately upstream of pxrR Evolutionarily, the rate of trait restoration documented in this study suggests that reversion of social defects in natural microbial populations may be common. Molecularly, these results suggest a mechanism by which the regulatory functions of an HK-RR two-component signaling system and an sRNA are integrated to control initiation of myxobacterial development. IMPORTANCE Many myxobacteria initiate a process of multicellular fruiting body development upon starvation, but key features of the regulatory network controlling the transition from growth to development remain obscure. Previous work with Myxococcus xanthus identified the first small RNA (sRNA) regulator (Pxr) known to serve as a gatekeeper in this life history transition, as it blocks development when nutrients are abundant. In the present study, a screen for spontaneous mutants of M. xanthus was developed that revealed a two-component system operon (encoding a histidine kinase and a σ54 response regulator) associated with the production and processing of Pxr sRNA. This discovery broadens our knowledge of early developmental gene regulation and also represents an evolutionary integration of two-component signaling and sRNA gene regulation to control a bacterial social trait.
Collapse
|
7
|
Molecular Mechanisms of Signaling in Myxococcus xanthus Development. J Mol Biol 2016; 428:3805-30. [DOI: 10.1016/j.jmb.2016.07.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/30/2016] [Accepted: 07/08/2016] [Indexed: 11/19/2022]
|
8
|
Kazakov AE, Rajeev L, Chen A, Luning EG, Dubchak I, Mukhopadhyay A, Novichkov PS. σ54-dependent regulome in Desulfovibrio vulgaris Hildenborough. BMC Genomics 2015; 16:919. [PMID: 26555820 PMCID: PMC4641369 DOI: 10.1186/s12864-015-2176-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/31/2015] [Indexed: 11/16/2022] Open
Abstract
Background The σ54 subunit controls a unique class of promoters in bacteria. Such promoters, without exception, require enhancer binding proteins (EBPs) for transcription initiation. Desulfovibrio vulgaris Hildenborough, a model bacterium for sulfate reduction studies, has a high number of EBPs, more than most sequenced bacteria. The cellular processes regulated by many of these EBPs remain unknown. Results To characterize the σ54-dependent regulome of D. vulgaris Hildenborough, we identified EBP binding motifs and regulated genes by a combination of computational and experimental techniques. These predictions were supported by our reconstruction of σ54-dependent promoters by comparative genomics. We reassessed and refined the results of earlier studies on regulation in D. vulgaris Hildenborough and consolidated them with our new findings. It allowed us to reconstruct the σ54 regulome in D. vulgaris Hildenborough. This regulome includes 36 regulons that consist of 201 coding genes and 4 non-coding RNAs, and is involved in nitrogen, carbon and energy metabolism, regulation, transmembrane transport and various extracellular functions. To the best of our knowledge, this is the first report of direct regulation of alanine dehydrogenase, pyruvate metabolism genes and type III secretion system by σ54-dependent regulators. Conclusions The σ54-dependent regulome is an important component of transcriptional regulatory network in D. vulgaris Hildenborough and related free-living Deltaproteobacteria. Our study provides a representative collection of σ54-dependent regulons that can be used for regulation prediction in Deltaproteobacteria and other taxa. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2176-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexey E Kazakov
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94710, USA.
| | - Lara Rajeev
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94710, USA.
| | - Amy Chen
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94710, USA.
| | - Eric G Luning
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94710, USA.
| | - Inna Dubchak
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94710, USA. .,Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA.
| | | | | |
Collapse
|
9
|
Transcription factor MrpC binds to promoter regions of hundreds of developmentally-regulated genes in Myxococcus xanthus. BMC Genomics 2014; 15:1123. [PMID: 25515642 PMCID: PMC4320627 DOI: 10.1186/1471-2164-15-1123] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 12/08/2014] [Indexed: 11/30/2022] Open
Abstract
Background Myxococcus xanthus is a bacterium that undergoes multicellular development when starved. Cells move to aggregation centers and form fruiting bodies in which cells differentiate into dormant spores. MrpC appears to directly activate transcription of fruA, which also codes for a transcription factor. Both MrpC and FruA are crucial for aggregation and sporulation. The two proteins bind cooperatively in promoter regions of some developmental genes. Results Chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq) and bioinformatic analysis of cells that had formed nascent fruiting bodies revealed 1608 putative MrpC binding sites. These sites included several known to bind MrpC and they were preferentially distributed in likely promoter regions, especially those of genes up-regulated during development. The up-regulated genes include 22 coding for protein kinases. Some of these are known to be directly involved in fruiting body formation and several negatively regulate MrpC accumulation. Our results also implicate MrpC as a direct activator or repressor of genes coding for several transcription factors known to be important for development, for a major spore protein and several proteins important for spore formation, for proteins involved in extracellular A- and C-signaling, and intracellular ppGpp-signaling during development, and for proteins that control the fate of other proteins or play a role in motility. We found that the putative MrpC binding sites revealed by ChIP-seq are enriched for DNA sequences that strongly resemble a consensus sequence for MrpC binding proposed previously. MrpC2, an N-terminally truncated form of MrpC, bound to DNA sequences matching the consensus in all 11 cases tested. Using longer DNA segments containing 15 of the putative MrpC binding sites from our ChIP-seq analysis as probes in electrophoretic mobility shift assays, evidence for one or more MrpC2 binding site was observed in all cases and evidence for cooperative binding of MrpC2 and FruA was seen in 13 cases. Conclusions We conclude that MrpC and MrpC2 bind to promoter regions of hundreds of developmentally-regulated genes in M. xanthus, in many cases cooperatively with FruA. This binding very likely up-regulates protein kinases, and up- or down-regulates other proteins that profoundly influence the developmental process. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1123) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
A multifunctional enzyme is involved in bacterial ether lipid biosynthesis. Nat Chem Biol 2014; 10:425-7. [DOI: 10.1038/nchembio.1526] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 04/14/2014] [Indexed: 11/09/2022]
|
11
|
Stevens DC, Conway KR, Pearce N, Villegas-Peñaranda LR, Garza AG, Boddy CN. Alternative sigma factor over-expression enables heterologous expression of a type II polyketide biosynthetic pathway in Escherichia coli. PLoS One 2013; 8:e64858. [PMID: 23724102 PMCID: PMC3665592 DOI: 10.1371/journal.pone.0064858] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 04/22/2013] [Indexed: 02/03/2023] Open
Abstract
Background Heterologous expression of bacterial biosynthetic gene clusters is currently an indispensable tool for characterizing biosynthetic pathways. Development of an effective, general heterologous expression system that can be applied to bioprospecting from metagenomic DNA will enable the discovery of a wealth of new natural products. Methodology We have developed a new Escherichia coli-based heterologous expression system for polyketide biosynthetic gene clusters. We have demonstrated the over-expression of the alternative sigma factor σ54 directly and positively regulates heterologous expression of the oxytetracycline biosynthetic gene cluster in E. coli. Bioinformatics analysis indicates that σ54 promoters are present in nearly 70% of polyketide and non-ribosomal peptide biosynthetic pathways. Conclusions We have demonstrated a new mechanism for heterologous expression of the oxytetracycline polyketide biosynthetic pathway, where high-level pleiotropic sigma factors from the heterologous host directly and positively regulate transcription of the non-native biosynthetic gene cluster. Our bioinformatics analysis is consistent with the hypothesis that heterologous expression mediated by the alternative sigma factor σ54 may be a viable method for the production of additional polyketide products.
Collapse
Affiliation(s)
| | - Kyle R. Conway
- Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada
| | - Nelson Pearce
- Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Anthony G. Garza
- Department of Biology, Syracuse University, Syracuse, New York, United States of America
| | - Christopher N. Boddy
- Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
12
|
Draft Genome Sequence of Myxococcus xanthus Wild-Type Strain DZ2, a Model Organism for Predation and Development. GENOME ANNOUNCEMENTS 2013; 1:1/3/e00217-13. [PMID: 23661486 PMCID: PMC3650445 DOI: 10.1128/genomea.00217-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Myxococcus xanthus is a member of the Myxococcales order within the Deltaproteobacteria subdivision. The myxobacteria reside in soil, have relatively large genomes, and display complex life cycles. Here, we report the whole-genome shotgun sequence of strain DZ2, which includes unique genes not found previously in strain DK1622.
Collapse
|
13
|
Batchelor JD, Lee PS, Wang AC, Doucleff M, Wemmer DE. Structural mechanism of GAF-regulated σ(54) activators from Aquifex aeolicus. J Mol Biol 2013; 425:156-70. [PMID: 23123379 PMCID: PMC3544215 DOI: 10.1016/j.jmb.2012.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 10/26/2012] [Accepted: 10/26/2012] [Indexed: 11/22/2022]
Abstract
The σ subunits of bacterial RNA polymerase occur in many variant forms and confer promoter specificity to the holopolymerase. Members of the σ(54) family of σ subunits require the action of a 'transcriptional activator' protein to open the promoter and initiate transcription. The activator proteins undergo regulated assembly from inactive dimers to hexamers that are active ATPases. These contact σ(54) directly and, through ATP hydrolysis, drive a conformational change that enables promoter opening. σ(54) activators use several different kinds of regulatory domains to respond to a wide variety of intracellular signals. One common regulatory module, the GAF domain, is used by σ(54) activators to sense small-molecule ligands. The structural basis for GAF domain regulation in σ(54) activators has not previously been reported. Here, we present crystal structures of GAF regulatory domains for Aquifex aeolicus σ(54) activators NifA-like homolog (Nlh)2 and Nlh1 in three functional states-an 'open', ATPase-inactive state; a 'closed', ATPase-inactive state; and a 'closed', ligand-bound, ATPase-active state. We also present small-angle X-ray scattering data for Nlh2-linked GAF-ATPase domains in the inactive state. These GAF domain dimers regulate σ(54) activator proteins by holding the ATPase domains in an inactive dimer conformation. Ligand binding of Nlh1 dramatically remodels the GAF domain dimer interface, disrupting the contacts with the ATPase domains. This mechanism has strong parallels to the response to phosphorylation in some two-component regulated σ(54) activators. We describe a structural mechanism of GAF-mediated enzyme regulation that appears to be conserved among humans, plants, and bacteria.
Collapse
Affiliation(s)
- Joseph D. Batchelor
- Graduate Group in Biophysics and Department of Chemistry, University of California, Berkeley and Physical Biosciences Division, Lawrence Berkeley National Laboratory Berkeley, CA 94720
| | - Peter S. Lee
- Graduate Group in Biophysics and Department of Chemistry, University of California, Berkeley and Physical Biosciences Division, Lawrence Berkeley National Laboratory Berkeley, CA 94720
| | - Andrew C. Wang
- Graduate Group in Biophysics and Department of Chemistry, University of California, Berkeley and Physical Biosciences Division, Lawrence Berkeley National Laboratory Berkeley, CA 94720
| | - Michaeleen Doucleff
- Graduate Group in Biophysics and Department of Chemistry, University of California, Berkeley and Physical Biosciences Division, Lawrence Berkeley National Laboratory Berkeley, CA 94720
| | - David E. Wemmer
- Graduate Group in Biophysics and Department of Chemistry, University of California, Berkeley and Physical Biosciences Division, Lawrence Berkeley National Laboratory Berkeley, CA 94720
| |
Collapse
|
14
|
The Nla28S/Nla28 two-component signal transduction system regulates sporulation in Myxococcus xanthus. J Bacteriol 2012; 194:4698-708. [PMID: 22753068 DOI: 10.1128/jb.00225-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The response regulator Nla28 is a key component in a cascade of transcriptional activators that modulates expression of many important developmental genes in Myxococcus xanthus. In this study, we identified and characterized Nla28S, a histidine kinase that modulates the activity of this important regulator of M. xanthus developmental genes. We show that the putative cytoplasmic domain of Nla28S has the in vitro biochemical properties of a histidine kinase protein: it hydrolyzes ATP and undergoes an ATP-dependent autophosphorylation that is acid labile and base stable. We also show that the putative cytoplasmic domain of Nla28S transfers a phosphoryl group to Nla28 in vitro, that the phosphotransfer is specific, and that a substitution in the predicted site of Nla28 phosphorylation (aspartate 53) abolishes the phosphotransfer reaction. In phenotypic studies, we found that a mutation in nla28S produces a developmental phenotype similar to, but weaker than, that produced by a mutation in nla28; both mutations primarily affect sporulation. Together, these data indicate that Nla28S is the in vivo histidine kinase partner of Nla28 and that the primary function of the Nla28S/Nla28 two-component signal transduction system is to regulate sporulation genes. The results of genetic studies suggest that phosphorylation of Nla28S is important for the in vivo sporulation function of the Nla28S/Nla28 two-component system. In addition, the quorum signal known as A-signal is important for full developmental expression of the nla28S-nla28 operon, suggesting that quorum signaling regulates the availability of the Nla28S/Nla28 signal transduction circuit in developing cells.
Collapse
|
15
|
Francke C, Groot Kormelink T, Hagemeijer Y, Overmars L, Sluijter V, Moezelaar R, Siezen RJ. Comparative analyses imply that the enigmatic Sigma factor 54 is a central controller of the bacterial exterior. BMC Genomics 2011; 12:385. [PMID: 21806785 PMCID: PMC3162934 DOI: 10.1186/1471-2164-12-385] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 08/01/2011] [Indexed: 02/06/2023] Open
Abstract
Background Sigma-54 is a central regulator in many pathogenic bacteria and has been linked to a multitude of cellular processes like nitrogen assimilation and important functional traits such as motility, virulence, and biofilm formation. Until now it has remained obscure whether these phenomena and the control by Sigma-54 share an underlying theme. Results We have uncovered the commonality by performing a range of comparative genome analyses. A) The presence of Sigma-54 and its associated activators was determined for all sequenced prokaryotes. We observed a phylum-dependent distribution that is suggestive of an evolutionary relationship between Sigma-54 and lipopolysaccharide and flagellar biosynthesis. B) All Sigma-54 activators were identified and annotated. The relation with phosphotransfer-mediated signaling (TCS and PTS) and the transport and assimilation of carboxylates and nitrogen containing metabolites was substantiated. C) The function annotations, that were represented within the genomic context of all genes encoding Sigma-54, its activators and its promoters, were analyzed for intra-phylum representation and inter-phylum conservation. Promoters were localized using a straightforward scoring strategy that was formulated to identify similar motifs. We found clear highly-represented and conserved genetic associations with genes that concern the transport and biosynthesis of the metabolic intermediates of exopolysaccharides, flagella, lipids, lipopolysaccharides, lipoproteins and peptidoglycan. Conclusion Our analyses directly implicate Sigma-54 as a central player in the control over the processes that involve the physical interaction of an organism with its environment like in the colonization of a host (virulence) or the formation of biofilm.
Collapse
Affiliation(s)
- Christof Francke
- TI Food and Nutrition, P,O,Box 557, 6700AN Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
16
|
Furusawa G, Dziewanowska K, Stone H, Settles M, Hartzell P. Global analysis of phase variation in Myxococcus xanthus. Mol Microbiol 2011; 81:784-804. [PMID: 21722202 PMCID: PMC3192537 DOI: 10.1111/j.1365-2958.2011.07732.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Myxococcus xanthus can vary its phenotype or 'phase' to produce colonies that contain predominantly yellow or tan cells that differ greatly in their abilities to swarm, survive and develop. Yellow variants are proficient at swarming (++) and tend to lyse in liquid during stationary phase. In contrast, tan variants are deficient in swarming (+) and persist beyond stationary phase. The phenotypes and transcriptomes of yellow and tan variants were compared with mutants affected in phase variation. Thirty-seven genes were upregulated specifically in yellow variants including those for production of the yellow pigment, DKxanthene. A mutant in DKxanthene synthesis produced non-pigmented (tan) colonies but still phase varied for swarming suggesting that pigmentation is not the cause of phase variation. Disruption of a gene encoding a HTH-Xre-like regulator, highly expressed in yellow variants, abolished pigment production and blocked the ability of cells to switch from a swarm ++ to a swarm (+) phenotype, showing that HTH-Xre regulates phase variation. Among the four genes whose expression was increased in tan variants was pkn14, which encodes a serine-threonine kinase that regulates programmed cell death in Myxococcus via the MrpC-MazF toxin-antitoxin complex. High levels of phosphorylated Pkn14 may explain why tan cells enjoy enhanced survival.
Collapse
Affiliation(s)
- Gou Furusawa
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844-3052
| | | | - Hannah Stone
- Program in Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, ID 83844-3052
| | - Matthew Settles
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844-3052
| | - Patricia Hartzell
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844-3052
- Program in Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, ID 83844-3052
| |
Collapse
|
17
|
A cascade of coregulating enhancer binding proteins initiates and propagates a multicellular developmental program. Proc Natl Acad Sci U S A 2011; 108:E431-9. [PMID: 21670274 DOI: 10.1073/pnas.1105876108] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The signal transduction networks that initiate multicellular development in bacteria remain largely undefined. Here, we report that Myxococcus xanthus regulates entry into its multicellular developmental program using a novel strategy: a cascade of transcriptional activators known as enhancer binding proteins (EBPs). The EBPs in the cascade function in sequential stages of early development, and several lines of evidence indicate that the cascade is propagated when EBPs that function at one stage of development directly regulate transcription of an EBP gene important for the next developmental stage. We also show that the regulatory cascade is designed in a novel way that extensively expands on the typical use of EBPs: Instead of using only one EBP to regulate a particular gene or group of genes, which is the norm in other bacterial systems, the cascade uses multiple EBPs to regulate EBP genes that are positioned at key transition points in early development. Based on the locations of the putative EBP promoter binding sites, several different mechanisms of EBP coregulation are possible, including the formation of coregulating EBP transcriptional complexes. We propose that M. xanthus uses an EBP coregulation strategy to make expression of EBP genes that modulate stage-stage transitions responsive to multiple signal transduction pathways, which provide information that is important for a coordinated decision to advance the developmental process.
Collapse
|
18
|
Morgan JL, Darling AE, Eisen JA. Metagenomic sequencing of an in vitro-simulated microbial community. PLoS One 2010; 5:e10209. [PMID: 20419134 PMCID: PMC2855710 DOI: 10.1371/journal.pone.0010209] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 03/12/2010] [Indexed: 12/03/2022] Open
Abstract
Background Microbial life dominates the earth, but many species are difficult or even impossible to study under laboratory conditions. Sequencing DNA directly from the environment, a technique commonly referred to as metagenomics, is an important tool for cataloging microbial life. This culture-independent approach involves collecting samples that include microbes in them, extracting DNA from the samples, and sequencing the DNA. A sample may contain many different microorganisms, macroorganisms, and even free-floating environmental DNA. A fundamental challenge in metagenomics has been estimating the abundance of organisms in a sample based on the frequency with which the organism's DNA was observed in reads generated via DNA sequencing. Methodology/Principal Findings We created mixtures of ten microbial species for which genome sequences are known. Each mixture contained an equal number of cells of each species. We then extracted DNA from the mixtures, sequenced the DNA, and measured the frequency with which genomic regions from each organism was observed in the sequenced DNA. We found that the observed frequency of reads mapping to each organism did not reflect the equal numbers of cells that were known to be included in each mixture. The relative organism abundances varied significantly depending on the DNA extraction and sequencing protocol utilized. Conclusions/Significance We describe a new data resource for measuring the accuracy of metagenomic binning methods, created by in vitro-simulation of a metagenomic community. Our in vitro simulation can be used to complement previous in silico benchmark studies. In constructing a synthetic community and sequencing its metagenome, we encountered several sources of observation bias that likely affect most metagenomic experiments to date and present challenges for comparative metagenomic studies. DNA preparation methods have a particularly profound effect in our study, implying that samples prepared with different protocols are not suitable for comparative metagenomics.
Collapse
Affiliation(s)
- Jenna L. Morgan
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
- Department of Evolution and Ecology, University of California Davis, Davis, California, United States of America
- United States Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
| | - Aaron E. Darling
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
- Department of Evolution and Ecology, University of California Davis, Davis, California, United States of America
| | - Jonathan A. Eisen
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, California, United States of America
- Department of Evolution and Ecology, University of California Davis, Davis, California, United States of America
- United States Department of Energy Joint Genome Institute, Walnut Creek, California, United States of America
- * E-mail:
| |
Collapse
|
19
|
Rosario CJ, Singer M. Developmental expression of dnaA is required for sporulation and timing of fruiting body formation in Myxococcus xanthus. Mol Microbiol 2010; 76:1322-33. [DOI: 10.1111/j.1365-2958.2010.07178.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
20
|
Identification of enhancer binding proteins important for Myxococcus xanthus development. J Bacteriol 2010; 192:360-4. [PMID: 19897655 DOI: 10.1128/jb.01019-09] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enhancer binding proteins (EBPs) control the temporal expression of fruiting body development-associated genes in Myxococcus xanthus. Eleven previously uncharacterized EBP genes were inactivated. Six EBP gene mutations produced minor but reproducible defects in fruiting body development. One EBP gene mutation that affected A-motility produced strong developmental defects.
Collapse
|
21
|
Hoiczyk E, Ring MW, McHugh CA, Schwär G, Bode E, Krug D, Altmeyer MO, Lu JZ, Bode HB. Lipid body formation plays a central role in cell fate determination during developmental differentiation of Myxococcus xanthus. Mol Microbiol 2009; 74:497-517. [PMID: 19788540 DOI: 10.1111/j.1365-2958.2009.06879.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cell differentiation is widespread during the development of multicellular organisms, but rarely observed in prokaryotes. One example of prokaryotic differentiation is the gram-negative bacterium Myxococcus xanthus. In response to starvation, this gliding bacterium initiates a complex developmental programme that results in the formation of spore-filled fruiting bodies. How the cells metabolically support the necessary complex cellular differentiation from rod-shaped vegetative cells into spherical spores is unknown. Here, we present evidence that intracellular lipid bodies provide the necessary metabolic fuel for the development of spores. Formed at the onset of starvation, these lipid bodies gradually disappear until they are completely used up by the time the cells have become mature spores. Moreover, it appears that lipid body formation in M. xanthus is an important initial step indicating cell fate during differentiation. Upon starvation, two subpopulations of cells occur: cells that form lipid bodies invariably develop into spores, while cells that do not form lipid bodies end up becoming peripheral rods, which are cells that lack signs of morphological differentiation and stay in a vegetative-like state. These data indicate that lipid bodies not only fuel cellular differentiation but that their formation represents the first known morphological sign indicating cell fate during differentiation.
Collapse
Affiliation(s)
- Egbert Hoiczyk
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bode HB, Ring MW, Schwär G, Altmeyer MO, Kegler C, Jose IR, Singer M, Müller R. Identification of additional players in the alternative biosynthesis pathway to isovaleryl-CoA in the myxobacterium Myxococcus xanthus. Chembiochem 2009; 10:128-40. [PMID: 18846531 DOI: 10.1002/cbic.200800219] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Isovaleryl-CoA (IV-CoA) is usually derived from the degradation of leucine by using the Bkd (branched-chain keto acid dehydrogenase) complex. We have previously identified an alternative pathway for IV-CoA formation in myxobacteria that branches from the well-known mevalonate-dependent isoprenoid biosynthesis pathway. We identified 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase (MvaS) to be involved in this pathway in Myxococcus xanthus, which is induced in mutants with impaired leucine degradation (e.g., bkd(-)) or during myxobacterial fruiting-body formation. Here, we show that the proteins required for leucine degradation are also involved in the alternative IV-CoA biosynthesis pathway through the efficient catalysis of the reverse reactions. Moreover, we conducted a global gene-expression experiment and compared vegetative wild-type cells with bkd mutants, and identified a five-gene operon that is highly up-regulated in bkd mutants and contains mvaS and other genes that are directly involved in the alternative pathway. Based on our experiments, we assigned roles to the genes required for the formation of IV-CoA from HMG-CoA. Additionally, several genes involved in outer-membrane biosynthesis and a plethora of genes encoding regulatory proteins were decreased in expression levels in the bkd(-) mutant; this explains the complex phenotype of bkd mutants including a lack of adhesion in developmental submerse culture.
Collapse
Affiliation(s)
- Helge B Bode
- Institut für Pharmazeutische Biotechnologie, Universität des Saarlandes, Saarbrücken, Germany
| | | | | | | | | | | | | | | |
Collapse
|
23
|
DKxanthene Biosynthesis—Understanding the Basis for Diversity-Oriented Synthesis in Myxobacterial Secondary Metabolism. ACTA ACUST UNITED AC 2008; 15:771-81. [DOI: 10.1016/j.chembiol.2008.06.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 06/04/2008] [Accepted: 06/09/2008] [Indexed: 11/23/2022]
|
24
|
Meiser P, Müller R. Two Functionally Redundant Sfp‐Type 4′‐Phosphopantetheinyl Transferases Differentially Activate Biosynthetic Pathways inMyxococcus xanthus. Chembiochem 2008; 9:1549-53. [DOI: 10.1002/cbic.200800077] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Novel Transcriptome Patterns Accompany Evolutionary Restoration of Defective Social Development in the Bacterium Myxococcus xanthus. Mol Biol Evol 2008; 25:1274-81. [DOI: 10.1093/molbev/msn076] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
26
|
Affiliation(s)
- Lee Kroos
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824;
| |
Collapse
|
27
|
Bioinformatics and experimental analysis of proteins of two-component systems in Myxococcus xanthus. J Bacteriol 2007; 190:613-24. [PMID: 17993514 DOI: 10.1128/jb.01502-07] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Proteins of two-component systems (TCS) have essential functions in the sensing of external and self-generated signals in bacteria and in the generation of appropriate output responses. Accordingly, in Myxococcus xanthus, TCS are important for normal motility and fruiting body formation and sporulation. Here we analyzed the M. xanthus genome for the presence and genetic organization of genes encoding TCS. Two hundred seventy-two TCS genes were identified, 251 of which are not part of che gene clusters. We report that the TCS genes are unusually organized, with 55% being orphan and 16% in complex gene clusters whereas only 29% display the standard paired gene organization. Hybrid histidine protein kinases and histidine protein kinases predicted to be localized to the cytoplasm are overrepresented among proteins encoded by orphan genes or in complex gene clusters. Similarly, response regulators without output domains are overrepresented among proteins encoded by orphan genes or in complex gene clusters. The most frequently occurring output domains in response regulators are involved in DNA binding and cyclic-di-GMP metabolism. Our analyses suggest that TCS encoded by orphan genes and complex gene clusters are functionally distinct from TCS encoded by paired genes and that the connectivity of the pathways made up of TCS encoded by orphan genes and complex gene clusters is different from that of pathways involving TCS encoded by paired genes. Experimentally, we observed that orphan TCS genes are overrepresented among genes that display altered transcription during fruiting body formation. The systematic analysis of the 25 orphan genes encoding histidine protein kinases that are transcriptionally up-regulated during development showed that 2 such genes are likely essential for viability and identified 7 histidine protein kinases, including 4 not previously characterized that have important function in fruiting body formation or spore germination.
Collapse
|
28
|
|
29
|
Rosario CJ, Singer M. The Myxococcus xanthus developmental program can be delayed by inhibition of DNA replication. J Bacteriol 2007; 189:8793-800. [PMID: 17905977 PMCID: PMC2168630 DOI: 10.1128/jb.01361-07] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Under conditions of nutrient deprivation, Myxococcus xanthus undergoes a developmental process that results in the formation of a fruiting body containing environmentally resistant myxospores. We have shown that myxospores contain two copies of the genome, suggesting that cells must replicate the genome prior to or during development. To further investigate the role of DNA replication in development, a temperature-sensitive dnaB mutant, DnaB(A116V), was isolated from M. xanthus. Unlike what happens in Escherichia coli dnaB mutants, where DNA replication immediately halts upon a shift to a nonpermissive temperature, growth and DNA replication of the M. xanthus mutant ceased after one cell doubling at a nonpermissive temperature, 37 degrees C. We demonstrated that at the nonpermissive temperature the DnaB(A116V) mutant arrested as a population of 1n cells, implying that these cells could complete one round of the cell cycle but did not initiate new rounds of DNA replication. In developmental assays, the DnaB(A116V) mutant was unable to develop into fruiting bodies and produced fewer myxospores than the wild type at the nonpermissive temperature. However, the mutant was able to undergo development when it was shifted to a permissive temperature, suggesting that cells had the capacity to undergo DNA replication during development and to allow the formation of myxospores.
Collapse
|
30
|
Ossa F, Diodati ME, Caberoy NB, Giglio KM, Edmonds M, Singer M, Garza AG. The Myxococcus xanthus Nla4 protein is important for expression of stringent response-associated genes, ppGpp accumulation, and fruiting body development. J Bacteriol 2007; 189:8474-83. [PMID: 17905995 PMCID: PMC2168950 DOI: 10.1128/jb.00894-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Changes in gene expression are important for the landmark morphological events that occur during Myxococcus xanthus fruiting body development. Enhancer binding proteins (EBPs), which are transcriptional activators, play prominent roles in the coordinated expression of developmental genes. A mutation in the EBP gene nla4 affects the timing of fruiting body formation, the morphology of mature fruiting bodies, and the efficiency of sporulation. In this study, we showed that the nla4 mutant accumulates relatively low levels of the stringent nucleotide ppGpp. We also found that the nla4 mutant is defective for early developmental events and for vegetative growth, phenotypes that are consistent with a deficiency in ppGpp accumulation. Further studies revealed that nla4 cells produce relatively low levels of GTP, a precursor of RelA-dependent synthesis of (p)ppGpp. In addition, the normal expression patterns of all stringent response-associated genes tested, including the M. xanthus ppGpp synthetase gene relA, are altered in nla4 mutant cells. These findings indicate that Nla4 is part of regulatory pathway that is important for mounting a stringent response and for initiating fruiting body development.
Collapse
Affiliation(s)
- Faisury Ossa
- Department of Biology, Syracuse University, BRL Room 200, 130 College Place, Syracuse, NY 13244-1220, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Suen G, Arshinoff BI, Taylor RG, Welch RD. Practical Applications of Bacterial Functional Genomics. Biotechnol Genet Eng Rev 2007; 24:213-42. [DOI: 10.1080/02648725.2007.10648101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Meiser P, Bode HB, Müller R. The unique DKxanthene secondary metabolite family from the myxobacterium Myxococcus xanthus is required for developmental sporulation. Proc Natl Acad Sci U S A 2006; 103:19128-33. [PMID: 17148609 PMCID: PMC1748187 DOI: 10.1073/pnas.0606039103] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Under starvation conditions myxobacteria form multicellular fruiting bodies in which vegetative cells differentiate into heat- and desiccation-resistant myxospores. Myxobacteria in general are a rich source of secondary metabolites that often exhibit biological activities rarely found in nature. Although the involvement of a yellow compound in sporulation and fruiting body formation of Myxococcus xanthus was described almost 30 years ago, the chemical principle of the pigment remained elusive. This work presents the isolation and structure elucidation of a unique class of pigments that were named DKxanthenes (DKX). The corresponding biosynthetic gene cluster was identified, and DKX-negative mutants were constructed to investigate the physiological role of DKX during development. In these mutants, fruiting body formation was delayed. Moreover, severely reduced amounts of viable spores were observed after 120 h of starvation, whereas no viable spores were formed at all after 72 h. The addition of purified DKX to the mutants resulted in the formation of viable spores after 72 h. Even though an antioxidative activity could be assigned to DKX, the true biochemical mechanism underlying the complementation remains to be elucidated.
Collapse
Affiliation(s)
- Peter Meiser
- Pharmaceutical Biotechnology, Saarland University, P.O. Box 151150, 66041 Saarbrücken, Germany
| | - Helge B. Bode
- Pharmaceutical Biotechnology, Saarland University, P.O. Box 151150, 66041 Saarbrücken, Germany
| | - Rolf Müller
- Pharmaceutical Biotechnology, Saarland University, P.O. Box 151150, 66041 Saarbrücken, Germany
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
33
|
Bode HB, Ring MW, Schwär G, Kroppenstedt RM, Kaiser D, Müller R. 3-Hydroxy-3-methylglutaryl-coenzyme A (CoA) synthase is involved in biosynthesis of isovaleryl-CoA in the myxobacterium Myxococcus xanthus during fruiting body formation. J Bacteriol 2006; 188:6524-8. [PMID: 16952943 PMCID: PMC1595499 DOI: 10.1128/jb.00825-06] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Isovaleryl-coenzyme A (IV-CoA) is the starting unit for some secondary metabolites and iso-odd fatty acids in several bacteria. According to textbook biochemistry, IV-CoA is derived from leucine degradation, but recently an alternative pathway that branches from the well-known mevalonate-dependent isoprenoid biosynthesis has been described for myxobacteria. A double mutant was constructed in Myxococcus xanthus by deletion of genes involved in leucine degradation and disruption of mvaS encoding the 3-hydroxy-3-methylglutaryl-coenzyme A synthase. A dramatic decrease of IV-CoA-derived iso-odd fatty acids was observed for the mutant, confirming mvaS to be involved in the alternative pathway. Additional quantitative real-time reverse transcription-PCR experiments indicated that mvaS is transcriptionally regulated by isovalerate. Furthermore, feeding studies employing an intermediate specific for the alternative pathway revealed that this pathway is induced during fruiting body formation, which presumably increases the amount of IV-CoA available when leucine is limited.
Collapse
Affiliation(s)
- Helge B Bode
- Institut für Pharmazeutische Biotechnologie, Universität des Saarlandes, P.O. Box 151150, 66041 Saarbrücken, Germany.
| | | | | | | | | | | |
Collapse
|
34
|
Goldman BS, Nierman WC, Kaiser D, Slater SC, Durkin AS, Eisen JA, Ronning CM, Barbazuk WB, Blanchard M, Field C, Halling C, Hinkle G, Iartchuk O, Kim HS, Mackenzie C, Madupu R, Miller N, Shvartsbeyn A, Sullivan SA, Vaudin M, Wiegand R, Kaplan HB. Evolution of sensory complexity recorded in a myxobacterial genome. Proc Natl Acad Sci U S A 2006; 103:15200-5. [PMID: 17015832 PMCID: PMC1622800 DOI: 10.1073/pnas.0607335103] [Citation(s) in RCA: 340] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myxobacteria are single-celled, but social, eubacterial predators. Upon starvation they build multicellular fruiting bodies using a developmental program that progressively changes the pattern of cell movement and the repertoire of genes expressed. Development terminates with spore differentiation and is coordinated by both diffusible and cell-bound signals. The growth and development of Myxococcus xanthus is regulated by the integration of multiple signals from outside the cells with physiological signals from within. A collection of M. xanthus cells behaves, in many respects, like a multicellular organism. For these reasons M. xanthus offers unparalleled access to a regulatory network that controls development and that organizes cell movement on surfaces. The genome of M. xanthus is large (9.14 Mb), considerably larger than the other sequenced delta-proteobacteria. We suggest that gene duplication and divergence were major contributors to genomic expansion from its progenitor. More than 1,500 duplications specific to the myxobacterial lineage were identified, representing >15% of the total genes. Genes were not duplicated at random; rather, genes for cell-cell signaling, small molecule sensing, and integrative transcription control were amplified selectively. Families of genes encoding the production of secondary metabolites are overrepresented in the genome but may have been received by horizontal gene transfer and are likely to be important for predation.
Collapse
Affiliation(s)
- B. S. Goldman
- *Monsanto Company, St. Louis, MO 63167
- To whom correspondence may be addressed. E-mail:
| | - W. C. Nierman
- The Institute for Genomic Research, Rockville, MD 20850
- Department of Biochemistry and Molecular Biology, George Washington University, Washington, DC 20052
| | - D. Kaiser
- Departments of Biochemistry and Developmental Biology, Stanford University, Stanford, CA 94305
- To whom correspondence may be addressed at:
Department of Developmental Biology, B300 Beckman Center, 279 Campus Drive, Stanford, CA 94305. E-mail:
| | - S. C. Slater
- *Monsanto Company, St. Louis, MO 63167
- **Biodesign Institute, Arizona State University, Tempe, AZ 85287-5001; and
| | - A. S. Durkin
- The Institute for Genomic Research, Rockville, MD 20850
| | - J. A. Eisen
- The Institute for Genomic Research, Rockville, MD 20850
| | - C. M. Ronning
- The Institute for Genomic Research, Rockville, MD 20850
| | | | | | - C. Field
- *Monsanto Company, St. Louis, MO 63167
| | | | - G. Hinkle
- *Monsanto Company, St. Louis, MO 63167
| | | | - H. S. Kim
- The Institute for Genomic Research, Rockville, MD 20850
| | - C. Mackenzie
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, TX 77030
| | - R. Madupu
- The Institute for Genomic Research, Rockville, MD 20850
| | - N. Miller
- *Monsanto Company, St. Louis, MO 63167
| | | | | | - M. Vaudin
- *Monsanto Company, St. Louis, MO 63167
| | | | - H. B. Kaplan
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, TX 77030
| |
Collapse
|
35
|
Bode HB, Ring MW, Kaiser D, David AC, Kroppenstedt RM, Schwär G. Straight-chain fatty acids are dispensable in the myxobacterium Myxococcus xanthus for vegetative growth and fruiting body formation. J Bacteriol 2006; 188:5632-4. [PMID: 16855254 PMCID: PMC1540027 DOI: 10.1128/jb.00438-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inactivation of the MXAN_0853 gene blocked the production in Myxococcus xanthus of straight-chain fatty acids which otherwise represent 30% of total fatty acids. Despite this drastic change in the fatty acid profile, no change in phenotype could be observed, which contrasts with previous interpretations of the role of straight-chain fatty acids in the organism's development.
Collapse
Affiliation(s)
- Helge B Bode
- Institut für Pharmazeutische Biotechnologie, Universität des Saarlandes, P.O. Box 151150, 66041 Saarbrücken, Germany.
| | | | | | | | | | | |
Collapse
|
36
|
Karlin S, Brocchieri L, Mrázek J, Kaiser D. Distinguishing features of delta-proteobacterial genomes. Proc Natl Acad Sci U S A 2006; 103:11352-7. [PMID: 16844781 PMCID: PMC1544090 DOI: 10.1073/pnas.0604311103] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We analyzed several features of five currently available delta-proteobacterial genomes, including two aerobic bacteria exhibiting predatory behavior and three anaerobic sulfate-reducing bacteria. The delta genomes are distinguished from other bacteria by several properties: (i) The delta genomes contain two "giant" S1 ribosomal protein genes in contrast to all other bacterial types, which encode a single or no S1; (ii) in most delta-proteobacterial genomes the major ribosomal protein (RP) gene cluster is near the replication terminus whereas most bacterial genomes place the major RP cluster near the origin of replication; (iii) the delta genomes possess the rare combination of discriminating asparaginyl and glutaminyl tRNA synthetase (AARS) together with the amido-transferase complex (Gat CAB) genes that modify Asp-tRNA(Asn) into Asn-tRNA(Asn) and Glu-tRNA(Gln) into Gln-tRNA(Gln); (iv) the TonB receptors and ferric siderophore receptors that facilitate uptake and removal of complex metals are common among delta genomes; (v) the anaerobic delta genomes encode multiple copies of the anaerobic detoxification protein rubrerythrin that can neutralize hydrogen peroxide; and (vi) sigma(54) activators play a more important role in the delta genomes than in other bacteria. delta genomes have a plethora of enhancer binding proteins that respond to environmental and intracellular cues, often as part of two-component systems; (vii) delta genomes encode multiple copies of metallo-beta-lactamase enzymes; (viii) a host of secretion proteins emphasizing SecA, SecB, and SecY may be especially useful in the predatory activities of Myxococcus xanthus; (ix) delta proteobacteria drive many multiprotein machines in their periplasms and outer membrane, including chaperone-feeding machines, jets for slime secretion, and type IV pili. Bdellovibrio replicates in the periplasm of prey cells. The sulfate-reducing delta proteobacteria metabolize hydrogen and generate a proton gradient by electron transport. The predicted highly expressed genes from delta genomes reflect their different ecologies, metabolic strategies, and adaptations.
Collapse
Affiliation(s)
- Samuel Karlin
- Department of Mathematics, Stanford University, Stanford, CA 94305, USA.
| | | | | | | |
Collapse
|
37
|
Overgaard M, Wegener-Feldbrügge S, Søgaard-Andersen L. The orphan response regulator DigR is required for synthesis of extracellular matrix fibrils in Myxococcus xanthus. J Bacteriol 2006; 188:4384-94. [PMID: 16740945 PMCID: PMC1482965 DOI: 10.1128/jb.00189-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Myxococcus xanthus, two-component systems have crucial roles in regulating motility behavior and development. Here we describe an orphan response regulator, consisting of an N-terminal receiver domain and a C-terminal DNA binding domain, which is required for A and type IV pilus-dependent gliding motility. Genetic evidence suggests that phosphorylation of the conserved, phosphorylatable aspartate residue in the receiver domain is required for DigR activity. Consistent with the defect in type IV pilus-dependent motility, a digR mutant is slightly reduced in type IV pilus biosynthesis, and the composition of the extracellular matrix fibrils is abnormal, with an increased content of polysaccharides and decreased accumulation of the FibA metalloprotease. By using genome-wide transcriptional profiling, 118 genes were identified that are directly or indirectly regulated by DigR. These 118 genes include only 2, agmQ and cheY4, previously implicated in A and type IV pilus-dependent motility, respectively. In silico analyses showed that 36% of the differentially expressed genes are likely to encode exported proteins. Moreover, four genes encoding homologs of extracytoplasmic function (ECF) sigma factors, which typically control aspects of cell envelope homeostasis, are differentially expressed in a digR mutant. We suggest that the DigR response regulator has an important function in cell envelope homeostasis and that the motility defects in a digR mutant are instigated by the abnormal cell envelope and abnormal expression of agmQ and cheY4.
Collapse
Affiliation(s)
- Martin Overgaard
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | | | | |
Collapse
|
38
|
Ueki T, Inouye S. A novel regulation on developmental gene expression of fruiting body formation in Myxobacteria. Appl Microbiol Biotechnol 2006; 72:21-29. [PMID: 16791590 DOI: 10.1007/s00253-006-0455-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 02/06/2006] [Accepted: 04/05/2006] [Indexed: 12/19/2022]
Abstract
Myxobacteria are Gram-negative soil microorganisms that prey on other microorganisms. Myxobacteria have significant potential for applications in biotechnology because of their extraordinary ability to produce natural products such as secondary metabolites. Myxobacteria also stand out as model organisms for the study of cell-cell interactions and multicellular development during their complex life cycle. Cellular morphogenesis during multicellular development in myxobacteria is very similar to that in the eukaryotic soil amoebae. Recent studies have started uncovering molecular mechanisms directing the myxobacterial life cycle. We describe recent studies on signal transduction and gene expression during multicellular development in the myxobacterium Myxococcus xanthus. We provide our current model for signal transduction pathways mediated by a two-component His-Asp phosphorelay system and a Ser/Thr kinase cascade.
Collapse
Affiliation(s)
- Toshiyuki Ueki
- Department of Biochemistry, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ, 08854, USA
| | - Sumiko Inouye
- Department of Biochemistry, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ, 08854, USA.
| |
Collapse
|
39
|
Pham VD, Shebelut CW, Jose IR, Hodgson DA, Whitworth DE, Singer M. The response regulator PhoP4 is required for late developmental events in Myxococcus xanthus. Microbiology (Reading) 2006; 152:1609-1620. [PMID: 16735725 DOI: 10.1099/mic.0.28820-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phosphate regulation is complex in the developmental prokaryote Myxococcus xanthus, and requires at least four two-component systems (TCSs). Here, the identification and characterization of a member of one TCS, designated PhoP4, is reported. phoP4 insertion and in-frame deletion strains caused spore viability to be decreased by nearly two orders of magnitude, and reduced all three development-specific phosphatase activities by 80–90 % under phosphate-limiting conditions. Microarray and quantitative PCR analyses demonstrated that PhoP4 is also required for appropriate expression of the predicted pstSCAB–phoU operon of inorganic phosphate assimilation genes. Unlike the case for the other three M. xanthus Pho TCSs, the chromosomal region around phoP4 does not contain a partner histidine kinase gene. Yeast two-hybrid analyses reveal that PhoP4 interacts reciprocally with PhoR2, the histidine kinase of the Pho2 TCS; however, the existence of certain phenotypic differences between phoP4 and phoR2 mutants suggests that PhoP4 interacts with another, as-yet unidentified, histidine kinase.
Collapse
Affiliation(s)
- Vinh D Pham
- Section of Microbiology and Center for Genetics and Development, 268 Briggs Hall, University of California, Davis, CA 95616, USA
| | - Conrad W Shebelut
- Section of Microbiology and Center for Genetics and Development, 268 Briggs Hall, University of California, Davis, CA 95616, USA
| | - Ivy R Jose
- Section of Microbiology and Center for Genetics and Development, 268 Briggs Hall, University of California, Davis, CA 95616, USA
| | - David A Hodgson
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - David E Whitworth
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Mitchell Singer
- Section of Microbiology and Center for Genetics and Development, 268 Briggs Hall, University of California, Davis, CA 95616, USA
| |
Collapse
|
40
|
Tzeng L, Ellis TN, Singer M. DNA replication during aggregation phase is essential for Myxococcus xanthus development. J Bacteriol 2006; 188:2774-9. [PMID: 16585738 PMCID: PMC1447012 DOI: 10.1128/jb.188.8.2774-2779.2006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have demonstrated that fruiting body-derived Myxococcus xanthus myxospores contain two fully replicated copies of its genome, implying developmental control of chromosome replication and septation. In this study, we employ DNA replication inhibitors to determine if chromosome replication is essential to development and the exact time frame in which chromosome replication occurs within the developmental cycle. Our results show that DNA replication during the aggregation phase is essential for developmental progression, implying the existence of a checkpoint that monitors chromosome integrity at the end of the aggregation phase.
Collapse
Affiliation(s)
- Linfong Tzeng
- Section of Microbiology, Center for Genetics and Development, University of California-Davis, 1 Shields Ave., Davis, CA 95616, USA
| | | | | |
Collapse
|
41
|
Poggio S, Osorio A, Dreyfus G, Camarena L. The flagellar hierarchy of Rhodobacter sphaeroides is controlled by the concerted action of two enhancer-binding proteins. Mol Microbiol 2006; 58:969-83. [PMID: 16262784 DOI: 10.1111/j.1365-2958.2005.04900.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The expression of the bacterial flagellar genes follows a hierarchical pattern. In Rhodobacter sphaeroides the flagellar genes encoding the hook and basal body proteins are expressed from sigma54-dependent promoters. This type of promoters is always regulated by transcriptional activators that belong to the family of the enhancer-binding proteins (EBPs). We searched for possible EBPs in the genome of R. sphaeroides and mutagenized two open reading frames (ORFs) (fleQ and fleT), which are in the vicinity of flagellar genes. The resulting mutants were non-motile and could only be complemented by the wild-type copy of the mutagenized gene. Transcriptional fusions showed that all the flagellar sigma54-dependent promoters with exception of fleTp, required both transcriptional activators for their expression. Interestingly, transcription of the fleT operon is only dependent on FleQ, and FleT has a negative effect. Both activators were capable of hydrolysing ATP, and were capable of promoting transcription from the flagellar promoters at some extent. Electrophoretic mobility shift assays suggest that only FleQ interacts with DNA whereas FleT improves binding of FleQ to DNA. A four-tiered flagellar transcriptional hierarchy and a regulatory mechanism based on the intracellular concentration of both activators and differential enhancer affinities are proposed.
Collapse
Affiliation(s)
- Sebastian Poggio
- Departamento de Biología Molecular y Biotecnología. Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 México D. F., México
| | | | | | | |
Collapse
|
42
|
Diodati ME, Ossa F, Caberoy NB, Jose IR, Hiraiwa W, Igo MM, Singer M, Garza AG. Nla18, a key regulatory protein required for normal growth and development of Myxococcus xanthus. J Bacteriol 2006; 188:1733-43. [PMID: 16484184 PMCID: PMC1426557 DOI: 10.1128/jb.188.5.1733-1743.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NtrC-like activators regulate the transcription of a wide variety of adaptive genes in bacteria. Previously, we demonstrated that a mutation in the ntrC-like activator gene nla18 causes defects in fruiting body development in Myxococcus xanthus. In this report, we describe the effect that nla18 inactivation has on gene expression patterns during development and vegetative growth. Gene expression in nla18 mutant cells is altered in the early stages of fruiting body development. Furthermore, nla18 mutant cells are defective for two of the earliest events in development, production of the intracellular starvation signal ppGpp and production of A-signal. Taken together, these results indicate that the developmental program in nla18 mutant cells goes awry very early. Inactivation of nla18 also causes a dramatic decrease in the vegetative growth rate of M. xanthus cells. DNA microarray analysis revealed that the vegetative expression patterns of more than 700 genes are altered in nla18 mutant cells. Genes coding for putative membrane and membrane-associated proteins are among the largest classes of genes whose expression is altered by nla18 inactivation. This result is supported by our findings that the profiles of membrane proteins isolated from vegetative nla18 mutant and wild-type cells are noticeably different. In addition to genes that code for putative membrane proteins, nla18 inactivation affects the expression of many genes that are likely to be important for protein synthesis and gene regulation. Our data are consistent with a model in which Nla18 controls vegetative growth and development by activating the expression of genes involved in gene regulation, translation, and membrane structure.
Collapse
Affiliation(s)
- Michelle E Diodati
- Department of Biology, Syracuse University, BRL Room 200, 130 College Place, Syracuse, NY 13244-1220, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Kegler C, Gerth K, Müller R. Establishment of a real-time PCR protocol for expression studies of secondary metabolite biosynthetic gene clusters in the G/C-rich myxobacterium Sorangium cellulosum So ce56. J Biotechnol 2006; 121:201-12. [PMID: 16324759 DOI: 10.1016/j.jbiotec.2005.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 09/22/2005] [Accepted: 10/10/2005] [Indexed: 10/25/2022]
Abstract
In the attempt to establish a reliable real-time PCR protocol for transcriptional analysis of secondary metabolism in Sorangium cellulosum strain So ce56, a RNA extraction method and a reverse transcription protocol was developed. In order to validate chivosazol or etnangien gene cluster transcripts as good candidates to develop the real-time PCR protocol, stability measurements of the transcripts were performed proving both transcripts to be very stable. The chivosazol biosynthetic gene cluster was taken as the test case to evaluate the special problems arising from the large size of the transcripts and the high G/C-content of the encoding DNA. A set of primer pairs targeting the presumed 90 kbp chivosazol transcript at different positions was employed. The production rate of chivosazol was compared to the transcription of the operon in time course experiments revealing that during the logarithmic growth phase transcription is maximally induced and levels out during the stationary phase. Some deviations in transcript numbers could be measured depending on the primer pair used, but cross-evaluation strengthened the notion that the measured numbers reflect the whole transcript quantities and the in vivo level. Finally, a putative promoter located between chiA and chiB was examined by using the developed real-time PCR protocol.
Collapse
Affiliation(s)
- Carsten Kegler
- Pharmaceutical Biotechnology, Saarland University, P.O. Box 151150, D-66041 Saarbrücken, Germany
| | | | | |
Collapse
|
44
|
Tzeng L, Singer M. DNA replication during sporulation in Myxococcus xanthus fruiting bodies. Proc Natl Acad Sci U S A 2005; 102:14428-33. [PMID: 16183740 PMCID: PMC1228275 DOI: 10.1073/pnas.0506969102] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During the developmental process of the Gram-negative soil bacterium Myxococcus xanthus, vegetatively growing rod cells differentiate to ultimately become metabolically quiescent and environmentally resistant myxospores encased within fruiting bodies. This program, initiated by nutrient deprivation, is propagated by both cell-autonomous and cell-nonautonomous signals. Our goal was to determine whether M. xanthus, like many other developmental systems, uses cell-cycle cues to regulate and control its developmental program. To address this question, the DNA replication cycle was used as a marker to monitor progression through the cell cycle in vegetative, stationary, and developing M. xanthus populations. Using flow cytometry, quantitative fluorescence microscopy, and FISH to establish the chromosome copy number of myxospores, it was determined that vegetatively growing cells contain one to two copies of the genome, but upon entry into stationary phase, the chromosome copy number drops to a single copy. Of particular interest, fruiting body-derived myxospores contain a specific two-chromosome DNA complement with both origin and terminus regions localized to the periphery of the myxospore. We speculate that this duplication of genetic information in the myxospore would help assure viability during germination by providing a second copy of each gene. The results of this study imply that not only is DNA replication tightly regulated during the developmental process of M. xanthus, but that there are also regulatory mechanisms to ensure that all myxospores acquire two copies of the chromosome.
Collapse
Affiliation(s)
- Linfong Tzeng
- Section of Microbiology and Center for Genetics and Development, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
45
|
Jelsbak L, Kaiser D. Regulating pilin expression reveals a threshold for S motility in Myxococcus xanthus. J Bacteriol 2005; 187:2105-12. [PMID: 15743959 PMCID: PMC1064035 DOI: 10.1128/jb.187.6.2105-2112.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Accepted: 11/23/2004] [Indexed: 11/20/2022] Open
Abstract
An isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible promoter was constructed in Myxococcus xanthus. The single-copy pilA gene encodes pilin, the monomer unit of M. xanthus type IV pili. To vary the level of pilA expression, we cloned its promoter in front of the lac operator, and a plasmid containing the construct was inserted into the chromosome of a DeltapilA strain. Induction of pilin expression increased smoothly as the dose of IPTG added to the culture was increased. IPTG-induced pilin rescued S motility of the DeltapilA strain to wild-type levels. The rate of S-motile swarming was found to be proportional to the number of pili (shear-sensitive pilin) produced rather than to the level of total pilin. In fact, S motility was not rescued until the total level of pilin was more than 50% of the wild-type level. This observation implies that a threshold concentration of pilin must be exceeded before the shear-sensitive material (pili) is polymerized in M. xanthus.
Collapse
Affiliation(s)
- Lotte Jelsbak
- Department of Biochemistry, Stanford University, Stanford, CA 94305-5329, USA
| | | |
Collapse
|
46
|
Kroos L. Eukaryotic-like signaling and gene regulation in a prokaryote that undergoes multicellular development. Proc Natl Acad Sci U S A 2005; 102:2681-2. [PMID: 15710872 PMCID: PMC549479 DOI: 10.1073/pnas.0500157102] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Lee Kroos
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
47
|
Jelsbak L, Givskov M, Kaiser D. Enhancer-binding proteins with a forkhead-associated domain and the sigma54 regulon in Myxococcus xanthus fruiting body development. Proc Natl Acad Sci U S A 2005; 102:3010-5. [PMID: 15668379 PMCID: PMC549468 DOI: 10.1073/pnas.0409371102] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In response to starvation, Myxococcus xanthus initiates a developmental program that results in the formation of spore-filled, multicellular fruiting bodies. Many developmentally regulated genes in M. xanthus are transcribed from sigma(54) promoters, and these genes require enhancer-binding proteins. Here we report the finding of an unusual group of 12 genes encoding sigma(54)-dependent enhancer-binding proteins containing a forkhead-associated (FHA) domain as their N-terminal sensory domain. FHA domains in other proteins recognize phosphothreonine residues. An insertion mutation in one of these genes, Mx4885, caused a cell autonomous aggregation and sporulation defect. In-frame deletion mutants showed that the FHA domain is necessary for proper Mx4885 function. The altered pattern of developmental gene expression in the mutant implied that Mx4885 is on the pathway of response to the morphogenetic C-signal. Immunoblots specific for C-signal and FruA imply that the site of Mx4885 action is downstream of FruA synthesis on the C-signal transduction pathway. Mx4885 may help to coordinate the level of intracellular phosphorylated FruA (FruA-P) with the level of C-signal displayed on the signal donor cell. Because FHA domains respond to phosphothreonine-containing proteins, these results suggest a regulatory link to the abundant Ser/Thr protein kinases in M. xanthus.
Collapse
Affiliation(s)
- Lars Jelsbak
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
48
|
Abstract
Myxobacteria use soluble and cell-contact signals during their starvation-induced formation of fruiting bodies. These signals coordinate developmental gene expression with the cell movements that build fruiting bodies. Early in development, the quorum-sensing A-signal in Myxococcus xanthus helps to assess starvation and induce the first stage of aggregation. Later, the morphogenetic C-signal helps to pattern cell movement and shape the fruiting body. C-signal is a 17-kDa cell surface protein that signals by contact between the ends of two cells. The number of C-signal molecules per cell rises 100-fold from the beginning of fruiting body development to the end, when spores are formed. Traveling waves, streams, and sporulation have increasing thresholds for C-signal activity, and this progression ensures that spores form inside fruiting bodies.
Collapse
Affiliation(s)
- Dale Kaiser
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA.
| |
Collapse
|