1
|
Sagarin KA, Ouanemalay E, Asante-Nyame H, Hong V, De Palo C, Cohan FM. Phosphorelay changes and plasticity underlie the life history evolution of Bacillus subtilis sporulation and germination in serial batch culture. MICROBIOLOGY (READING, ENGLAND) 2025; 171:001540. [PMID: 40094782 PMCID: PMC11914059 DOI: 10.1099/mic.0.001540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/21/2025] [Indexed: 03/19/2025]
Abstract
Bacterial endospores facilitate survival in extreme and unpredictably fluctuating environments. However, under abundant nutrient conditions, the production of endospores is quickly reduced or lost. We hypothesized that endospore-forming bacteria exposed to frequent cycling of nutrient availability would evolve reduced sporulation efficiency. We employed replicated batch culture for 11 transfers to test the effects of rapid nutrient cycles on the evolution of the life history traits of sporulation, germination and growth in Bacillus subtilis. We periodically measured total cell and endospore densities during the period between transfers. Replicates evolved in parallel behaviourally and genetically. By the fourth transfer, we saw a reduction in endospore production, which continued to decline throughout the experiment. Our results support a decreased likelihood of sporulation being driven by frequent nutrient renewal. The proportion of endospores germinating after transfer increased significantly by the end of the experiment through the effects of plasticity alone. Every evolved replicate culture displayed colony dimorphism: the dominant morphology being translucent with reduced sporulation ability and the rarer being opaque with accelerated sporulation and highly efficient germination. Colony dimorphism was reflected in the genomes, with all isolates with reduced sporulation having mutations in elements of the sporulation phosphorelay, particularly kinA. Some opaque colonies had no mutations, indicating that those adaptive changes occurred through plasticity. These results suggest that our selection conditions of nutrient cycling resulted in the parallel evolution of communities of ecologically diverse strains, where most reduced sporulation while a smaller proportion accelerated it.
Collapse
Affiliation(s)
| | | | | | - Vera Hong
- Department of Biology, Wesleyan University, Middletown, CT, USA
| | - Chloe De Palo
- Department of Biology, Wesleyan University, Middletown, CT, USA
| | | |
Collapse
|
2
|
Mutlu A, Kaspar C, Becker N, Bischofs IB. A spore quality-quantity tradeoff favors diverse sporulation strategies in Bacillus subtilis. ISME JOURNAL 2020; 14:2703-2714. [PMID: 32724142 PMCID: PMC7784978 DOI: 10.1038/s41396-020-0721-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 07/05/2020] [Accepted: 07/15/2020] [Indexed: 11/24/2022]
Abstract
Quality–quantity tradeoffs govern the production of propagules across taxa and can explain variability in life-history traits in higher organisms. A quality–quantity tradeoff was recently discovered in spore forming bacteria, but whether it impacts fitness is unclear. Here we show both theoretically and experimentally that the nutrient supply during spore revival determines the fitness advantage associated with different sporulation behaviors in Bacillus subtilis. By tuning sporulation rates we generate spore-yield and spore-quality strategists that compete with each other in a microscopic life-cycle assay. The quality (yield) strategist is favored when spore revival is triggered by poor (rich) nutrients. We also show that natural isolates from the gut and soil employ different life-cycle strategies that result from genomic variations in the number of rap-phr signaling systems. Taken together, our results suggest that a spore quality–quantity tradeoff contributes to the evolutionary adaptation of sporulating bacteria.
Collapse
Affiliation(s)
- Alper Mutlu
- Max-Planck-Institute for Terrestrial Microbiology, D-35043, Marburg, Germany.,BioQuant Center of Heidelberg University, D-69120, Heidelberg, Germany.,Center for Molecular Biology (ZMBH), Heidelberg University, D-69120, Heidelberg, Germany
| | - Charlotte Kaspar
- Max-Planck-Institute for Terrestrial Microbiology, D-35043, Marburg, Germany.,BioQuant Center of Heidelberg University, D-69120, Heidelberg, Germany
| | - Nils Becker
- BioQuant Center of Heidelberg University, D-69120, Heidelberg, Germany.,Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), D-69120, Heidelberg, Germany
| | - Ilka B Bischofs
- Max-Planck-Institute for Terrestrial Microbiology, D-35043, Marburg, Germany. .,BioQuant Center of Heidelberg University, D-69120, Heidelberg, Germany. .,Center for Molecular Biology (ZMBH), Heidelberg University, D-69120, Heidelberg, Germany.
| |
Collapse
|
3
|
Dhar R. Role of Mitochondria in Generation of Phenotypic Heterogeneity in Yeast. J Indian Inst Sci 2020. [DOI: 10.1007/s41745-020-00176-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
Differentiation of Vegetative Cells into Spores: a Kinetic Model Applied to Bacillus subtilis. Appl Environ Microbiol 2019; 85:AEM.00322-19. [PMID: 30902849 DOI: 10.1128/aem.00322-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/10/2019] [Indexed: 01/28/2023] Open
Abstract
Spore-forming bacteria are natural contaminants of food raw materials, and sporulation can occur in many environments from farm to fork. In order to characterize and to predict spore formation over time, we developed a model that describes both the kinetics of growth and the differentiation of vegetative cells into spores. The model is based on a classical growth model and enables description of the kinetics of sporulation with the addition of three parameters specific to sporulation. Two parameters are related to the probability of each vegetative cell to commit to sporulation and to form a spore, and the last one is related to the time needed to form a spore once the cell is committed to sporulation. The goodness of fit of this growth-sporulation model was assessed using growth-sporulation kinetics at various temperatures in laboratory medium or in whey for Bacillus subtilis, Bacillus cereus, and Bacillus licheniformis The model accurately describes the kinetics in these different conditions, with a mean error lower than 0.78 log10 CFU/ml for the growth and 1.08 log10 CFU/ml for the sporulation. The biological meaning of the parameters was validated with a derivative strain of Bacillus subtilis 168 which produces green fluorescent protein at the initiation of sporulation. This model provides physiological information on the spore formation and on the temporal abilities of vegetative cells to differentiate into spores and reveals the heterogeneity of spore formation during and after growth.IMPORTANCE The growth-sporulation model describes the progressive transition from vegetative cells to spores with sporulation parameters describing the sporulation potential of each vegetative cell. Consequently, the model constitutes an interesting tool to assess the sporulation potential of a bacterial population over time with accurate parameters such as the time needed to obtain one resistant spore and the probability of sporulation. Further, this model can be used to assess these data under various environmental conditions in order to better identify the conditions favorable for sporulation regarding the time to obtain the first spore and/or the concentrations of spores which could be reached during a food process.
Collapse
|
5
|
Phenotypic heterogeneity: a bacterial virulence strategy. Microbes Infect 2018; 20:570-577. [DOI: 10.1016/j.micinf.2018.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 11/21/2022]
|
6
|
Abstract
The endospore-forming bacteria have persisted on earth perhaps 3Ga, leveraging the flexibility of their distinctive lifestyle to adapt to a remarkably wide range of environments. This process of adaptation can be investigated through the simple but powerful technique of laboratory evolution. Evolved strains can be analyzed by whole genome sequencing and an array of omics technologies. The intensively studied, genetically tractable endospore-former, Bacillus subtilis, is an ideal subject for laboratory evolution experiments. Here, we describe the use of the B. subtilis model system to study the adaptation of these bacteria to reduced and stringent selection for endospore formation, as well as to novel environmental challenges of low atmospheric pressure, high ultraviolet radiation, and unfavourable growth temperatures. In combination with other approaches, including comparative genomics and environmental field work, laboratory evolution may help elucidate how these bacteria have so successfully adapted to life on earth, and perhaps beyond.
Collapse
Affiliation(s)
- Daniel R Zeigler
- Bacillus Genetic Stock Center, The Ohio State University, Columbus, OH, USA
| | - Wayne L Nicholson
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| |
Collapse
|
7
|
Perrin N. Random sex determination: When developmental noise tips the sex balance. Bioessays 2016; 38:1218-1226. [DOI: 10.1002/bies.201600093] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nicolas Perrin
- Department of Ecology & Evolution; University of Lausanne; Lausanne Switzerland
| |
Collapse
|
8
|
Huang L, Yuan Z, Liu P, Zhou T. Effects of promoter leakage on dynamics of gene expression. BMC SYSTEMS BIOLOGY 2015; 9:16. [PMID: 25888718 PMCID: PMC4384279 DOI: 10.1186/s12918-015-0157-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/26/2015] [Indexed: 12/22/2022]
Abstract
Background Quantitative analysis of simple molecular networks is an important step forward understanding fundamental intracellular processes. As network motifs occurring recurrently in complex biological networks, gene auto-regulatory circuits have been extensively studied but gene expression dynamics remain to be fully understood, e.g., how promoter leakage affects expression noise is unclear. Results In this work, we analyze a gene model with auto regulation, where the promoter is assumed to have one active state with highly efficient transcription and one inactive state with very lowly efficient transcription (termed as promoter leakage). We first derive the analytical distribution of gene product, and then analyze effects of promoter leakage on expression dynamics including bursting kinetics. Interestingly, we find that promoter leakage always reduces expression noise and that increasing the leakage rate tends to simplify phenotypes. In addition, higher leakage results in fewer bursts. Conclusions Our results reveal the essential role of promoter leakage in controlling expression dynamics and further phenotype. Specifically, promoter leakage is a universal mechanism of reducing expression noise, controlling phenotypes in different environments and making the gene produce generate fewer bursts. Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0157-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lifang Huang
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou, 510275, PR China. .,Institute of Computational Mathematics, Department of Mathematics, Hunan University of Science and Engineering, Youzhou, 425100, PR China.
| | - Zhanjiang Yuan
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou, 510275, PR China.
| | - Peijiang Liu
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou, 510275, PR China.
| | - Tianshou Zhou
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
9
|
Abstract
ABSTRACT
The family
Bacillaceae
constitutes a phenotypically diverse and globally ubiquitous assemblage of bacteria. Investigation into how evolution has shaped, and continues to shape, this family has relied on several widely ranging approaches from classical taxonomy, ecological field studies, and evolution in soil microcosms to genomic-scale phylogenetics, laboratory, and directed evolution experiments. One unifying characteristic of the
Bacillaceae
, the endospore, poses unique challenges to answering questions regarding both the calculation of evolutionary rates and claims of extreme longevity in ancient environmental samples.
Collapse
|
10
|
Sella SRBR, Vandenberghe LPS, Soccol CR. Bacillus atrophaeus:main characteristics and biotechnological applications – a review. Crit Rev Biotechnol 2014; 35:533-45. [DOI: 10.3109/07388551.2014.922915] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Repeated triggering of sporulation in Bacillus subtilis selects against a protein that affects the timing of cell division. ISME JOURNAL 2013; 8:77-87. [PMID: 23924781 DOI: 10.1038/ismej.2013.128] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 06/10/2013] [Accepted: 07/03/2013] [Indexed: 11/08/2022]
Abstract
Bacillus subtilis sporulation is a last-resort phenotypical adaptation in response to starvation. The regulatory network underlying this developmental pathway has been studied extensively. However, how sporulation initiation is concerted in relation to the environmental nutrient availability is poorly understood. In a fed-batch fermentation set-up, in which sporulation of ultraviolet (UV)-mutagenized B. subtilis is repeatedly triggered by periods of starvation, fitter strains with mutated tagE evolved. These mutants display altered timing of phenotypical differentiation. The substrate for the wall teichoic acid (WTA)-modifying enzyme TagE, UDP-glucose, has recently been shown to be an intracellular proxy for nutrient availability, and influences the timing of cell division. Here we suggest that UDP-glucose also influences timing of cellular differentiation.
Collapse
|
12
|
Stiegelmeyer SM, Giddings MC. Agent-based modeling of competence phenotype switching in Bacillus subtilis. Theor Biol Med Model 2013; 10:23. [PMID: 23551850 PMCID: PMC3648451 DOI: 10.1186/1742-4682-10-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 03/21/2013] [Indexed: 11/17/2022] Open
Abstract
Background It is a fascinating phenomenon that in genetically identical bacteria populations of Bacillus subtilis, a distinct DNA uptake phenotype called the competence phenotype may emerge in 10–20% of the population. Many aspects of the phenomenon are believed to be due to the variable expression of critical genes: a stochastic occurrence termed “noise” which has made the phenomenon difficult to examine directly by lab experimentation. Methods To capture and model noise in this system and further understand the emergence of competence both at the intracellular and culture levels in B. subtilis, we developed a novel multi-scale, agent-based model. At the intracellular level, our model recreates the regulatory network involved in the competence phenotype. At the culture level, we simulated growth conditions, with our multi-scale model providing feedback between the two levels. Results Our model predicted three potential sources of genetic “noise”. First, the random spatial arrangement of molecules may influence the manifestation of the competence phenotype. In addition, the evidence suggests that there may be a type of epigenetic heritability to the emergence of competence, influenced by the molecular concentrations of key competence molecules inherited through cell division. Finally, the emergence of competence during the stationary phase may in part be due to the dilution effect of cell division upon protein concentrations. Conclusions The competence phenotype was easily translated into an agent-based model – one with the ability to illuminate complex cell behavior. Models such as the one described in this paper can simulate cell behavior that is otherwise unobservable in vivo, highlighting their potential usefulness as research tools.
Collapse
Affiliation(s)
- Suzy M Stiegelmeyer
- Syngenta Biotechnology, Inc., 3054 Cornwallis Rd., Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
13
|
Zhelev DV, Hunt M, Le A, Dupuis C, Ren S, Gibbons HS. Effect of the Bacillus atrophaeus subsp. globigii Spo0F H101R mutation on strain fitness. Appl Environ Microbiol 2012; 78:8601-10. [PMID: 23042165 PMCID: PMC3502920 DOI: 10.1128/aem.01922-12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 09/24/2012] [Indexed: 11/20/2022] Open
Abstract
Sporulation is a critical developmental process in Bacillus spp. that, once initiated, removes the possibility of further growth until germination. Therefore, the threshold conditions triggering sporulation are likely to be subject to evolutionary constraint. Our previous studies revealed two spontaneous hypersporulating mutants of Bacillus atrophaeus subsp. globigii, both containing point mutations in the spo0F gene. One of these strains (Detrick-2; contains the spo0F101 allele with a C:T [His101Arg] substitution) had been deliberately selected in the early 1940s as an anthrax surrogate. To determine whether the experimental conditions used during the selection of the "military" strains could have supported the emergence of hypersporulating variants, the relative fitness of strain Detrick-2 was measured in several experimental settings modeled on experimental conditions employed during its development in the 1940s as a simulant. The congenic strain Detrick-1 contained a wild-type spo0F gene and sporulated like the wild-type strain. The relative fitness of Detrick-1 and Detrick-2 was evaluated in competition experiments using quantitative single nucleotide polymorphism (SNP)-specific real-time PCR assays directed at the C:T substitution. The ancestral strain Detrick-1 had a fitness advantage under all conditions tested except when competing cultures were subjected to frequent heat shocks. The hypersporulating strain gained the maximum fitness advantage when cultures were grown at low oxygen tension and when heat shock was applied soon after the formation of the first heat-resistant spores. This is interpreted as gain of fitness by the hypersporulating strain in fast-changing fluctuating environments as a result of the increased rate of switching to the sporulating phenotype.
Collapse
Affiliation(s)
- Doncho V. Zhelev
- Sensors and Electron Devices Directorate, Army Research Laboratory, Adelphi, Maryland, USA
| | - Mia Hunt
- Sensors and Electron Devices Directorate, Army Research Laboratory, Adelphi, Maryland, USA
| | - Anna Le
- Sensors and Electron Devices Directorate, Army Research Laboratory, Adelphi, Maryland, USA
| | - Christopher Dupuis
- Sensors and Electron Devices Directorate, Army Research Laboratory, Adelphi, Maryland, USA
| | - Suelynn Ren
- Sensors and Electron Devices Directorate, Army Research Laboratory, Adelphi, Maryland, USA
| | - Henry S. Gibbons
- Edgewood Chemical Biological Center, Aberdeen Proving Ground, Maryland, USA
| |
Collapse
|
14
|
Schmidt M, Creutziger M, Lenz P. Influence of molecular noise on the growth of single cells and bacterial populations. PLoS One 2012; 7:e29932. [PMID: 22238678 PMCID: PMC3253122 DOI: 10.1371/journal.pone.0029932] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 12/07/2011] [Indexed: 12/02/2022] Open
Abstract
During the last decades experimental studies have revealed that single cells of a growing bacterial population are significantly exposed to molecular noise. Important sources for noise are low levels of metabolites and enzymes that cause significant statistical variations in the outcome of biochemical reactions. In this way molecular noise affects biological processes such as nutrient uptake, chemotactic tumbling behavior, or gene expression of genetically identical cells. These processes give rise to significant cell-to-cell variations of many directly observable quantities such as protein levels, cell sizes or individual doubling times. In this study we theoretically explore if there are evolutionary benefits of noise for a growing population of bacteria. We analyze different situations where noise is either suppressed or where it affects single cell behavior. We consider two specific examples that have been experimentally observed in wild-type Escherichia coli cells: (i) the precision of division site placement (at which molecular noise is highly suppressed) and (ii) the occurrence of noise-induced phenotypic variations in fluctuating environments. Surprisingly, our analysis reveals that in these specific situations both regulatory schemes [i.e. suppression of noise in example (i) and allowance of noise in example (ii)] do not lead to an increased growth rate of the population. Assuming that the observed regulatory schemes are indeed caused by the presence of noise our findings indicate that the evolutionary benefits of noise are more subtle than a simple growth advantage for a bacterial population in nutrient rich conditions.
Collapse
Affiliation(s)
- Mischa Schmidt
- Fachbereich Physik, Philipps-Universität Marburg, Marburg, Germany
| | | | - Peter Lenz
- Fachbereich Physik, Philipps-Universität Marburg, Marburg, Germany
- Zentrum für Synthetische Mikrobiologie, Philipps-Universität Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
15
|
Hallinan JS, Misirli G, Wipat A. Evolutionary computation for the design of a stochastic switch for synthetic genetic circuits. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2011; 2010:768-74. [PMID: 21095906 DOI: 10.1109/iembs.2010.5626353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Biological systems are inherently stochastic, a fact which is often ignored when simulating genetic circuits. Synthetic biology aims to design genetic circuits de novo, and cannot therefore afford to ignore the effects of stochastic behavior. Since computational design tools will be essential for large-scale synthetic biology, it is important to develop an understanding of the role of stochasticity in molecular biology, and incorporate this understanding into computational tools for genetic circuit design. We report upon an investigation into the combination of evolutionary algorithms and stochastic simulation for genetic circuit design, to design regulatory systems based on the Bacillus subtilis sin operon.
Collapse
Affiliation(s)
- Jennifer S Hallinan
- School of Computing Science, Newcastle University, Newcastle upon Tyne UK NE1 7RU.
| | | | | |
Collapse
|
16
|
Gibbons HS, Broomall SM, McNew LA, Daligault H, Chapman C, Bruce D, Karavis M, Krepps M, McGregor PA, Hong C, Park KH, Akmal A, Feldman A, Lin JS, Chang WE, Higgs BW, Demirev P, Lindquist J, Liem A, Fochler E, Read TD, Tapia R, Johnson S, Bishop-Lilly KA, Detter C, Han C, Sozhamannan S, Rosenzweig CN, Skowronski EW. Genomic signatures of strain selection and enhancement in Bacillus atrophaeus var. globigii, a historical biowarfare simulant. PLoS One 2011; 6:e17836. [PMID: 21464989 PMCID: PMC3064580 DOI: 10.1371/journal.pone.0017836] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 02/15/2011] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Despite the decades-long use of Bacillus atrophaeus var. globigii (BG) as a simulant for biological warfare (BW) agents, knowledge of its genome composition is limited. Furthermore, the ability to differentiate signatures of deliberate adaptation and selection from natural variation is lacking for most bacterial agents. We characterized a lineage of BGwith a long history of use as a simulant for BW operations, focusing on classical bacteriological markers, metabolic profiling and whole-genome shotgun sequencing (WGS). RESULTS Archival strains and two "present day" type strains were compared to simulant strains on different laboratory media. Several of the samples produced multiple colony morphotypes that differed from that of an archival isolate. To trace the microevolutionary history of these isolates, we obtained WGS data for several archival and present-day strains and morphotypes. Bacillus-wide phylogenetic analysis identified B. subtilis as the nearest neighbor to B. atrophaeus. The genome of B. atrophaeus is, on average, 86% identical to B. subtilis on the nucleotide level. WGS of variants revealed that several strains were mixed but highly related populations and uncovered a progressive accumulation of mutations among the "military" isolates. Metabolic profiling and microscopic examination of bacterial cultures revealed enhanced growth of "military" isolates on lactate-containing media, and showed that the "military" strains exhibited a hypersporulating phenotype. CONCLUSIONS Our analysis revealed the genomic and phenotypic signatures of strain adaptation and deliberate selection for traits that were desirable in a simulant organism. Together, these results demonstrate the power of whole-genome and modern systems-level approaches to characterize microbial lineages to develop and validate forensic markers for strain discrimination and reveal signatures of deliberate adaptation.
Collapse
Affiliation(s)
- Henry S Gibbons
- BioSciences Division, Edgewood Chemical Biological Center, Aberdeen Proving Ground, Maryland, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Pfeuty B, Kaneko K. The combination of positive and negative feedback loops confers exquisite flexibility to biochemical switches. Phys Biol 2009; 6:046013. [PMID: 19910671 DOI: 10.1088/1478-3975/6/4/046013] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A wide range of cellular processes require molecular regulatory pathways to convert a graded signal into a discrete response. One prevalent switching mechanism relies on the coexistence of two stable states (bistability) caused by positive feedback regulations. Intriguingly, positive feedback is often supplemented with negative feedback, raising the question of whether and how these two types of feedback can cooperate to control discrete cellular responses. To address this issue, we formulate a canonical model of a protein-protein interaction network and analyze the dynamics of a prototypical two-component circuit. The appropriate combination of negative and positive feedback loops can bring a bistable circuit close to the oscillatory regime. Notably, sharply activated negative feedback can give rise to a bistable regime wherein two stable fixed points coexist and may collide pairwise with two saddle points. This specific type of bistability is found to allow for separate and flexible control of switch-on and switch-off events, for example (i) to combine fast and reversible transitions, (ii) to enable transient switching responses and (iii) to display tunable noise-induced transition rates. Finally, we discuss the relevance of such bistable switching behavior, and the circuit topologies considered, to specific biological processes such as adaptive metabolic responses, stochastic fate decisions and cell-cycle transitions. Taken together, our results suggest an efficient mechanism by which positive and negative feedback loops cooperate to drive the flexible and multifaceted switching behaviors arising in biological systems.
Collapse
Affiliation(s)
- Benjamin Pfeuty
- Department of Pure and Applied Sciences, University of Tokyo, Tokyo 153-8902, Japan. pfeuty
| | | |
Collapse
|
18
|
Abstract
While traditionally microbiologists have examined bacterial behavior averaged over large populations, increasingly we are becoming aware that bacterial populations can be composed of phenotypically diverse individuals generated by a variety of mechanisms. Though the results of different mechanisms, the phenomena of bistability, persistence, variation in chemotactic response, and phase and antigenic variation are all strategies to develop population-level diversity. The understanding of individuality in bacteria requires an appreciation of their environmental and ecological context, and thus evolutionary theory regarding adaptations to time-variable environments is becoming more applicable to these problems. In particular, the application of game and information theory to bacterial individuality has addressed some interesting problems of bacterial behavior. In this review we discuss the mechanisms of generating population-level variability, and the application of evolutionary theory to problems of individuality in bacteria.
Collapse
Affiliation(s)
- Carla J Davidson
- Microbiology and Molecular Genetics, Michigan State University, Lansing, Michigan 48223, USA
| | | |
Collapse
|
19
|
Hermelink A, Brauer A, Lasch P, Naumann D. Phenotypic heterogeneity within microbial populations at the single-cell level investigated by confocal Raman microspectroscopy. Analyst 2009; 134:1149-53. [DOI: 10.1039/b822574e] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Transcriptome divergence and the loss of plasticity in Bacillus subtilis after 6,000 generations of evolution under relaxed selection for sporulation. J Bacteriol 2008; 191:428-33. [PMID: 18952793 DOI: 10.1128/jb.01234-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We used microarrays to identify the causes of sporulation deficiencies in Bacillus subtilis after 6,000 generations of evolution. We found that sporulation loss did not result from large-scale deletions; therefore, it must have resulted from smaller indels and/or substitutions. Transcription patterns of one strain versus its ancestor showed that sporulation was not initiated and suggested that sporulation loss may be part of an overall decline in plasticity.
Collapse
|
21
|
Tabor JJ, Bayer TS, Simpson ZB, Levy M, Ellington AD. Engineering stochasticity in gene expression. MOLECULAR BIOSYSTEMS 2008; 4:754-61. [PMID: 18563250 DOI: 10.1039/b801245h] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stochastic fluctuations (noise) in gene expression can cause members of otherwise genetically identical populations to display drastically different phenotypes. An understanding of the sources of noise and the strategies cells employ to function reliably despite noise is proving to be increasingly important in describing the behavior of natural organisms and will be essential for the engineering of synthetic biological systems. Here we describe the design of synthetic constructs, termed ribosome competing RNAs (rcRNAs), as a means to rationally perturb noise in cellular gene expression. We find that noise in gene expression increases in a manner proportional to the ability of an rcRNA to compete for the cellular ribosome pool. We then demonstrate that operons significantly buffer noise between coexpressed genes in a natural cellular background and can even reduce the level of rcRNA enhanced noise. These results demonstrate that synthetic genetic constructs can significantly affect the noise profile of a living cell and, importantly, that operons are a facile genetic strategy for buffering against noise.
Collapse
Affiliation(s)
- Jeffrey J Tabor
- Center for Systems and Synthetic Biology and Institute for Cell and Molecular Biology, University of Texas, Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|
22
|
Abstract
Upon nutritional limitation, the bacterium Bacillus subtilis has the capability to enter the irreversible process of sporulation. This developmental process is bistable, and only a subpopulation of cells actually differentiates into endospores. Why a cell decides to sporulate or not to do so is poorly understood. Here, through the use of time-lapse microscopy, we follow the growth, division, and differentiation of individual cells to identify elements of cell history and ancestry that could affect this decision process. These analyses show that during microcolony development, B. subtilis uses a bet-hedging strategy whereby some cells sporulate while others use alternative metabolites to continue growth, providing the latter subpopulation with a reproductive advantage. We demonstrate that B. subtilis is subject to aging. Nevertheless, the age of the cell plays no role in the decision of its fate. However, the physiological state of the cell's ancestor (more than two generations removed) does affect the outcome of cellular differentiation. We show that this epigenetic inheritance is based on positive feedback within the sporulation phosphorelay. The extended intergenerational "memory" caused by this autostimulatory network may be important for the development of multicellular structures such as fruiting bodies and biofilms.
Collapse
|
23
|
Maughan H, Masel J, Birky CW, Nicholson WL. The roles of mutation accumulation and selection in loss of sporulation in experimental populations of Bacillus subtilis. Genetics 2007; 177:937-48. [PMID: 17720926 PMCID: PMC2034656 DOI: 10.1534/genetics.107.075663] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phenotypic loss is an important evolutionary force in nature but the mechanism(s) responsible for loss remains unclear. We used both simulation and multiple-regression approaches to analyze data on the loss of sporulation, a complex bacterial developmental process, during experimental evolution of Bacillus subtilis. Neutral processes of mutational degradation alone were sufficient to explain loss-of-sporulation ability in four of five populations, while evidence that selection facilitated mutational loss was found for only one population. These results are discussed in the context of the evolution of sporulation in particular and phenotypic loss in general.
Collapse
Affiliation(s)
- Heather Maughan
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA.
| | | | | | | |
Collapse
|
24
|
Morohashi M, Ohashi Y, Tani S, Ishii K, Itaya M, Nanamiya H, Kawamura F, Tomita M, Soga T. Model-based definition of population heterogeneity and its effects on metabolism in sporulating Bacillus subtilis. J Biochem 2007; 142:183-91. [PMID: 17545249 DOI: 10.1093/jb/mvm121] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The soil bacterium Bacillus subtilis forms dormant, robust spores as a tactic to ensure survival under conditions of starvation. However, the sporulating culture includes sporulating and non-sporulating cells, because a portion of the cell population initiates sporulation in wild-type strain. We anticipated that the population effect must be considered carefully to analyse samples yielding population heterogeneity. We first built a mathematical model and simulated for signal transduction of the sporulation cue to see what mechanisms are responsible for generating the heterogeneity. The simulated results were confirmed experimentally, where heterogeneity is primarily modulated by negative feedback circuits, resulting in generation of a bistable response within the sporulating culture. We also confirmed that mutants relevant to negative feedback yield either sporulating or non-sporulating subpopulations. To see the effect of molecular mechanism between sporulating and non-sporulating cells in distinct manner, metabolome analysis was conducted using the above mutants. The metabolic profiles exhibited distinct characteristics with time regardless of whether sporulation was initiated or not. In addition, several distinct characteristics of metabolites were observed between strains, which was inconsistent with previously reported data. The results imply that careful consideration must be made in the interpretation of data obtained from cells yielding population heterogeneity.
Collapse
Affiliation(s)
- Mineo Morohashi
- Human Metabolome Technologies, Inc., Tsuruoka, Yamagata 997-0052, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Veening JW, Smits WK, Hamoen LW, Kuipers OP. Single cell analysis of gene expression patterns of competence development and initiation of sporulation in Bacillus subtilis grown on chemically defined media. J Appl Microbiol 2007; 101:531-41. [PMID: 16907804 DOI: 10.1111/j.1365-2672.2006.02911.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM Understanding the basis for the heterogeneous (or bistable) expression patterns of competence development and sporulation in Bacillus subtilis. METHODS AND RESULTS Using flow cytometric analyses of various promoter-GFP fusions, we have determined the single-cell gene expression patterns of competence development and initiation of sporulation in a chemically defined medium (CDM) and in biofilms. CONCLUSIONS We show that competence development and initiation of sporulation in a CDM are still initiated in a bistable manner, as is the case in complex media, but are sequential in their timing. Furthermore, we provide experimental proof that competence and sporulation can develop under conditions that normally do not trigger these processes. SIGNIFICANCE AND IMPACT OF THE STUDY Some pathogens are able to develop natural competence, which is a serious medical problem with the increased acquired multi-drug resistance of these organisms. Another adaptive microbial response is spore formation. Because of their heat resistance and hydrophobicity, spores of a variety of species are of major concern for the food industry. Using the model organism B. subtilis, we show that competence development and sporulation are initiated in a bistable and sequential manner. We furthermore show that both processes may be noise-based, which has major implications for the control of unwanted differentiation processes in pathogenic and food-spoilage micro-organisms.
Collapse
Affiliation(s)
- J-W Veening
- Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
| | | | | | | |
Collapse
|
26
|
Tan C, Song H, Niemi J, You L. A synthetic biology challenge: making cells compute. MOLECULAR BIOSYSTEMS 2007; 3:343-53. [PMID: 17460793 DOI: 10.1039/b618473c] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Advances in biology and engineering have enabled the reprogramming of cells with well-defined functions, leading to the emergence of synthetic biology. Early successes in this nascent field suggest its potential to impact diverse areas. Here, we examine the feasibility of engineering circuits for cell-based computation. We illustrate the basic concepts by describing the mapping of several computational problems to engineered gene circuits. Revolving around these examples and past studies, we discuss technologies and computational methods available to design, test, and optimize gene circuits. We conclude with discussion of challenges involved in a typical design cycle, as well as those specific to cellular computation.
Collapse
Affiliation(s)
- Cheemeng Tan
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | | | | | |
Collapse
|
27
|
Masel J, Maughan H. Mutations leading to loss of sporulation ability in Bacillus subtilis are sufficiently frequent to favor genetic canalization. Genetics 2007; 175:453-7. [PMID: 17110488 PMCID: PMC1775008 DOI: 10.1534/genetics.106.065201] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Accepted: 10/16/2006] [Indexed: 11/18/2022] Open
Abstract
We measured the rate of mutations impairing sporulation ability in Bacillus subtilis as 0.003 in a mutator population, following 6000 generations of strong selection for sporulation that have previously been described. This means that the product of the population size and the functional mutation rate is approximately 10(5), well within the parameter range for which genetic canalization of sporulation ability is expected.
Collapse
Affiliation(s)
- Joanna Masel
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA.
| | | |
Collapse
|
28
|
Abstract
Single cells in genetically homogeneous microbial cultures exhibit marked phenotypic individuality, a biological phenomenon that is considered to bolster the fitness of populations. Major phenotypes that are characterized by heterogeneity span the breadth of microbiology, in fields ranging from pathogenicity to ecology. The cell cycle, cell ageing and epigenetic regulation are proven drivers of heterogeneity in several of the best-known phenotypic examples. However, the full contribution of factors such as stochastic gene expression is yet to be realized.
Collapse
Affiliation(s)
- Simon V Avery
- School of Biology, Institute of Genetics, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| |
Collapse
|
29
|
Smits WK, Kuipers OP, Veening JW. Phenotypic variation in bacteria: the role of feedback regulation. Nat Rev Microbiol 2006; 4:259-71. [PMID: 16541134 DOI: 10.1038/nrmicro1381] [Citation(s) in RCA: 366] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To survive in rapidly changing environmental conditions, bacteria have evolved a diverse set of regulatory pathways that govern various adaptive responses. Recent research has reinforced the notion that bacteria use feedback-based circuitry to generate population heterogeneity in natural situations. Using artificial gene networks, it has been shown that a relatively simple 'wiring' of a bacterial genetic system can generate two or more stable subpopulations within an overall genetically homogeneous population. This review discusses the ubiquity of these processes throughout nature, as well as the presumed molecular mechanisms responsible for the heterogeneity observed in a selection of bacterial species.
Collapse
Affiliation(s)
- Wiep Klaas Smits
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | |
Collapse
|
30
|
Veening JW, Hamoen LW, Kuipers OP. Phosphatases modulate the bistable sporulation gene expression pattern in Bacillus subtilis. Mol Microbiol 2005; 56:1481-94. [PMID: 15916600 DOI: 10.1111/j.1365-2958.2005.04659.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Summary Spore formation in the Gram-positive bacterium Bacillus subtilis is a last resort adaptive response to starvation. To initiate sporulation, the key regulator in this process, Spo0A, needs to be activated by the so-called phosphorelay. Within a sporulating culture of B. subtilis, some cells initiate this developmental program, while other cells do not. Therefore, initiation of sporulation appears to be a regulatory process with a bistable outcome. Using a single cell analytical approach, we show that the autostimulatory loop of spo0A is responsible for generating a bistable response resulting in phenotypic variation within the sporulating culture. It is demonstrated that the main function of RapA, a phosphorelay phosphatase, is to maintain the bistable sporulation gene expression. As rapA expression is quorum regulated, it follows that quorum sensing influences sporulation bistability. Deletion of spo0E, a phosphatase directly acting on Spo0A approximately P, resulted in abolishment of the bistable expression pattern. Artificial induction of a heterologous Rap phosphatase restored heterogeneity in a rapA or spo0E mutant. These results demonstrate that with external phosphatases, B. subtilis can use the phosphorelay as a tuner to modulate the bistable outcome of the sporulating culture. This shows that B. subtilis employs multiple pathways to maintain the bistable nature of a sporulating culture, stressing the physiological importance of this phenomenon.
Collapse
Affiliation(s)
- Jan-Willem Veening
- Department of Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, the Netherlands
| | | | | |
Collapse
|
31
|
Kaern M, Elston TC, Blake WJ, Collins JJ. Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet 2005; 6:451-64. [PMID: 15883588 DOI: 10.1038/nrg1615] [Citation(s) in RCA: 1536] [Impact Index Per Article: 76.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Genetically identical cells exposed to the same environmental conditions can show significant variation in molecular content and marked differences in phenotypic characteristics. This variability is linked to stochasticity in gene expression, which is generally viewed as having detrimental effects on cellular function with potential implications for disease. However, stochasticity in gene expression can also be advantageous. It can provide the flexibility needed by cells to adapt to fluctuating environments or respond to sudden stresses, and a mechanism by which population heterogeneity can be established during cellular differentiation and development.
Collapse
Affiliation(s)
- Mads Kaern
- Department of Cellular and Molecular Medicine and Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H8M5, Canada.
| | | | | | | |
Collapse
|
32
|
Abstract
The strategy of combining genes from a regulatory protein and its antagonist within the same operon, but controlling their activities differentially, can lead to diverse regulatory functions. This protein-antagonist motif is ubiquitous and present in evolutionarily unrelated regulatory pathways. Using the sin operon from the Bacillus subtilis sporulation pathway as a model system, we built a theoretical model, parameterized it using data from the literature, and used bifurcation analyses to determine the circuit functions it could encode. The model demonstrated that this motif can generate a bistable switch with tunable control over the switching threshold and the degree of population heterogeneity. Further, the model predicted that a small perturbation of a single critical parameter can bias this architecture into functioning like a graded response, a bistable switch, an oscillator, or a pulse generator. By mapping the parameters of the model to specific DNA regions and comparing the genomic sequences of Bacillus species, we showed that phylogenetic variation tends to occur in those regions that tune the switch threshold without disturbing the circuit function. The dynamical plasticity of the protein-antagonist operon motif suggests that it is an evolutionarily convergent design selected not only for particular immediate function but also for its evolvability.
Collapse
|