1
|
Libisch B. N-Alkane Assimilation by Pseudomonas aeruginosa and Its Interactions with Virulence and Antibiotic Resistance. Antibiotics (Basel) 2024; 13:1028. [PMID: 39596723 PMCID: PMC11591199 DOI: 10.3390/antibiotics13111028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Pseudomonas aeruginosa strains with potential for degrading n-alkanes are frequently cultured from hydrocarbon-contaminated sites. The initial hydroxylation step of long-chain n-alkanes is mediated by the chromosomally encoded AlkB1 and AlkB2 alkane hydroxylases. The acquisition of an additional P. putida GPo1-like alkane hydroxylase gene cluster can extend the substrate range assimilated by P. aeruginosa to
Collapse
Affiliation(s)
- Balázs Libisch
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary
| |
Collapse
|
2
|
Skinner J, Delgado AG, Hyman M, Chu MYJ. Implementation of in situ aerobic cometabolism for groundwater treatment: State of the knowledge and important factors for field operation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171667. [PMID: 38485017 DOI: 10.1016/j.scitotenv.2024.171667] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/04/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
In situ aerobic cometabolism of groundwater contaminants has been demonstrated to be a valuable bioremediation technology to treat many legacy and emerging contaminants in dilute plumes. Several well-designed and documented field studies have shown that this technology can concurrently treat multiple contaminants and reach very low cleanup goals. Fundamentally different from metabolism-based biodegradation of contaminants, microorganisms that cometabolically degrade contaminants do not obtain sufficient carbon and energy from the degradation process to support their growth and require an exogenous growth supporting primary substrate. Successful applications of aerobic cometabolic treatment therefore require special considerations beyond conventional in situ bioremediation, such as competitive inhibition between growth-supporting primary substrate(s) and contaminant non-growth substrates, toxic effects resulting from contaminant degradation, and differences in microbial population dynamics exhibited by biostimulated indigenous consortia versus bioaugmentation cultures. This article first provides a general review of microbiological factors that are likely to affect the rate of aerobic cometabolic biodegradation. We subsequently review fourteen well documented field-scale aerobic cometabolic bioremediation studies and summarize the underlying microbiological factors that may affect the performance observed in these field studies. The combination of microbiological and engineering principles gained from field testing leads to insights and recommendations on planning, design, and operation of an in situ aerobic cometabolic treatment system. With a vision of more aerobic cometabolic treatments being considered to tackle large, dilute plumes, we present several novel topics and future research directions that can potentially enhance technology development and foster success in implementing this technology for environmental restoration.
Collapse
Affiliation(s)
- Justin Skinner
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, 660 S College Ave, Tempe, AZ 85281, USA; Engineering Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), Arizona State University, 650 E Tyler Mall, Tempe, AZ 85281, USA; Andrews Engineering, Inc., 3300 Ginger Creek Drive, Springfield, IL 62711, USA
| | - Anca G Delgado
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, USA; School of Sustainable Engineering and the Built Environment, Arizona State University, 660 S College Ave, Tempe, AZ 85281, USA; Engineering Research Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), Arizona State University, 650 E Tyler Mall, Tempe, AZ 85281, USA
| | - Michael Hyman
- Department of Plant and Microbial Biology, North Carolina State University, Thomas Hall 4545, 112 Derieux Place, Raleigh, NC 27607, USA
| | - Min-Ying Jacob Chu
- Haley & Aldrich Inc., 400 E Van Buren St, Ste 545, Phoenix, AZ 85004, USA.
| |
Collapse
|
3
|
Pignataro E, Pini F, Barbanente A, Arnesano F, Palazzo A, Marsano RM. Flying toward a plastic-free world: Can Drosophila serve as a model organism to develop new strategies of plastic waste management? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169942. [PMID: 38199375 DOI: 10.1016/j.scitotenv.2024.169942] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
The last century was dominated by the widespread use of plastics, both in terms of invention and increased usage. The environmental challenge we currently face is not just about reducing plastic usage but finding new ways to manage plastic waste. Recycling is growing but remains a small part of the solution. There is increasing focus on studying organisms and processes that can break down plastics, offering a modern approach to addressing the environmental crisis. Here, we provide an overview of the organisms associated with plastics biodegradation, and we explore the potential of harnessing and integrating their genetic and biochemical features into a single organism, such as Drosophila melanogaster. The remarkable genetic engineering and microbiota manipulation tools available for this organism suggest that multiple features could be amalgamated and modeled in the fruit fly. We outline feasible genetic engineering and gut microbiome engraftment strategies to develop a new class of plastic-degrading organisms and discuss of both the potential benefits and the limitations of developing such engineered Drosophila melanogaster strains.
Collapse
Affiliation(s)
- Eugenia Pignataro
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro" via Orabona 4, 70125 Bari, Italy.
| | - Francesco Pini
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro" via Orabona 4, 70125 Bari, Italy.
| | - Alessandra Barbanente
- Department of Chemistry, University of Bari "Aldo Moro", via Orabona 4, 70125 Bari, Italy.
| | - Fabio Arnesano
- Department of Chemistry, University of Bari "Aldo Moro", via Orabona 4, 70125 Bari, Italy.
| | - Antonio Palazzo
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro" via Orabona 4, 70125 Bari, Italy.
| | - René Massimiliano Marsano
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro" via Orabona 4, 70125 Bari, Italy.
| |
Collapse
|
4
|
Hsueh SW, Jian YH, Fugmann SD, Yang SY. Polystyrene-colonizing bacteria are enriched for long-chain alkane degradation pathways. PLoS One 2023; 18:e0292137. [PMID: 37788234 PMCID: PMC10547174 DOI: 10.1371/journal.pone.0292137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/13/2023] [Indexed: 10/05/2023] Open
Abstract
One of the most promising strategies for the management of plastic waste is microbial biodegradation, but efficient degraders for many types of plastics are still lacking, including those for polystyrene (PS). Genomics has emerged as a powerful tool for mining environmental microbes that may have the ability to degrade different types of plastics. In this study, we use 16S rRNA sequencing to analyze the microbiomes for multiple PS samples collected from sites with different vegetation in Taiwan to reveal potential common properties between species that exhibit growth advantages on PS surfaces. Phylum enrichment analysis identified Cyanobacteria and Deinococcus-Thermus as being the most over-represented groups on PS, and both phyla include species known to reside in extreme environments and could encode unique enzymes that grant them properties suitable for colonization on PS surfaces. Investigation of functional enrichment using reference genomes of PS-enriched species highlighted carbon metabolic pathways, especially those related to hydrocarbon degradation. This is corroborated by the finding that genes encoding long-chain alkane hydroxylases such as AlmA are more prevalent in the genomes of PS-associated bacteria. Our analyses illustrate how plastic in the environment support the colonization by different microbes compared to surrounding soil. In addition, our results point to the possibility that alkane hydroxylases could confer growth advantages of microbes on PS.
Collapse
Affiliation(s)
- Shu Wei Hsueh
- Department and Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - You-Hua Jian
- Department and Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Sebastian D. Fugmann
- Department and Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Department of Nephrology, Linkou Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
| | - Shu Yuan Yang
- Department and Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
| |
Collapse
|
5
|
Abbasi A, Bothun GD, Bose A. Attachment of Alcanivorax borkumensis to Hexadecane-In-Artificial Sea Water Emulsion Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5352-5357. [PMID: 29656641 DOI: 10.1021/acs.langmuir.8b00082] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Alcanivorax borkumensis (AB) is a marine bacterium that dominates bacterial communities around many oil spills because it enzymatically degrades the oil while using it as a nutrient source. Several dispersants have been used to produce oil-in-water emulsions following a spill. Compared to surface slicks, the additional oil-water surface area produced by emulsification provides greater access to the oil and accelerates its degradation. We deliberately cultured AB cells using hexadecane as the only nutrient source. We then examined the first critical step of the biodegradation process, the attachment of these AB cells to hexadecane-water interfaces, using fluorescence microscopy and cryogenic scanning electron microscopy. The hexadecane-in-artificial sea water (ASW) emulsions were produced by gentle shaking and were stabilized either by AB alone, by Corexit 9500, by Tween 20, or by carbon black particles. When no dispersants were used, AB stabilizes the emulsion, and bacterial cells attach to the hexadecane droplets within the first 3 days. When Corexit 9500 was used as the dispersant, AB did not attach to the hexadecane droplets over 3 days, and many AB cells in the aqueous phase appeared dead. Only limited attachment was observed after 7 days. No AB attachment was observed over 3 days when Tween 20 was used as the dispersant. However, the bacteria used Tween 20 in the ASW as a nutrient. Large amounts of AB attached to carbon black stabilized hexadecane droplets within 3 days. An analysis that accounts for van der Waals and electrostatic interactions is unable to predict all of these observations, indicating that the attachment of AB to the hexadecane is a complex phenomenon that goes beyond simple physiochemical effects. While these experiments do not mimic conditions in the open ocean where the large amount of water dilutes any emulsion stabilizer, they provide important insights on bacteria adhesion to oil, a critical step in the oil degradation process following a marine spill.
Collapse
Affiliation(s)
- Akram Abbasi
- Department of Chemical Engineering , University of Rhode Island , Kingston , Rhode Island 02881 , United States
| | - Geoffrey D Bothun
- Department of Chemical Engineering , University of Rhode Island , Kingston , Rhode Island 02881 , United States
| | - Arijit Bose
- Department of Chemical Engineering , University of Rhode Island , Kingston , Rhode Island 02881 , United States
| |
Collapse
|
6
|
Tribelli PM, Rossi L, Ricardi MM, Gomez-Lozano M, Molin S, Raiger Iustman LJ, Lopez NI. Microaerophilic alkane degradation in Pseudomonas extremaustralis: a transcriptomic and physiological approach. ACTA ACUST UNITED AC 2018; 45:15-23. [DOI: 10.1007/s10295-017-1987-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/01/2017] [Indexed: 01/25/2023]
Abstract
Abstract
Diesel fuel is one of the most important sources of hydrocarbon contamination worldwide. Its composition consists of a complex mixture of n-alkanes, branched alkanes and aromatic compounds. Hydrocarbon degradation in Pseudomonas species has been mostly studied under aerobic conditions; however, a dynamic spectrum of oxygen availability can be found in the environment. Pseudomonas extremaustralis, an Antarctic bacterium isolated from a pristine environment, is able to degrade diesel fuel and presents a wide microaerophilic metabolism. In this work RNA-deep sequence experiments were analyzed comparing the expression profile in aerobic and microaerophilic cultures. Interestingly, genes involved in alkane degradation, including alkB, were over-expressed in micro-aerobiosis in absence of hydrocarbon compounds. In minimal media supplemented with diesel fuel, n-alkanes degradation (C13–C19) after 7 days was observed under low oxygen conditions but not in aerobiosis. In-silico analysis of the alkB promoter zone showed a putative binding sequence for the anaerobic global regulator, Anr. Our results indicate that some diesel fuel components can be utilized as sole carbon source under microaerophilic conditions for cell maintenance or slow growth in a Pseudomonas species and this metabolism could represent an adaptive advantage in polluted environments.
Collapse
Affiliation(s)
- Paula M Tribelli
- 0000 0001 0056 1981 grid.7345.5 Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Intendente Guiraldes, 2160 C1428EGA Buenos Aires Argentina
- 0000 0001 1945 2152 grid.423606.5 IQUIBICEN, CONICET Buenos Aires Argentina
| | - Leticia Rossi
- 0000 0001 1945 2152 grid.423606.5 IQUIBICEN, CONICET Buenos Aires Argentina
| | - Martiniano M Ricardi
- 0000 0001 0056 1981 grid.7345.5 Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires C1428EGA Buenos Aires Argentina
| | - Maria Gomez-Lozano
- 0000 0001 2181 8870 grid.5170.3 Novo Nordisk Foundation Center for Biosustainability Technical University of Denmark Hørsholm Denmark
| | - Søren Molin
- 0000 0001 2181 8870 grid.5170.3 Novo Nordisk Foundation Center for Biosustainability Technical University of Denmark Hørsholm Denmark
| | - Laura J Raiger Iustman
- 0000 0001 0056 1981 grid.7345.5 Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Intendente Guiraldes, 2160 C1428EGA Buenos Aires Argentina
- 0000 0001 1945 2152 grid.423606.5 IQUIBICEN, CONICET Buenos Aires Argentina
| | - Nancy I Lopez
- 0000 0001 0056 1981 grid.7345.5 Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Intendente Guiraldes, 2160 C1428EGA Buenos Aires Argentina
- 0000 0001 1945 2152 grid.423606.5 IQUIBICEN, CONICET Buenos Aires Argentina
| |
Collapse
|
7
|
Fraraccio S, Strejcek M, Dolinova I, Macek T, Uhlik O. Secondary compound hypothesis revisited: Selected plant secondary metabolites promote bacterial degradation of cis-1,2-dichloroethylene (cDCE). Sci Rep 2017; 7:8406. [PMID: 28814712 PMCID: PMC5559444 DOI: 10.1038/s41598-017-07760-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/29/2017] [Indexed: 12/20/2022] Open
Abstract
Cis-1,2-dichloroethylene (cDCE), which is a common hazardous compound, often accumulates during incomplete reductive dechlorination of higher chlorinated ethenes (CEs) at contaminated sites. Simple monoaromatics, such as toluene and phenol, have been proven to induce biotransformation of cDCE in microbial communities incapable of cDCE degradation in the absence of other carbon sources. The goal of this microcosm-based laboratory study was to discover non-toxic natural monoaromatic secondary plant metabolites (SPMEs) that could enhance cDCE degradation in a similar manner to toluene and phenol. Eight SPMEs were selected on the basis of their monoaromatic molecular structure and widespread occurrence in nature. The suitability of the SPMEs chosen to support bacterial growth and to promote cDCE degradation was evaluated in aerobic microbial cultures enriched from cDCE-contaminated soil in the presence of each SPME tested and cDCE. Significant cDCE depletions were achieved in cultures enriched on acetophenone, phenethyl alcohol, p-hydroxybenzoic acid and trans-cinnamic acid. 16S rRNA gene sequence analysis of each microbial community revealed ubiquitous enrichment of bacteria affiliated with the genera Cupriavidus, Rhodococcus, Burkholderia, Acinetobacter and Pseudomonas. Our results provide further confirmation of the previously stated secondary compound hypothesis that plant metabolites released into the rhizosphere can trigger biodegradation of environmental pollutants, including cDCE.
Collapse
Affiliation(s)
- Serena Fraraccio
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic.
| | - Michal Strejcek
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Iva Dolinova
- Technical University of Liberec, Liberec, Czech Republic
| | - Tomas Macek
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic
| | - Ondrej Uhlik
- University of Chemistry and Technology, Prague, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Prague, Czech Republic.
| |
Collapse
|
8
|
Application of AlkBGT and AlkL from Pseudomonas putida GPo1 for Selective Alkyl Ester ω-Oxyfunctionalization in Escherichia coli. Appl Environ Microbiol 2016; 82:3801-3807. [PMID: 27084021 DOI: 10.1128/aem.00822-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 04/12/2016] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED The enzyme system AlkBGT from Pseudomonas putida GPo1 can efficiently ω-functionalize fatty acid methyl esters. Outer membrane protein AlkL boosts this ω-functionalization. In this report, it is shown that whole cells of Escherichia coli expressing the AlkBGT system can also ω-oxidize ethyl nonanoate (NAEE). Coexpression of AlkBGT and AlkL resulted in 1.7-fold-higher ω-oxidation activity on NAEE. With this strain, initial activity on NAEE was 70 U/g (dry weight) of cells (gcdw), 67% of the initial activity on methyl nonanoate. In time-lapse conversions with 5 mM NAEE the main product was 9-hydroxy NAEE (3.6 mM), but also 9-oxo NAEE (0.1 mM) and 9-carboxy NAEE (0.6 mM) were formed. AlkBGT also ω-oxidized ethyl, propyl, and butyl esters of fatty acids ranging from C6 to C10 Increasing the length of the alkyl chain improved the ω-oxidation activity of AlkBGT on esters of C6 and C7 fatty acids. From these esters, application of butyl hexanoate resulted in the highest ω-oxidation activity, 82 U/gcdw Coexpression of AlkL only had a positive effect on ω-functionalization of substrates with a total length of C11 or longer. These findings indicate that AlkBGT(L) can be applied as a biocatalyst for ω-functionalization of ethyl, propyl, and butyl esters of medium-chain fatty acids. IMPORTANCE Fatty acid esters are promising renewable starting materials for the production of ω-hydroxy fatty acid esters (ω-HFAEs). ω-HFAEs can be used to produce sustainable polymers. Chemical conversion of the fatty acid esters to ω-HFAEs is challenging, as it generates by-products and needs harsh reaction conditions. Biocatalytic production is a promising alternative. In this study, biocatalytic conversion of fatty acid esters toward ω-HFAEs was investigated using whole cells. This was achieved with recombinant Escherichia coli cells that produce the AlkBGT enzymes. These enzymes can produce ω-HFAEs from a wide variety of fatty acid esters. Medium-chain-length acids (C6 to C10) esterified with ethanol, propanol, or butanol were applied. This is a promising production platform for polymer building blocks that uses renewable substrates and mild reaction conditions.
Collapse
|
9
|
Call TP, Akhtar MK, Baganz F, Grant C. Modulating the import of medium-chain alkanes in E. coli through tuned expression of FadL. J Biol Eng 2016; 10:5. [PMID: 27053948 PMCID: PMC4822313 DOI: 10.1186/s13036-016-0026-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/29/2016] [Indexed: 01/13/2023] Open
Abstract
Background In recent years, there have been intensive efforts to develop synthetic microbial platforms for the production, biosensing and bio-remediation of fossil fuel constituents such as alkanes. Building predictable engineered systems for these applications will require the ability to tightly control and modulate the rate of import of alkanes into the host cell. The native components responsible for the import of alkanes within these systems have yet to be elucidated. To shed further insights on this, we used the AlkBGT alkane monooxygenase complex from Pseudomonas putida GPo1 as a reporter system for assessing alkane import in Escherichia coli. Two native E. coli transporters, FadL and OmpW, were evaluated for octane import given their proven functionality in the uptake of fatty acids along with their structural similarity to the P. putida GPo1 alkane importer, AlkL. Results Octane import was removed with deletion of fadL, but was restored by complementation with a fadL-encoding plasmid. Furthermore, tuned overexpression of FadL increased the rate of alkane import by up to 4.5- fold. A FadL deletion strain displayed a small but significant degree of tolerance toward hexane and octane relative to the wild type, while the responsiveness of the well-known alkane biosensor, AlkS, toward octane and decane was strongly reduced by 2.7- and 2.9-fold, respectively. Conclusions We unequivocally show for the first time that FadL serves as the major route for medium-chain alkane import in E. coli. The experimental approaches used within this study, which include an enzyme-based reporter system and a fluorescent alkane biosensor for quantification and real-time monitoring of alkane import, could be employed as part of an engineering toolkit for optimizing biological systems that depend on the uptake of alkanes. Thus, the findings will be particularly useful for biological applications such as bioremediation and biomanufacturing. Electronic supplementary material The online version of this article (doi:10.1186/s13036-016-0026-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Toby P Call
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, Torrington Place, London, WC1E 7JE UK ; Present address: Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA UK
| | - M Kalim Akhtar
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, Torrington Place, London, WC1E 7JE UK ; Present address: Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF UK
| | - Frank Baganz
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, Torrington Place, London, WC1E 7JE UK
| | - Chris Grant
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, Torrington Place, London, WC1E 7JE UK
| |
Collapse
|
10
|
Bravo AL, Sigala JC, Le Borgne S, Morales M. Expression of an alkane monooxygenase (alkB) gene and methyl tert-butyl ether co-metabolic oxidation in Pseudomonas citronellolis. Biotechnol Lett 2014; 37:807-14. [DOI: 10.1007/s10529-014-1737-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 11/20/2014] [Indexed: 11/30/2022]
|
11
|
Naing SH, Parvez S, Pender-Cudlip M, Groves JT, Austin RN. Substrate specificity and reaction mechanism of purified alkane hydroxylase from the hydrocarbonoclastic bacterium Alcanivorax borkumensis (AbAlkB). J Inorg Biochem 2013; 121:46-52. [PMID: 23337786 PMCID: PMC3595352 DOI: 10.1016/j.jinorgbio.2012.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 12/13/2012] [Accepted: 12/14/2012] [Indexed: 10/27/2022]
Abstract
An alkane hydroxylase from the marine organism Alcanivorax borkumensis (AbAlkB) was purified. The purified protein retained high activity in an assay with purified rubredoxin (AlkG), purified maize ferredoxin reductase, NADPH, and selected substrates. The reaction mechanism of the purified protein was probed using the radical clock substrates bicyclo[4.1.0]heptane (norcarane), bicyclo[3.1.0]hexane (bicyclohexane), methylphenylcyclopropane and deuterated and non-deuterated cyclohexane. The distribution of products from the radical clock substrates supports the hypothesis that purified AbAlkB hydroxylates substrates by forming a substrate radical. Experiments with deuterated cyclohexane indicate that the rate-determining step has a significant CH bond breaking character. The products formed from a number of differently shaped and sized substrates were characterized to determine the active site constraints of this AlkB. AbAlkB can catalyze the hydroxylation of a large number of aromatic compounds and linear and cyclic alkanes. It does not catalyze the hydroxylation of alkanes with a chain length longer than 15 carbons, nor does it hydroxylate sterically hindered C-H bonds.
Collapse
Affiliation(s)
- Swe-Htet Naing
- Department of Chemistry, Bates College, 5 Andrews Rd. Lewiston ME 04240, 207-786-6295, fax: 207-786-8336
| | - Saba Parvez
- Department of Chemistry, Bates College, 5 Andrews Rd. Lewiston ME 04240, 207-786-6295, fax: 207-786-8336
| | - Marilla Pender-Cudlip
- Department of Chemistry, Bates College, 5 Andrews Rd. Lewiston ME 04240, 207-786-6295, fax: 207-786-8336
| | - John T. Groves
- Department of Chemistry, Princeton University, Princeton NJ 08544
| | - Rachel N. Austin
- Department of Chemistry, Bates College, 5 Andrews Rd. Lewiston ME 04240, 207-786-6295, fax: 207-786-8336
| |
Collapse
|
12
|
Eidani SZ, Shahraki MK, Gasemisakha F, Hahsemi M, Bambai B. Cloning and expression of alkane hydroxylase-1 from Alcanivorax borkumensis in Escherichia coli. Toxicol Ind Health 2011; 28:560-5. [PMID: 22064680 DOI: 10.1177/0748233711416953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Enzymes with hydroxylating activity on alkanes have potential application as biotransformation catalysts in chemical and pharmaceutical industry. Genome of Alcanivorax borkumensis, a marine bacterium with hydrocarbon dissimilation activity, contains at least two P450 monooxygenases and two nonheme monooxygenases, AlkB1 and AlkB2, respectively. Presumably, all these enzymes possess alkane hydroxylating activity. Both AlkB1 and AlkB2 are membrane proteins. Two accessory proteins, rubredoxin and rubredoxin reductase, supply the reducing equivalent from nicotinamide adenine dinucleotide phosphate reduced (NADPH to hydroxylases. Rubredoxin reductase catalyses the reduction of rubredoxin by oxidation of NADPH, and rubredoxin transfers the electrons to the alkane hydroxylase to complete the hydroxylation reaction. Here, we sought to investigate the expression of alkB1 gene in Escherichia coli. Therefore, we amplified alkB1 gene from A. borkumensis genome by polymerase chain reaction and cloned it in the expression vector pET26 upstream of His-tag sequence. Predisposed BL21 (DE3) cells were transformed by the recombinant vector. At last, expression of recombinant enzyme was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting. Regarding the potential ability of this enzyme in hydroxylation of long-chained alkanes, the application of it would be studied in petroleum downstream industries.
Collapse
Affiliation(s)
- Simin Zadehgan Eidani
- Department of Genetics, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | | | | | | |
Collapse
|
13
|
|
14
|
Mason OU, Nakagawa T, Rosner M, Van Nostrand JD, Zhou J, Maruyama A, Fisk MR, Giovannoni SJ. First investigation of the microbiology of the deepest layer of ocean crust. PLoS One 2010; 5:e15399. [PMID: 21079766 PMCID: PMC2974637 DOI: 10.1371/journal.pone.0015399] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 09/07/2010] [Indexed: 11/17/2022] Open
Abstract
The gabbroic layer comprises the majority of ocean crust. Opportunities to sample this expansive crustal environment are rare because of the technological demands of deep ocean drilling; thus, gabbroic microbial communities have not yet been studied. During the Integrated Ocean Drilling Program Expeditions 304 and 305, igneous rock samples were collected from 0.45-1391.01 meters below seafloor at Hole 1309D, located on the Atlantis Massif (30 °N, 42 °W). Microbial diversity in the rocks was analyzed by denaturing gradient gel electrophoresis and sequencing (Expedition 304), and terminal restriction fragment length polymorphism, cloning and sequencing, and functional gene microarray analysis (Expedition 305). The gabbroic microbial community was relatively depauperate, consisting of a low diversity of proteobacterial lineages closely related to Bacteria from hydrocarbon-dominated environments and to known hydrocarbon degraders, and there was little evidence of Archaea. Functional gene diversity in the gabbroic samples was analyzed with a microarray for metabolic genes ("GeoChip"), producing further evidence of genomic potential for hydrocarbon degradation--genes for aerobic methane and toluene oxidation. Genes coding for anaerobic respirations, such as nitrate reduction, sulfate reduction, and metal reduction, as well as genes for carbon fixation, nitrogen fixation, and ammonium-oxidation, were also present. Our results suggest that the gabbroic layer hosts a microbial community that can degrade hydrocarbons and fix carbon and nitrogen, and has the potential to employ a diversity of non-oxygen electron acceptors. This rare glimpse of the gabbroic ecosystem provides further support for the recent finding of hydrocarbons in deep ocean gabbro from Hole 1309D. It has been hypothesized that these hydrocarbons might originate abiotically from serpentinization reactions that are occurring deep in the Earth's crust, raising the possibility that the lithic microbial community reported here might utilize carbon sources produced independently of the surface biosphere.
Collapse
Affiliation(s)
- Olivia U Mason
- College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Kuhn E, Bellicanta GS, Pellizari VH. New alk genes detected in Antarctic marine sediments. Environ Microbiol 2009; 11:669-73. [PMID: 19207566 DOI: 10.1111/j.1462-2920.2008.01843.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alkane monooxygenases (Alk) are the key enzymes for alkane degradation. In order to understand the dispersion and diversity of alk genes in Antarctic marine environments, this study analysed by clone libraries the presence and diversity of alk genes (alkB and alkM) in sediments from Admiralty Bay, King George Island, Peninsula Antarctica. The results show a differential distribution of alk genes between the sites, and the predominant presence of new alk genes, mainly in the pristine site. Sequences presented 53.10-69.60% nucleotide identity and 50.90-73.40% amino acid identity to alkB genes described in Silicibacter pomeroyi, Gordonia sp., Prauserella rugosa, Nocardioides sp., Rhodococcus sp., Nocardia farcinica, Pseudomonas putida, Acidisphaera sp., Alcanivorax borkumensis, and alkM described in Acinetobacter sp. This is the first time that the gene alkM was detected and described in Antarctic marine environments. The presence of a range of previously undescribed alk genes indicates the need for further studies in this environment.
Collapse
Affiliation(s)
- Emanuele Kuhn
- Institute of Biomedical Sciences, Department of Microbiology, University of São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
16
|
Involvement of a novel enzyme, MdpA, in methyl tert-butyl ether degradation in Methylibium petroleiphilum PM1. Appl Environ Microbiol 2008; 74:6631-8. [PMID: 18791002 DOI: 10.1128/aem.01192-08] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methylibium petroleiphilum PM1 is a well-characterized environmental strain capable of complete metabolism of the fuel oxygenate methyl tert-butyl ether (MTBE). Using a molecular genetic system which we established to study MTBE metabolism by PM1, we demonstrated that the enzyme MdpA is involved in MTBE removal, based on insertional inactivation and complementation studies. MdpA is constitutively expressed at low levels but is strongly induced by MTBE. MdpA is also involved in the regulation of tert-butyl alcohol (TBA) removal under certain conditions but is not directly responsible for TBA degradation. Phylogenetic comparison of MdpA to related enzymes indicates close homology to the short-chain hydrolyzing alkane hydroxylases (AH1), a group that appears to be a distinct subfamily of the AHs. The unique, substrate-size-determining residue Thr(59) distinguishes MdpA from the AH1 subfamily as well as from AlkB enzymes linked to MTBE degradation in Mycobacterium austroafricanum.
Collapse
|
17
|
Xu M, Xiao X, Wang F. Isolation and characterization of alkane hydroxylases from a metagenomic library of Pacific deep-sea sediment. Extremophiles 2007; 12:255-62. [PMID: 18087672 DOI: 10.1007/s00792-007-0122-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 10/29/2007] [Indexed: 10/22/2022]
Abstract
Two clones 9E7 and 21G8 in a metagenomic library of the east Pacific deep-sea sediment were found to contain alkane hydroxylase genes (alkB). The whole insert sequences of the two cosmid clones were determined. The insert sequences of 9E7 and 21G8 are 40 and 35 kb, respectively. Besides alkB, several alcohol/aldehyde dehydrogenase genes were also determined. A homolog of rubredoxin 2 of Pseudomonas putida was identified on 9E7 immediately downstream the alkB gene, but was lacking on 21G8. Unlike previous reports, the alkB genes on 9E7 and 21G8 have opposite transcription directions to those of linked alcohol/aldehyde dehydrogenase genes. Phylogenetic analysis put these two deep-sea AlkBs into a unique branch of integral membrane hydroxylases. The two alkB genes (9E7-alkB and 21G8-alkB) were cloned into pCom8 and introduced into two alkB expression host systems P. fluorescens KOB2 Delta 1 and P. putida GPo12 (pGEc47 Delta B). The transformed strains can grow on the n-alkanes from C5 to C16, indicating that both 9E7-AlkB and 21G8-AlkB have a wide substrate range. The data further indicate that the deep sea would be a rich resource for exploring novel alkane-degrading strains and genes.
Collapse
Affiliation(s)
- Meixiang Xu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, People's Republic of China
| | | | | |
Collapse
|
18
|
|