1
|
Nikel PI, Benedetti I, Wirth NT, de Lorenzo V, Calles B. Standardization of regulatory nodes for engineering heterologous gene expression: a feasibility study. Microb Biotechnol 2022; 15:2250-2265. [PMID: 35478326 PMCID: PMC9328736 DOI: 10.1111/1751-7915.14063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/21/2022] Open
Abstract
The potential of LacI/Ptrc , XylS/Pm , AlkS/PalkB , CprK/PDB3 and ChnR/PchnB regulatory nodes, recruited from both Gram-negative and Gram-positive bacteria, as the source of parts for formatting expression cargoes following the Standard European Vector Architecture (SEVA) has been examined. The five expression devices, which cover most known regulatory configurations in bacteria were assembled within exactly the same plasmid backbone and bearing the different functional segments arrayed in an invariable DNA scaffold. Their performance was then analysed in an Escherichia coli strain of reference through the readout of a fluorescence reporter gene that contained strictly identical translation signal elements. This approach allowed us to describe and compare the cognate expression systems with quantitative detail. The constructs under scrutiny diverged considerably in their capacity, expression noise, inducibility and ON/OFF ratios. Inspection of such a variance exposed the different constraints that rule the optimal arrangement of functional DNA segments in each case. The data highlighted also the ease of standardizing inducer-responsive devices subject to transcriptional activation as compared to counterparts based on repressors. The study resulted in a defined collection of formatted expression cargoes lacking any cross talk while offering a panoply of choices to potential users and help interoperability of the specific constructs.
Collapse
Affiliation(s)
- Pablo I. Nikel
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKgs Lyngby2800Denmark
| | - Ilaria Benedetti
- Systems and Synthetic Biology ProgramCentro Nacional de Biotecnología (CNB‐CSIC)Madrid28049Spain
| | - Nicolas T. Wirth
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKgs Lyngby2800Denmark
| | - Víctor de Lorenzo
- Systems and Synthetic Biology ProgramCentro Nacional de Biotecnología (CNB‐CSIC)Madrid28049Spain
| | - Belén Calles
- Systems and Synthetic Biology ProgramCentro Nacional de Biotecnología (CNB‐CSIC)Madrid28049Spain
| |
Collapse
|
2
|
Monteiro LMO, Arruda LM, Sanches-Medeiros A, Martins-Santana L, Alves LDF, Defelipe L, Turjanski AG, Guazzaroni ME, de Lorenzo V, Silva-Rocha R. Reverse Engineering of an Aspirin-Responsive Transcriptional Regulator in Escherichia coli. ACS Synth Biol 2019; 8:1890-1900. [PMID: 31362496 DOI: 10.1021/acssynbio.9b00191] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Bacterial transcription factors (TFs) are key devices for the engineering of complex circuits in many biotechnological applications, yet there are few well-characterized inducer-responsive TFs that could be used in the context of an animal or human host. We have deciphered the inducer recognition mechanism of two AraC/XylS regulators from Pseudomonas putida (BenR and XylS) for creating a novel expression system responsive to acetyl salicylate (i.e., aspirin). Using protein homology modeling and molecular docking with the cognate inducer benzoate and a suite of chemical analogues, we identified the conserved binding pocket of BenR and XylS. By means of site-directed mutagenesis, we identified a single amino acid position required for efficient inducer recognition and transcriptional activation. Whereas this modification in BenR abolishes protein activity, in XylS, it increases the response to several inducers, including acetyl salicylic acid, to levels close to those achieved by the canonical inducer. Moreover, by constructing chimeric proteins with swapped N-terminal domains, we created novel regulators with mixed promoter and inducer recognition profiles. As a result, a collection of engineered TFs was generated with an enhanced response to benzoate, 3-methylbenzoate, 2-methylbenzoate, 4-methylbenzoate, salicylic acid, aspirin, and acetylsalicylic acid molecules for eliciting gene expression in E. coli.
Collapse
Affiliation(s)
| | - Letı́cia Magalhães Arruda
- Cell and Molecular Biology Department, FMRP − University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Ananda Sanches-Medeiros
- Cell and Molecular Biology Department, FMRP − University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Leonardo Martins-Santana
- Cell and Molecular Biology Department, FMRP − University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Luana de Fátima Alves
- Biology Department, FFCLRP − University of São Paulo, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Lucas Defelipe
- Departamento de Quı́mica Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
- IQUIBICEN/UBA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Adrian Gustavo Turjanski
- Departamento de Quı́mica Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
- IQUIBICEN/UBA-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | | | - Vı́ctor de Lorenzo
- Systems Biology Program, National Center of Biotechnology − CSIC, Madrid 28049, Spain
| | - Rafael Silva-Rocha
- Cell and Molecular Biology Department, FMRP − University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| |
Collapse
|
3
|
Sánchez DG, Primo ED, Damiani MT, Lisa AT. Pseudomonas aeruginosa gbdR gene is transcribed from a σ54-dependent promoter under the control of NtrC/CbrB, IHF and BetI. MICROBIOLOGY-SGM 2017; 163:1343-1354. [PMID: 28791946 DOI: 10.1099/mic.0.000502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Pseudomonasaeruginosa uses choline as a source of carbon and nitrogen, and also for the synthesis of glycine betaine, an osmoprotectant under stress conditions such as drought and salinity. The transcription factor GbdR is the specific regulator of choline metabolism and it belongs to the Arac/XylS family of transcriptional regulators. Despite the link between choline catabolism and bacterial pathogenicity, gbdR regulation has not been explored in detail. In the present work, we describe how gbdR transcription can be initiated from a σ54-dependent promoter. gbdR transcription can be activated by NtrC in the absence of a preferential nitrogen source, by CbrB in the absence of a preferential carbon source, and by the integration host factor favouring DNA bending. In addition, we found that BetI negatively regulates gbdR expression in the absence of choline. We identified two overlapping BetI binding sites in the gbdR promoter sequence, providing an additional example of σ54-promoter down-regulation. Based on our findings, we propose a model for gdbR regulation and its impact on choline metabolism.
Collapse
Affiliation(s)
- Diego Germán Sánchez
- Laboratory of Phagocytosis and Intracellular Transport, School of Medicine, University of Cuyo, IHEM-CONICET, Mendoza 5500, Argentina.,Department of Molecular Biology, FCEFQN, National University of Río Cuarto, Route 36-Km 601, 5800, Argentina
| | - Emiliano David Primo
- Department of Molecular Biology, FCEFQN, National University of Río Cuarto, Route 36-Km 601, 5800, Argentina
| | - María Teresa Damiani
- Laboratory of Phagocytosis and Intracellular Transport, School of Medicine, University of Cuyo, IHEM-CONICET, Mendoza 5500, Argentina
| | - Angela Teresita Lisa
- Department of Molecular Biology, FCEFQN, National University of Río Cuarto, Route 36-Km 601, 5800, Argentina
| |
Collapse
|
4
|
Goñi-Moreno Á, Benedetti I, Kim J, de Lorenzo V. Deconvolution of Gene Expression Noise into Spatial Dynamics of Transcription Factor-Promoter Interplay. ACS Synth Biol 2017; 6:1359-1369. [PMID: 28355056 PMCID: PMC7617343 DOI: 10.1021/acssynbio.6b00397] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Gene expression noise is not only the mere consequence of stochasticity, but also a signal that reflects the upstream physical dynamics of the cognate molecular machinery. Soil bacteria facing recalcitrant pollutants exploit noise of catabolic promoters to deploy beneficial phenotypes such as metabolic bet-hedging and/or division of biochemical labor. Although the role of upstream promoter-regulator interplay in the origin of this noise is little understood, its specifications are probably ciphered in flow cytometry data patterns. We studied Pm promoter activity of the environmental bacterium Pseudomonas putida and its cognate regulator XylS by following expression of Pm-gfp fusions in single cells. Using mathematical modeling and computational simulations, we determined the kinetic properties of the system and used them as a baseline code to interpret promoter activity in terms of upstream regulator dynamics. Transcriptional noise was predicted to depend on the intracellular physical distance between regulator source (where XylS is produced) and the target promoter. Experiments with engineered bacteria in which this distance is minimized or enlarged confirmed the predicted effects of source/target proximity on noise patterns. This approach allowed deconvolution of cytometry data into mechanistic information on gene expression flow. It also provided a basis for selecting programmable noise levels in synthetic regulatory circuits.
Collapse
Affiliation(s)
- Ángel Goñi-Moreno
- Systems Biology Program, Centro Nacional de Biotecnología, Cantoblanco-Madrid, Spain
| | - Ilaria Benedetti
- Systems Biology Program, Centro Nacional de Biotecnología, Cantoblanco-Madrid, Spain
| | - Juhyun Kim
- Systems Biology Program, Centro Nacional de Biotecnología, Cantoblanco-Madrid, Spain
| | - Víctor de Lorenzo
- Systems Biology Program, Centro Nacional de Biotecnología, Cantoblanco-Madrid, Spain
| |
Collapse
|
5
|
Transcriptional kinetics of the cross-talk between the ortho -cleavage and TOL pathways of toluene biodegradation in Pseudomonas putida mt-2. J Biotechnol 2016; 228:112-123. [DOI: 10.1016/j.jbiotec.2016.03.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 03/27/2016] [Accepted: 03/31/2016] [Indexed: 11/23/2022]
|
6
|
Kim J, Pérez-Pantoja D, Silva-Rocha R, Oliveros JC, de Lorenzo V. High-resolution analysis of the m-xylene/toluene biodegradation subtranscriptome of Pseudomonas putida mt-2. Environ Microbiol 2015; 18:3327-3341. [PMID: 26373670 DOI: 10.1111/1462-2920.13054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/30/2015] [Accepted: 09/12/2015] [Indexed: 11/28/2022]
Abstract
Pseudomonas putida mt-2 metabolizes m-xylene and other aromatic compounds through the enzymes encoded by the xyl operons of the TOL plasmid pWW0 along with other chromosomally encoded activities. Tiling arrays of densely overlapping oligonucleotides were designed to cover every gene involved in this process, allowing dissection of operon structures and exposing the interplay of plasmid and chromosomal functions. All xyl sequences were transcribed in response to aromatic substrates and the 3'-termini of both upper and lower mRNA operons extended beyond their coding regions, i.e. the 3'-end of the lower operon mRNA penetrated into the convergent xylS regulatory gene. Furthermore, xylR mRNA for the master m-xylene responsive regulator of the system was decreased by aromatic substrates, while the cognate upper operon mRNA was evenly stable throughout its full length. RNA sequencing confirmed these data at a single nucleotide level and refined the formerly misannotated xylL sequence. The chromosomal ortho route for degradation of benzoate (the ben, cat clusters and some pca genes) was activated by this aromatic, but not by the TOL substrates, toluene or m-xylene. We advocate this scenario as a testbed of natural retroactivity between a pre-existing metabolic network and a new biochemical pathway implanted through gene transfer.
Collapse
Affiliation(s)
- Juhyun Kim
- Systems Biology Program, Centro Nacional de Biotecnologia-CSIC, Campus de Cantoblanco, Madrid, Spain
| | - Danilo Pérez-Pantoja
- Systems Biology Program, Centro Nacional de Biotecnologia-CSIC, Campus de Cantoblanco, Madrid, Spain
| | - Rafael Silva-Rocha
- Systems Biology Program, Centro Nacional de Biotecnologia-CSIC, Campus de Cantoblanco, Madrid, Spain
| | - Juan Carlos Oliveros
- Systems Biology Program, Centro Nacional de Biotecnologia-CSIC, Campus de Cantoblanco, Madrid, Spain
| | - Víctor de Lorenzo
- Systems Biology Program, Centro Nacional de Biotecnologia-CSIC, Campus de Cantoblanco, Madrid, Spain.
| |
Collapse
|
7
|
Silva-Rocha R, de Lorenzo V. The TOL network ofPseudomonas putidamt-2 processes multiple environmental inputs into a narrowresponse space. Environ Microbiol 2012; 15:271-86. [DOI: 10.1111/1462-2920.12014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/23/2012] [Accepted: 09/27/2012] [Indexed: 11/30/2022]
Affiliation(s)
- Rafael Silva-Rocha
- Systems Biology Program; Centro Nacional de Biotecnología CSIC; Cantoblanco-Madrid; 28049; Spain
| | - Víctor de Lorenzo
- Systems Biology Program; Centro Nacional de Biotecnología CSIC; Cantoblanco-Madrid; 28049; Spain
| |
Collapse
|
8
|
Silva-Rocha R, de Lorenzo V. Stochasticity of TOL plasmid catabolic promoters sets a bimodal expression regime inPseudomonas putidamt-2 exposed tom-xylene. Mol Microbiol 2012; 86:199-211. [DOI: 10.1111/j.1365-2958.2012.08184.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Silva-Rocha R, de Jong H, Tamames J, de Lorenzo V. The logic layout of the TOL network of Pseudomonas putida pWW0 plasmid stems from a metabolic amplifier motif (MAM) that optimizes biodegradation of m-xylene. BMC SYSTEMS BIOLOGY 2011; 5:191. [PMID: 22078029 PMCID: PMC3253710 DOI: 10.1186/1752-0509-5-191] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Accepted: 11/11/2011] [Indexed: 12/13/2022]
Abstract
Background The genetic network of the TOL plasmid pWW0 of the soil bacterium Pseudomonas putida mt-2 for catabolism of m-xylene is an archetypal model for environmental biodegradation of aromatic pollutants. Although nearly every metabolic and transcriptional component of this regulatory system is known to an extraordinary molecular detail, the complexity of its architecture is still perplexing. To gain an insight into the inner layout of this network a logic model of the TOL system was implemented, simulated and experimentally validated. This analysis made sense of the specific regulatory topology out on the basis of an unprecedented network motif around which the entire genetic circuit for m-xylene catabolism gravitates. Results The most salient feature of the whole TOL regulatory network is the control exerted by two distinct but still intertwined regulators (XylR and XylS) on expression of two separated catabolic operons (upper and lower) for catabolism of m-xylene. Following model reduction, a minimal modular circuit composed by five basic variables appeared to suffice for fully describing the operation of the entire system. In silico simulation of the effect of various perturbations were compared with experimental data in which specific portions of the network were activated with selected inducers: m-xylene, o-xylene, 3-methylbenzylalcohol and 3-methylbenzoate. The results accredited the ability of the model to faithfully describe network dynamics. This analysis revealed that the entire regulatory structure of the TOL system enables the action an unprecedented metabolic amplifier motif (MAM). This motif synchronizes expression of the upper and lower portions of a very long metabolic system when cells face the head pathway substrate, m-xylene. Conclusion Logic modeling of the TOL circuit accounted for the intricate regulatory topology of this otherwise simple metabolic device. The found MAM appears to ensure a simultaneous expression of the upper and lower segments of the m-xylene catabolic route that would be difficult to bring about with a standard substrate-responsive single promoter. Furthermore, it is plausible that the MAM helps to avoid biochemical conflicts between competing plasmid-encoded and chromosomally-encoded pathways in this bacterium.
Collapse
Affiliation(s)
- Rafael Silva-Rocha
- Systems Biology Program, Centro Nacional de Biotecnología CSIC Cantoblanco-Madrid, 28049, Spain
| | | | | | | |
Collapse
|
10
|
Koutinas M, Kiparissides A, Silva-Rocha R, Lam MC, Martins dos Santos VA, de Lorenzo V, Pistikopoulos EN, Mantalaris A. Linking genes to microbial growth kinetics—An integrated biochemical systems engineering approach. Metab Eng 2011; 13:401-13. [DOI: 10.1016/j.ymben.2011.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2010] [Revised: 01/31/2011] [Accepted: 02/03/2011] [Indexed: 10/18/2022]
|
11
|
Moreno R, Fonseca P, Rojo F. The Crc global regulator inhibits the Pseudomonas putida pWW0 toluene/xylene assimilation pathway by repressing the translation of regulatory and structural genes. J Biol Chem 2010; 285:24412-9. [PMID: 20529863 PMCID: PMC2915677 DOI: 10.1074/jbc.m110.126615] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 05/13/2010] [Indexed: 11/06/2022] Open
Abstract
In Pseudomonas putida, the expression of the pWW0 plasmid genes for the toluene/xylene assimilation pathway (the TOL pathway) is subject to complex regulation in response to environmental and physiological signals. This includes strong inhibition via catabolite repression, elicited by the carbon sources that the cells prefer to hydrocarbons. The Crc protein, a global regulator that controls carbon flow in pseudomonads, has an important role in this inhibition. Crc is a translational repressor that regulates the TOL genes, but how it does this has remained unknown. This study reports that Crc binds to sites located at the translation initiation regions of the mRNAs coding for XylR and XylS, two specific transcription activators of the TOL genes. Unexpectedly, eight additional Crc binding sites were found overlapping the translation initiation sites of genes coding for several enzymes of the pathway, all encoded within two polycistronic mRNAs. Evidence is provided supporting the idea that these sites are functional. This implies that Crc can differentially modulate the expression of particular genes within polycistronic mRNAs. It is proposed that Crc controls TOL genes in two ways. First, Crc inhibits the translation of the XylR and XylS regulators, thereby reducing the transcription of all TOL pathway genes. Second, Crc inhibits the translation of specific structural genes of the pathway, acting mainly on proteins involved in the first steps of toluene assimilation. This ensures a rapid inhibitory response that reduces the expression of the toluene/xylene degradation proteins when preferred carbon sources become available.
Collapse
Affiliation(s)
- Renata Moreno
- From the Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas (CSIC), Campus Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Pilar Fonseca
- From the Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas (CSIC), Campus Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Fernando Rojo
- From the Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas (CSIC), Campus Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
12
|
Sequential XylS-CTD binding to the Pm promoter induces DNA bending prior to activation. J Bacteriol 2010; 192:2682-90. [PMID: 20363935 DOI: 10.1128/jb.00165-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
XylS protein, a member of the AraC family of transcriptional regulators, comprises a C-terminal domain (CTD) involved in DNA binding and an N-terminal domain required for effector binding and protein dimerization. In the absence of benzoate effectors, the N-terminal domain behaves as an intramolecular repressor of the DNA binding domain. To date, the poor solubility properties of the full-length protein have restricted XylS analysis to genetic approaches in vivo. To characterize the molecular consequences of XylS binding to its operator, we used a recombinant XylS-CTD variant devoid of the N-terminal domain. The resulting protein was soluble and monomeric in solution and activated transcription from its cognate promoter in an effector-independent manner. XylS binding sites in the Pm promoter present an intrinsic curvature of 35 degrees centered at position -42 within the proximal site. Gel retardation and DNase footprint analysis showed XylS-CTD binding to Pm occurred sequentially: first a XylS-CTD monomer binds to the proximal site overlapping the RNA polymerase binding sequence to form complex I. This first event increased Pm bending to 50 degrees and was followed by the binding of the second monomer, which further increased the observed global curvature to 98 degrees. This generated a concomitant shift in the bending center to a region centered at position -51 when the two sites were occupied (complex II). We propose a model in which DNA structure and binding sequences strongly influence XylS binding events previous to transcription activation.
Collapse
|
13
|
Rojo F. Carbon catabolite repression in Pseudomonas : optimizing metabolic versatility and interactions with the environment. FEMS Microbiol Rev 2010; 34:658-84. [PMID: 20412307 DOI: 10.1111/j.1574-6976.2010.00218.x] [Citation(s) in RCA: 356] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Metabolically versatile free-living bacteria have global regulation systems that allow cells to selectively assimilate a preferred compound among a mixture of several potential carbon sources. This process is known as carbon catabolite repression (CCR). CCR optimizes metabolism, improving the ability of bacteria to compete in their natural habitats. This review summarizes the regulatory mechanisms responsible for CCR in the bacteria of the genus Pseudomonas, which can live in many different habitats. Although the information available is still limited, the molecular mechanisms responsible for CCR in Pseudomonas are clearly different from those of Enterobacteriaceae or Firmicutes. An understanding of the molecular mechanisms underlying CCR is important to know how metabolism is regulated and how bacteria degrade compounds in the environment. This is particularly relevant for compounds that are degraded slowly and accumulate, creating environmental problems. CCR has a major impact on the genes involved in the transport and metabolism of nonpreferred carbon sources, but also affects the expression of virulence factors in several bacterial species, genes that are frequently directed to allow the bacterium to gain access to new sources of nutrients. Finally, CCR has implications in the optimization of biotechnological processes such as biotransformations or bioremediation strategies.
Collapse
Affiliation(s)
- Fernando Rojo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Madrid, Spain.
| |
Collapse
|
14
|
Koutinas M, Lam MC, Kiparissides A, Silva-Rocha R, Godinho M, Livingston AG, Pistikopoulos EN, De Lorenzo V, Dos Santos VAPM, Mantalaris A. The regulatory logic of m-xylene biodegradation by Pseudomonas putida mt-2 exposed by dynamic modelling of the principal node Ps/Pr of the TOL plasmid. Environ Microbiol 2009; 12:1705-18. [DOI: 10.1111/j.1462-2920.2010.02245.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Abstract
Regulated promoters are useful tools for many aspects related to recombinant gene expression in bacteria, including for high‐level expression of heterologous proteins and for expression at physiological levels in metabolic engineering applications. In general, it is common to express the genes of interest from an inducible promoter controlled either by a positive regulator or by a repressor protein. In this review, we discuss established and potentially useful positively regulated bacterial promoter systems, with a particular emphasis on those that are controlled by the AraC‐XylS family of transcriptional activators. The systems function in a wide range of microorganisms, including enterobacteria, soil bacteria, lactic bacteria and streptomycetes. The available systems that have been applied to express heterologous genes are regulated either by sugars (l‐arabinose, l‐rhamnose, xylose and sucrose), substituted benzenes, cyclohexanone‐related compounds, ε‐caprolactam, propionate, thiostrepton, alkanes or peptides. It is of applied interest that some of the inducers require the presence of transport systems, some are more prone than others to become metabolized by the host and some have been applied mainly in one or a limited number of species. Based on bioinformatics analyses, the AraC‐XylS family of regulators contains a large number of different members (currently over 300), but only a small fraction of these, the XylS/Pm, AraC/PBAD, RhaR‐RhaS/rhaBAD, NitR/PnitA and ChnR/Pb regulator/promoter systems, have so far been explored for biotechnological applications.
Collapse
Affiliation(s)
- Trygve Brautaset
- Department of Biotechnology, Sintef Materials and Chemistry, Sintef, Trondheim, Norway.
| | | | | |
Collapse
|
16
|
Kolin A, Balasubramaniam V, Skredenske JM, Wickstrum JR, Egan SM. Differences in the mechanism of the allosteric l-rhamnose responses of the AraC/XylS family transcription activators RhaS and RhaR. Mol Microbiol 2008; 68:448-61. [PMID: 18366439 DOI: 10.1111/j.1365-2958.2008.06164.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proteins in the largest subset of AraC/XylS family transcription activators, including RhaS and RhaR, have C-terminal domains (CTDs) that mediate DNA-binding and transcription activation, and N-terminal domains (NTDs) that mediate dimerization and effector binding. The mechanism of the allosteric effector response in this family has been identified only for AraC. Here, we investigated the mechanism by which RhaS and RhaR respond to their effector, l-rhamnose. Unlike AraC, N-terminal truncations suggested that RhaS and RhaR do not use an N-terminal arm to inhibit activity in the absence of effector. We used random mutagenesis to isolate RhaS and RhaR variants with enhanced activation in the absence of l-rhamnose. NTD substitutions largely clustered around the predicted l-rhamnose-binding pockets, suggesting that they mimic the structural outcome of effector binding to the wild-type proteins. RhaS-CTD substitutions clustered in the first HTH motif, and suggested that l-rhamnose induces improved DNA binding. In contrast, RhaR-CTD substitutions clustered at a single residue in the second HTH motif, at a position consistent with improved RNAP contacts. We propose separate allosteric mechanisms for the two proteins: Without l-rhamnose, RhaS does not effectively bind DNA while RhaR does not effectively contact RNAP. Upon l-rhamnose binding, both proteins undergo structural changes that enable transcription activation.
Collapse
Affiliation(s)
- Ana Kolin
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | | | | | | | | |
Collapse
|
17
|
Roles of effectors in XylS-dependent transcription activation: intramolecular domain derepression and DNA binding. J Bacteriol 2008; 190:3118-28. [PMID: 18296514 DOI: 10.1128/jb.01784-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
XylS, an AraC family protein, activates transcription from the benzoate degradation pathway Pm promoter in the presence of a substrate effector such as 3-methylbenzoate (3MB). We developed a procedure to obtain XylS-enriched preparations which proved suitable to analyze its activation mechanism. XylS showed specific 3MB-independent binding to its target operator, which became strictly 3MB dependent in a dimerization-defective mutant. We demonstrated that the N-terminal domain of the protein can make linker-independent interactions with the C-terminal domain and inhibit its capacity to bind DNA. Interactions are hampered in the presence of 3MB effector. We propose two independent roles for 3MB in XylS activation: in addition to its known influence favoring protein dimerization, the effector is able to modify XylS conformation to trigger N-terminal domain intramolecular derepression. We also show that activation by XylS involves RNA polymerase recruitment to the Pm promoter as demonstrated by chromatin immunoprecipitation assays. RNA polymerase switching in Pm transcription was reproduced in in vitro transcription assays. All sigma(32)-, sigma(38)-, and sigma(70)-dependent RNA polymerases were able to carry out Pm transcription in a rigorous XylS-dependent manner, as demonstrated by the formation of open complexes only in the presence of the regulator.
Collapse
|
18
|
Deutscher J, Francke C, Postma PW. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 2007; 70:939-1031. [PMID: 17158705 PMCID: PMC1698508 DOI: 10.1128/mmbr.00024-06] [Citation(s) in RCA: 1038] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The phosphoenolpyruvate(PEP):carbohydrate phosphotransferase system (PTS) is found only in bacteria, where it catalyzes the transport and phosphorylation of numerous monosaccharides, disaccharides, amino sugars, polyols, and other sugar derivatives. To carry out its catalytic function in sugar transport and phosphorylation, the PTS uses PEP as an energy source and phosphoryl donor. The phosphoryl group of PEP is usually transferred via four distinct proteins (domains) to the transported sugar bound to the respective membrane component(s) (EIIC and EIID) of the PTS. The organization of the PTS as a four-step phosphoryl transfer system, in which all P derivatives exhibit similar energy (phosphorylation occurs at histidyl or cysteyl residues), is surprising, as a single protein (or domain) coupling energy transfer and sugar phosphorylation would be sufficient for PTS function. A possible explanation for the complexity of the PTS was provided by the discovery that the PTS also carries out numerous regulatory functions. Depending on their phosphorylation state, the four proteins (domains) forming the PTS phosphorylation cascade (EI, HPr, EIIA, and EIIB) can phosphorylate or interact with numerous non-PTS proteins and thereby regulate their activity. In addition, in certain bacteria, one of the PTS components (HPr) is phosphorylated by ATP at a seryl residue, which increases the complexity of PTS-mediated regulation. In this review, we try to summarize the known protein phosphorylation-related regulatory functions of the PTS. As we shall see, the PTS regulation network not only controls carbohydrate uptake and metabolism but also interferes with the utilization of nitrogen and phosphorus and the virulence of certain pathogens.
Collapse
Affiliation(s)
- Josef Deutscher
- Microbiologie et Génétique Moléculaire, INRA-CNRS-INA PG UMR 2585, Thiverval-Grignon, France.
| | | | | |
Collapse
|
19
|
Aranda-Olmedo I, Ramos JL, Marqués S. Integration of signals through Crc and PtsN in catabolite repression of Pseudomonas putida TOL plasmid pWW0. Appl Environ Microbiol 2005; 71:4191-8. [PMID: 16085802 PMCID: PMC1183334 DOI: 10.1128/aem.71.8.4191-4198.2005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toluene degradation in Pseudomonas putida KT2440 pWW0 plasmid is subjected to catabolite repression. Pu and P(S1) promoters of the pWW0 TOL plasmid are down-regulated in vivo during exponential growth in rich medium. In cells growing on minimal medium, yeast extract (YE) addition mimics exponential-phase rich medium repression of these promoters. We have constructed and tested mutants in a series of global regulators described in Pseudomonas. We describe that a mutant in crc (catabolite repression control) partially relieves YE repression. Macroarray experiments show that crc transcription is strongly increased in the presence of YE, inversely correlated with TOL pathway expression. On the other hand, we have found that induced levels of expression from Pu and P(S) in the presence of YE are partially derepressed in a ptsN mutant of P. putida. PtsN but not Crc seems to directly interfere with XylR activation at target promoters. The effect of the double mutation in ptsN and crc is not the sum of the effects of each independent mutation and suggests that both regulators are elements of a common regulatory pathway. Basal expression levels from these promoters in the absence of inducer are still XylR dependent and are also repressed in the presence of yeast extract. Neither crc nor ptsN could relieve this repression.
Collapse
Affiliation(s)
- Isabel Aranda-Olmedo
- Department of Biochemistry and Molecular and Cellular Biology of Plants, EEZ-CSIC, Apdo. de Correos 419, E-18080 Granada, Spain
| | | | | |
Collapse
|