1
|
Thomson NM, Turner AK, Yasir M, Bastkowski S, Lott M, Webber MA, Charles IG. A whole-genome assay identifies four principal gene functions that confer tolerance of meropenem stress upon Escherichia coli. FRONTIERS IN ANTIBIOTICS 2022; 1:957942. [PMID: 39816415 PMCID: PMC11731830 DOI: 10.3389/frabi.2022.957942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/23/2022] [Indexed: 01/18/2025]
Abstract
We report here the identification of four gene functions of principal importance for the tolerance of meropenem stress in Escherichia coli: cell division, cell envelope synthesis and maintenance, ATP metabolism, and transcription regulation. The primary mechanism of β-lactam antibiotics such as meropenem is inhibition of penicillin binding proteins, thus interfering with peptidoglycan crosslinking, weakening the cell envelope, and promoting cell lysis. However, recent systems biology approaches have revealed numerous downstream effects that are triggered by cell envelope damage and involve diverse cell processes. Subpopulations of persister cells can also arise, which can survive elevated concentrations of meropenem despite the absence of a specific resistance factor. We used Transposon-Directed Insertion Sequencing with inducible gene expression to simultaneously assay the effects of upregulation, downregulation, and disruption of every gene in a model E. coli strain on survival of exposure to four concentrations of meropenem. Automated Gene Functional Classification and manual categorization highlighted the importance at all meropenem concentrations of genes involved in peptidoglycan remodeling during cell division, suggesting that cell division is the primary function affected by meropenem. Genes involved in cell envelope synthesis and maintenance, ATP metabolism, and transcriptional regulation were generally important at higher meropenem concentrations, suggesting that these three functions are therefore secondary or downstream targets. Our analysis revealed the importance of multiple two-component signal transduction mechanisms, suggesting an as-yet unexplored coordinated transcriptional response to meropenem stress. The inclusion of an inducible, transposon-encoded promoter allowed sensitive detection of genes involved in proton transport, ATP production and tRNA synthesis, for which modulation of expression affects survival in the presence of meropenem: a finding that would not be possible with other technologies. We were also able to suggest new targets for future antibiotic development or for synergistic effects between gene or protein inhibitors and existing antibiotics. Overall, in a single massively parallel assay we were able to recapitulate many of the findings from decades of research into β-lactam antibiotics, add to the list of genes known to be important for meropenem tolerance, and categorize the four principal gene functions involved.
Collapse
Affiliation(s)
- Nicholas M. Thomson
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich, United Kingdom
| | - A. Keith Turner
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Muhammad Yasir
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Sarah Bastkowski
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Martin Lott
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich, United Kingdom
| | - Mark A. Webber
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Ian G. Charles
- Microbes in the Food Chain, Quadram Institute Bioscience, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
2
|
The Inactivation of LPS Biosynthesis Genes in E. coli Cells Leads to Oxidative Stress. Cells 2022; 11:cells11172667. [PMID: 36078074 PMCID: PMC9454879 DOI: 10.3390/cells11172667] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Impaired lipopolysaccharide biosynthesis in Gram-negative bacteria results in the “deep rough” phenotype, which is characterized by increased sensitivity of cells to various hydrophobic compounds, including antibiotics novobiocin, actinomycin D, erythromycin, etc. The present study showed that E. coli mutants carrying deletions of the ADP-heptose biosynthesis genes became hypersensitive to a wide range of antibacterial drugs: DNA gyrase inhibitors, protein biosynthesis inhibitors (aminoglycosides, tetracycline), RNA polymerase inhibitors (rifampicin), and β-lactams (carbenicillin). In addition, it was found that inactivation of the gmhA, hldE, rfaD, and waaC genes led to dramatic changes in the redox status of cells: a decrease in the pool of reducing NADPH and ATP equivalents, the concentration of intracellular cysteine, a change in thiol homeostasis, and a deficiency in the formation of hydrogen sulfide. In “deep rough” mutants, intensive formation of reactive oxygen species was observed, which, along with a lack of reducing agents, such as reactive sulfur species or NADPH, leads to oxidative stress and an increase in the number of dead cells in the population. Within the framework of modern ideas about the role of oxidative stress as a universal mechanism of the bactericidal action of antibiotics, inhibition of the enzymes of ADP-heptose biosynthesis is a promising direction for increasing the effectiveness of existing antibiotics and solving the problem of multidrug resistance.
Collapse
|
3
|
The role of bacterial cell envelope structures in acid stress resistance in E. coli. Appl Microbiol Biotechnol 2020; 104:2911-2921. [PMID: 32067056 DOI: 10.1007/s00253-020-10453-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/29/2020] [Accepted: 02/07/2020] [Indexed: 12/14/2022]
Abstract
Acid resistance (AR) is an indispensable mechanism for the survival of neutralophilic bacteria, such as Escherichia coli (E. coli) strains that survive in the gastrointestinal tract. E. coli acid tolerance has been extensively studied during past decades, with most studies focused on gene regulation and mechanisms. However, the role of cell membrane structure in the context of acid stress resistance has not been discussed in depth. Here, we provide a comprehensive review of the roles and mechanisms of the E. coli cell envelope from different membrane components, such as membrane proteins, fatty acids, chaperones, and proton-consuming systems, and particularly focus on the innovative effects revealed by recent studies. We hope that the information guides us to understand the bacterial survival strategies under acid stress and to further explore the AR regulatory mechanisms to prevent or treat E. coli and other related Gram-negative bacteria infection, or to enhance the AR of engineering E. coli.
Collapse
|
4
|
Amemiya S, Toyoda H, Kimura M, Saito H, Kobayashi H, Ihara K, Kamagata K, Kawabata R, Kato S, Nakashimada Y, Furuta T, Hamamoto S, Uozumi N. The mechanosensitive channel YbdG from Escherichia coli has a role in adaptation to osmotic up-shock. J Biol Chem 2019; 294:12281-12292. [PMID: 31256002 DOI: 10.1074/jbc.ra118.007340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 06/20/2019] [Indexed: 01/24/2023] Open
Abstract
Mechanosensitive channels play an important role in the adaptation of cells to hypo-osmotic shock. Among members of this channel family in Escherichia coli, the exact function and physiological role of the mechanosensitive channel homolog YbdG remain unclear. Characterization of YbdG's physiological role has been hampered by its lack of measurable transport activity. Using a nitrosoguanidine mutagenesis-aided screen in combination with next-generation sequencing, here we isolated a mutant with a point mutation in ybdG This mutation (resulting in a I167T change) conferred sensitivity to high osmotic stress, and the mutant cells differed from WT cells in morphology during hyperosmotic stress at alkaline pH. Interestingly, unlike the cells containing the I167T variant, a null-ybdG mutant did not exhibit this sensitivity and phenotype. Although I167T was located near the putative ion-conducting pore in a transmembrane region of YbdG, no change in ion channel activities of YbdG-I167T was detected. Of note, introduction of the WT C-terminal cytosolic region of YbdG into the I167T variant complemented the osmo-sensitive phenotype. Co-precipitation of proteins interacting with the C-terminal YbdG region led to the isolation of HldD and FbaA, whose overexpression in cells containing the YbdG-I167T variant partially rescued the osmo-sensitive phenotype. This study indicates that YbdG functions as a component of a mechanosensing system that transmits signals triggered by external osmotic changes to intracellular factors. The cellular role of YbdG uncovered here goes beyond its predicted function as an ion or solute transport protein.
Collapse
Affiliation(s)
- Shun Amemiya
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan
| | - Hayato Toyoda
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan
| | - Mami Kimura
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan
| | - Hiromi Saito
- Department of Biochemistry, Graduate School of Pharmaceutical Science, Chiba University, Chiba 260-8675, Japan
| | - Hiroshi Kobayashi
- Department of Biochemistry, Graduate School of Pharmaceutical Science, Chiba University, Chiba 260-8675, Japan
| | - Kunio Ihara
- Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| | - Kiyoto Kamagata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Sendai 980-8577, Japan
| | - Ryuji Kawabata
- School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
| | - Setsu Kato
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Yutaka Nakashimada
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Tadaomi Furuta
- School of Life Science and Technology, Tokyo Institute of Technology, B-62 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Shin Hamamoto
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan.
| |
Collapse
|
5
|
Rousset F, Cui L, Siouve E, Becavin C, Depardieu F, Bikard D. Genome-wide CRISPR-dCas9 screens in E. coli identify essential genes and phage host factors. PLoS Genet 2018; 14:e1007749. [PMID: 30403660 PMCID: PMC6242692 DOI: 10.1371/journal.pgen.1007749] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 11/19/2018] [Accepted: 10/09/2018] [Indexed: 12/22/2022] Open
Abstract
High-throughput genetic screens are powerful methods to identify genes linked to a given phenotype. The catalytic null mutant of the Cas9 RNA-guided nuclease (dCas9) can be conveniently used to silence genes of interest in a method also known as CRISPRi. Here, we report a genome-wide CRISPR-dCas9 screen using a starting pool of ~ 92,000 sgRNAs which target random positions in the chromosome of E. coli. To benchmark our method, we first investigate its utility to predict gene essentiality in the genome of E. coli during growth in rich medium. We could identify 79% of the genes previously reported as essential and demonstrate the non-essentiality of some genes annotated as essential. In addition, we took advantage of the intermediate repression levels obtained when targeting the template strand of genes to show that cells are very sensitive to the expression level of a limited set of essential genes. Our data can be visualized on CRISPRbrowser, a custom web interface available at crispr.pasteur.fr. We then apply the screen to discover E. coli genes required by phages λ, T4 and 186 to kill their host, highlighting the involvement of diverse host pathways in the infection process of the three tested phages. We also identify colanic acid capsule synthesis as a shared resistance mechanism to all three phages. Finally, using a plasmid packaging system and a transduction assay, we identify genes required for the formation of functional λ capsids, thus covering the entire phage cycle. This study demonstrates the usefulness and convenience of pooled genome-wide CRISPR-dCas9 screens in bacteria and paves the way for their broader use as a powerful tool in bacterial genomics. Over the past few years, CRISPR-Cas technologies have emerged as powerful tools to edit genomes and modulate gene expression. They have been applied to perform high-throughput genetic screens with the purpose to understand the function of genes in a systematic manner, but the application of these screens to bacteria have so far remained limited. Here, we present the use of a library of ~92,000 guide RNAs directing the dCas9 protein to silence one by one all the genes in the chromosome of E. coli. To benchmark our method, we first investigate the performance of the technique to identify essential genes, highlighting several non-essential genes also found to be essential by other methods. We then apply our method to detect bacterial genes required by three different bacteriophages to kill E. coli and for the production of functional progeny by phage λ. Our screens highlight previously known and new genetic interactions between phages and their host’s pathways and emphasize the importance of bacterial capsule in the resistance to multiple phages. Altogether, our results demonstrate the usefulness of genome-wide CRISPR-dCas9 screens in bacteria to uncover genes involved in various phenotypes.
Collapse
Affiliation(s)
- François Rousset
- Synthetic Biology Group, Microbiology Department, Institut Pasteur, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Lun Cui
- Synthetic Biology Group, Microbiology Department, Institut Pasteur, Paris, France
| | - Elise Siouve
- Synthetic Biology Group, Microbiology Department, Institut Pasteur, Paris, France
| | - Christophe Becavin
- Hub Bioinformatique et Biostatistique, Institut Pasteur - C3BI, USR 3756 IP CNRS, Paris, France
| | - Florence Depardieu
- Synthetic Biology Group, Microbiology Department, Institut Pasteur, Paris, France
| | - David Bikard
- Synthetic Biology Group, Microbiology Department, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
6
|
Schwahn K, Nikoloski Z. Data Reduction Approaches for Dissecting Transcriptional Effects on Metabolism. FRONTIERS IN PLANT SCIENCE 2018; 9:538. [PMID: 29731765 PMCID: PMC5920133 DOI: 10.3389/fpls.2018.00538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
The availability of high-throughput data from transcriptomics and metabolomics technologies provides the opportunity to characterize the transcriptional effects on metabolism. Here we propose and evaluate two computational approaches rooted in data reduction techniques to identify and categorize transcriptional effects on metabolism by combining data on gene expression and metabolite levels. The approaches determine the partial correlation between two metabolite data profiles upon control of given principal components extracted from transcriptomics data profiles. Therefore, they allow us to investigate both data types with all features simultaneously without doing preselection of genes. The proposed approaches allow us to categorize the relation between pairs of metabolites as being under transcriptional or post-transcriptional regulation. The resulting classification is compared to existing literature and accumulated evidence about regulatory mechanism of reactions and pathways in the cases of Escherichia coli, Saccharomycies cerevisiae, and Arabidopsis thaliana.
Collapse
Affiliation(s)
- Kevin Schwahn
- Systems Biology and Mathematical Modelling Group, Max Placnk Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Zoran Nikoloski
- Systems Biology and Mathematical Modelling Group, Max Placnk Institute of Molecular Plant Physiology, Potsdam, Germany
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| |
Collapse
|
7
|
Associations among Antibiotic and Phage Resistance Phenotypes in Natural and Clinical Escherichia coli Isolates. mBio 2017; 8:mBio.01341-17. [PMID: 29089428 PMCID: PMC5666156 DOI: 10.1128/mbio.01341-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The spread of antibiotic resistance is driving interest in new approaches to control bacterial pathogens. This includes applying multiple antibiotics strategically, using bacteriophages against antibiotic-resistant bacteria, and combining both types of antibacterial agents. All these approaches rely on or are impacted by associations among resistance phenotypes (where bacteria resistant to one antibacterial agent are also relatively susceptible or resistant to others). Experiments with laboratory strains have shown strong associations between some resistance phenotypes, but we lack a quantitative understanding of associations among antibiotic and phage resistance phenotypes in natural and clinical populations. To address this, we measured resistance to various antibiotics and bacteriophages for 94 natural and clinical Escherichia coli isolates. We found several positive associations between resistance phenotypes across isolates. Associations were on average stronger for antibacterial agents of the same type (antibiotic-antibiotic or phage-phage) than different types (antibiotic-phage). Plasmid profiles and genetic knockouts suggested that such associations can result from both colocalization of resistance genes and pleiotropic effects of individual resistance mechanisms, including one case of antibiotic-phage cross-resistance. Antibiotic resistance was predicted by core genome phylogeny and plasmid profile, but phage resistance was predicted only by core genome phylogeny. Finally, we used observed associations to predict genes involved in a previously uncharacterized phage resistance mechanism, which we verified using experimental evolution. Our data suggest that susceptibility to phages and antibiotics are evolving largely independently, and unlike in experiments with lab strains, negative associations between antibiotic resistance phenotypes in nature are rare. This is relevant for treatment scenarios where bacteria encounter multiple antibacterial agents.IMPORTANCE Rising antibiotic resistance is making it harder to treat bacterial infections. Whether resistance to a given antibiotic spreads or declines is influenced by whether it is associated with altered susceptibility to other antibiotics or other stressors that bacteria encounter in nature, such as bacteriophages (viruses that infect bacteria). We used natural and clinical isolates of Escherichia coli, an abundant species and key pathogen, to characterize associations among resistance phenotypes to various antibiotics and bacteriophages. We found associations between some resistance phenotypes, and in contrast to past work with laboratory strains, they were exclusively positive. Analysis of bacterial genome sequences and horizontally transferred genetic elements (plasmids) helped to explain this, as well as our finding that there was no overall association between antibiotic resistance and bacteriophage resistance profiles across isolates. This improves our understanding of resistance evolution in nature, potentially informing new rational therapies that combine different antibacterials, including bacteriophages.
Collapse
|
8
|
Vivijs B, Aertsen A, Michiels CW. Identification of Genes Required for Growth of Escherichia coli MG1655 at Moderately Low pH. Front Microbiol 2016; 7:1672. [PMID: 27826291 PMCID: PMC5078493 DOI: 10.3389/fmicb.2016.01672] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/06/2016] [Indexed: 01/27/2023] Open
Abstract
The survival of some pathotypes of Escherichia coli in very low pH environments like highly acidic foods and the stomach has been well documented and contributes to their success as foodborne pathogens. In contrast, the ability of E. coli to grow at moderately low pH has received less attention, although this property can be anticipated to be also very important for the safety of mildly acidic foods. Therefore, the objective of this study was to identify cellular functions required for growth of the non-pathogenic strain E. coli MG1655 at low pH. First, the role of the four E. coli amino acid decarboxylase systems, which are the major cellular mechanisms allowing extreme acid survival, was investigated using mutants defective in each of the systems. Only the lysine decarboxylase (CadA) was required for low pH growth. Secondly, a screening of 8544 random transposon insertion mutants resulted in the identification of six genes affecting growth in LB broth acidified to pH 4.50 with HCl. Two of the genes, encoding the transcriptional regulator LeuO and the elongation factor P-β-lysine ligase EpmA, can be linked to CadA production. Two other genes, encoding the diadenosine tetraphosphatase ApaH and the tRNA modification GTPase MnmE, have been previously implicated in the bacterial response to stresses other than low pH. A fifth gene encodes the LPS heptosyltransferase WaaC, and its mutant has a deep rough colony phenotype, which has been linked to reduced acid tolerance in earlier work. Finally, tatC encodes a secA-independent protein translocase that exports a few dozen proteins and thus is likely to have a pleiotropic phenotype. For mnmE, apaH, epmA, and waaC, de novo in frame deletion and genetic complementation confirmed their role in low pH growth, and these deletion mutants were also affected in growth in apple juice and tomato juice. However, the mutants were not affected in survival in gastric simulation medium at pH 2.5, indicating that growth at moderately low pH and survival of extremely low pH depend mostly on different cellular functions.
Collapse
Affiliation(s)
| | | | - Chris W. Michiels
- Laboratory of Food Microbiology, Department of Microbial and Molecular Systems, and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU LeuvenLeuven, Belgium
| |
Collapse
|
9
|
Frirdich E, Whitfield C. Review: Lipopolysaccharide inner core oligosaccharide structure and outer membrane stability in human pathogens belonging to the Enterobacteriaceae. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519050110030201] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the Enterobacteriaceae, the outer membrane is primarily comprised of lipopolysaccharides. The lipopolysaccharide molecule is important in mediating interactions between the bacterium and its environment and those regions of the molecule extending further away from the cell surface show a higher amount of structural diversity. The hydrophobic lipid A is highly conserved, due to its important role in the structural integrity of the outer membrane. Attached to the lipid A region is the core oligosaccharide. The inner core oligosaccharide (lipid A proximal) backbone is also well conserved. However, non-stoichiometric substitutions of the basic inner core structure lead to structural variation and microheterogeneity. These include the addition of negatively charged groups (phosphate or galacturonic acid), ethanolamine derivatives, and glycose residues (Kdo, rhamnose, galactose, glucosamine, N-acetylglucosamine, heptose, Ko). The genetics and biosynthesis of these substitutions is beginning to be elucidated. Modification of heptose residues with negatively charged molecules (such as phosphate in Escherichia coli and Salmonella and galacturonic acid in Klebsiella pneumoniae ) has been shown to be involved in maintaining membrane stability. However, the biological role(s) of the remaining substitutions is unknown.
Collapse
Affiliation(s)
- Emilisa Frirdich
- Department of Microbiology, University of Guelph, Guelph, Ontario, Canada
| | - Chris Whitfield
- Department of Microbiology, University of Guelph, Guelph, Ontario, Canada,
| |
Collapse
|
10
|
RNA sequencing reveals differences between the global transcriptomes of Salmonella enterica serovar enteritidis strains with high and low pathogenicities. Appl Environ Microbiol 2013; 80:896-906. [PMID: 24271167 DOI: 10.1128/aem.02740-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Enteritidis is one of the important causes of bacterial food-borne gastroenteritis worldwide. Field strains of S. Enteritidis are relatively genetically homogeneous; however, they show extensive phenotypic diversity and differences in virulence potential. RNA sequencing (RNA-Seq) was used to characterize differences in the global transcriptome between several genetically similar but phenotypically diverse poultry-associated field strains of S. Enteritidis grown in laboratory medium at avian body temperature (42°C). These S. Enteritidis strains were previously characterized as high-pathogenicity (HP; n = 3) and low-pathogenicity (LP; n = 3) strains based on both in vitro and in vivo virulence assays. Using the negative binomial distribution-based statistical tools edgeR and DESeq, 252 genes were identified as differentially expressed in LP strains compared with their expression in the HP strains (P < 0.05). A majority of genes (235, or 93.2%) showed significantly reduced expression, whereas a few genes (17, or 6.8%) showed increased expression in all LP strains compared with HP strains. LP strains showed a unique transcriptional profile that is characterized by significantly reduced expression of several transcriptional regulators and reduced expression of genes involved in virulence (e.g., Salmonella pathogenicity island 1 [SPI-1], SPI-5, and fimbrial and motility genes) and protection against osmotic, oxidative, and other stresses, such as iron-limiting conditions commonly encountered within the host. Several functionally uncharacterized genes also showed reduced expression. This study provides a first concise view of the global transcriptional differences between field strains of S. Enteritidis with various levels of pathogenicity, providing the basis for future functional characterization of several genes with potential roles in virulence or stress regulation of S. Enteritidis.
Collapse
|
11
|
Reyes-Cortés R, Martínez-Peñafiel E, Martínez-Pérez F, de la Garza M, Kameyama L. A novel strategy to isolate cell-envelope mutants resistant to phage infection: bacteriophage mEp213 requires lipopolysaccharides in addition to FhuA to enter Escherichia coli K-12. Microbiology (Reading) 2012; 158:3063-3071. [DOI: 10.1099/mic.0.060970-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Ruth Reyes-Cortés
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional No. 2508, C.P. 7360, México D.F., Mexico
| | - Eva Martínez-Peñafiel
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional No. 2508, C.P. 7360, México D.F., Mexico
| | - Francisco Martínez-Pérez
- Laboratorio de Microbiología y Mutagénesis Ambiental, Escuela de Biología, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional No. 2508, C.P. 7360, México D.F., Mexico
| | - Luis Kameyama
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional No. 2508, C.P. 7360, México D.F., Mexico
| |
Collapse
|
12
|
Holland AM, Rather PN. Evidence for extracellular control of RpoS proteolysis in Escherichia coli. FEMS Microbiol Lett 2008; 286:50-9. [PMID: 18616600 DOI: 10.1111/j.1574-6968.2008.01255.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The RpoS sigma factor is required for the transition of Escherichia coli into stationary phase, as well as adaptation to environmental stresses and nutrient depletion. In this study, we report that under nutrient poor conditions, RpoS protein accumulation in E. coli was strongly enhanced by a secreted factor. Expression of a single copy RpoS'-'LacZ translational fusion was activated 12-fold by the signal, but a single copy rpoS-lacZ transcriptional fusion was only activated 1.6-fold. The extracellular signal activated the RpoS'-'LacZ translational fusion in dsrA, rprA or dsrA/rprA mutant backgrounds, but did not activate in an hfq mutant background. A RpoS379'-'LacZ translational fusion, missing the region of RpoS required for the RssB (SprE)/ClpXP-dependent proteolysis, was not activated by the extracellular signal. Furthermore, in a rssB(sprE)::Tn10 background, the presence of extracellular signal did not significantly activate expression above the already elevated levels. Western and Northern blot analysis demonstrated that the extracellular signal significantly increased the levels of RpoS protein, but not mRNA. The extracellular signal did not bind to reversed-phase C-18 columns, was dialyzable, and stable to pH 2, pH 12 and heat. However, protease treatment drastically reduced signal activity. Extracellular signal activity was absent in an hldD (rfaD) mutant, but was present in cell lysates, suggesting that signal was unable to be exported in an hldD mutant.
Collapse
|
13
|
Transcriptome analysis of agmatine and putrescine catabolism in Pseudomonas aeruginosa PAO1. J Bacteriol 2008; 190:1966-75. [PMID: 18192388 DOI: 10.1128/jb.01804-07] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polyamines (putrescine, spermidine, and spermine) are major organic polycations essential for a wide spectrum of cellular processes. The cells require mechanisms to maintain homeostasis of intracellular polyamines to prevent otherwise severe adverse effects. We performed a detailed transcriptome profile analysis of Pseudomonas aeruginosa in response to agmatine and putrescine with an emphasis in polyamine catabolism. Agmatine serves as the precursor compound for putrescine (and hence spermidine and spermine), which was proposed to convert into 4-aminobutyrate (GABA) and succinate before entering the tricarboxylic acid cycle in support of cell growth, as the sole source of carbon and nitrogen. Two acetylpolyamine amidohydrolases, AphA and AphB, were found to be involved in the conversion of agmatine into putrescine. Enzymatic products of AphA were confirmed by mass spectrometry analysis. Interestingly, the alanine-pyruvate cycle was shown to be indispensable for polyamine utilization. The newly identified dadRAX locus encoding the regulator alanine transaminase and racemase coupled with SpuC, the major putrescine-pyruvate transaminase, were key components to maintaining alanine homeostasis. Corresponding mutant strains were severely hampered in polyamine utilization. On the other hand, an alternative gamma-glutamylation pathway for the conversion of putrescine into GABA is present in some organisms. Subsequently, GabD, GabT, and PA5313 were identified for GABA utilization. The growth defect of the PA5313 gabT double mutant in GABA suggested the importance of these two transaminases. The succinic-semialdehyde dehydrogenase activity of GabD and its induction by GABA were also demonstrated in vitro. Polyamine utilization in general was proven to be independent of the PhoPQ two-component system, even though a modest induction of this operon was induced by polyamines. Multiple potent catabolic pathways, as depicted in this study, could serve pivotal roles in the control of intracellular polyamine levels.
Collapse
|
14
|
Transcriptome analysis of agmatine and putrescine catabolism in Pseudomonas aeruginosa PAO1. J Bacteriol 2008; 192:4317-26. [PMID: 18192388 DOI: 10.1128/jb.00335-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Polyamines (putrescine, spermidine, and spermine) are major organic polycations essential for a wide spectrum of cellular processes. The cells require mechanisms to maintain homeostasis of intracellular polyamines to prevent otherwise severe adverse effects. We performed a detailed transcriptome profile analysis of Pseudomonas aeruginosa in response to agmatine and putrescine with an emphasis in polyamine catabolism. Agmatine serves as the precursor compound for putrescine (and hence spermidine and spermine), which was proposed to convert into 4-aminobutyrate (GABA) and succinate before entering the tricarboxylic acid cycle in support of cell growth, as the sole source of carbon and nitrogen. Two acetylpolyamine amidohydrolases, AphA and AphB, were found to be involved in the conversion of agmatine into putrescine. Enzymatic products of AphA were confirmed by mass spectrometry analysis. Interestingly, the alanine-pyruvate cycle was shown to be indispensable for polyamine utilization. The newly identified dadRAX locus encoding the regulator alanine transaminase and racemase coupled with SpuC, the major putrescine-pyruvate transaminase, were key components to maintaining alanine homeostasis. Corresponding mutant strains were severely hampered in polyamine utilization. On the other hand, an alternative gamma-glutamylation pathway for the conversion of putrescine into GABA is present in some organisms. Subsequently, GabD, GabT, and PA5313 were identified for GABA utilization. The growth defect of the PA5313 gabT double mutant in GABA suggested the importance of these two transaminases. The succinic-semialdehyde dehydrogenase activity of GabD and its induction by GABA were also demonstrated in vitro. Polyamine utilization in general was proven to be independent of the PhoPQ two-component system, even though a modest induction of this operon was induced by polyamines. Multiple potent catabolic pathways, as depicted in this study, could serve pivotal roles in the control of intracellular polyamine levels.
Collapse
|