1
|
Shen Y, Zhang W, Wu L, Dong Y, Guo G, Dong L, Guo Z. Microbial proliferation deteriorates the corrosion inhibition capability, lubricity, and stability of cutting fluid. Front Microbiol 2025; 16:1522265. [PMID: 40008048 PMCID: PMC11850348 DOI: 10.3389/fmicb.2025.1522265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Cutting fluid is a type of fluid used in the metal-cutting process. It is prone to microbial growth during use, which can lead to the deterioration of its various useful properties; however, the mechanism underlying this deterioration remains unclear. This study analyzed the microbial diversity of field-sampled cutting fluids, and those with higher levels of diversity were used to inoculate other fluid samples in order to further study the effects of microbial growth on the properties of cutting fluids. The results show that the surface of cutting fluid sampled from the tank of a machining tool tank contained predominantly aerobic bacteria, while the bottom mainly harbored anaerobic and facultative microorganisms, with Yarrowia lipolytica representing the dominant fungus. Some obligate anaerobic bacteria were also present in the cutting fluid. Organic acids secreted by anaerobic microbial activity reduced the pH of the cutting fluid, as well as its resistance to corrosion. The metabolic activity of the aerobic microorganisms also consumed certain key components of the cutting fluid, which ultimately further lowered its pH and resistance to corrosion. Moreover, the number of fungi increased significantly during the later stages of the experiment. The rolling and bridging action of the resulting fungal mycelium caused flocculation of the effective components in the cutting fluid, resulting in reduced lubricity and poor stability. This study provides a theoretical basis for developing more effective measures to inhibit microbial growth and delay the deterioration of cutting fluid, thereby helping to improve the technical quality of the metal-cutting industry.
Collapse
Affiliation(s)
- Yuanyuan Shen
- Institute of Marine Materials Science and Engineering, College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, China
| | - Wenkai Zhang
- Institute of Marine Materials Science and Engineering, College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, China
| | - Lili Wu
- Shanghai Spaceflight Precision Machinery Institute, Shanghai, China
| | - Yaohua Dong
- Institute of Marine Materials Science and Engineering, College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, China
| | - Guoqiang Guo
- Shanghai Spaceflight Precision Machinery Institute, Shanghai, China
| | - Lihua Dong
- Institute of Marine Materials Science and Engineering, College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, China
| | - Zhangwei Guo
- Institute of Marine Materials Science and Engineering, College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, China
| |
Collapse
|
2
|
Nie L, Xiao Y, Zhou T, Feng H, He M, Liang Q, Mu K, Nie H, Huang Q, Chen W. Cyclic di-GMP inhibits nitrate assimilation by impairing the antitermination function of NasT in Pseudomonas putida. Nucleic Acids Res 2024; 52:186-203. [PMID: 38000372 PMCID: PMC10783516 DOI: 10.1093/nar/gkad1117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The ubiquitous bacterial second messenger cyclic diguanylate (c-di-GMP) coordinates diverse cellular processes through its downstream receptors. However, whether c-di-GMP participates in regulating nitrate assimilation is unclear. Here, we found that NasT, an antiterminator involved in nitrate assimilation in Pseudomonas putida, specifically bound c-di-GMP. NasT was essential for expressing the nirBD operon encoding nitrite reductase during nitrate assimilation. High-level c-di-GMP inhibited the binding of NasT to the leading RNA of nirBD operon (NalA), thus attenuating the antitermination function of NasT, resulting in decreased nirBD expression and nitrite reductase activity, which in turn led to increased nitrite accumulation in cells and its export. Molecular docking and point mutation assays revealed five residues in NasT (R70, Q72, D123, K127 and R140) involved in c-di-GMP-binding, of which R140 was essential for both c-di-GMP-binding and NalA-binding. Three diguanylate cyclases (c-di-GMP synthetases) were found to interact with NasT and inhibited nirBD expression, including WspR, PP_2557, and PP_4405. Besides, the c-di-GMP-binding ability of NasT was conserved in the other three representative Pseudomonas species, including P. aeruginosa, P. fluorescens and P. syringae. Our findings provide new insights into nitrate assimilation regulation by revealing the mechanism by which c-di-GMP inhibits nitrate assimilation via NasT.
Collapse
Affiliation(s)
- Liang Nie
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yujie Xiao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tiantian Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Haoqi Feng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Meina He
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingyuan Liang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kexin Mu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hailing Nie
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenli Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
3
|
Kundu K, Van Landuyt J, Mattelin V, Martin B, Neyts M, Parmentier K, Boon N. Enhanced removal of warfare agent tri-nitro-toluene by a Methylophaga-dominated microbiome. MARINE POLLUTION BULLETIN 2023; 190:114866. [PMID: 37001405 DOI: 10.1016/j.marpolbul.2023.114866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Historical exposure of the marine environment to 2,4,6-trinitrotoluene (TNT) happened due to the dumping of left-over munitions. Despite significant research on TNT decontamination, the potential of marine microbiome for TNT degradation remains only little explored. In this study, TNT degradation experiments were conducted with sediment located near the World War I munition dumpsite - Paardenmarkt in the Belgian part of North Sea. A slow removal was observed using TNT as sole source of C and N, which could be enhanced by adding methanol. Degradation was reflected in nitro-reduced metabolites and microbial growth. 16S Illumina sequencing analysis revealed several enriched genera that used TNT as a sole source of C and N - Colwellia, Thalossospira, and Methylophaga. Addition of methanol resulted in increased abundance of Methylophaga, which corresponded to the rapid removal of TNT. Methanol enhanced the degradation by providing additional energy and establishing syntrophic association between methanol-utilizing and TNT-utilizing bacteria.
Collapse
Affiliation(s)
- Kankana Kundu
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, University of Ghent, Coupure Links 653, 9000 Ghent, Belgium.
| | - Josefien Van Landuyt
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, University of Ghent, Coupure Links 653, 9000 Ghent, Belgium
| | - Valérie Mattelin
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, University of Ghent, Coupure Links 653, 9000 Ghent, Belgium
| | - Bram Martin
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, University of Ghent, Coupure Links 653, 9000 Ghent, Belgium
| | - Marijke Neyts
- Royal Belgian Institute of Natural Science (RBIN), 3de en 23ste Linieregimentsplein, 8400 Oostende, Belgium
| | - Koen Parmentier
- Royal Belgian Institute of Natural Science (RBIN), 3de en 23ste Linieregimentsplein, 8400 Oostende, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, University of Ghent, Coupure Links 653, 9000 Ghent, Belgium; Centre for Advanced Process Technology for Urban Resource recovery (CAPTURE), Ghent, Belgium.
| |
Collapse
|
4
|
Gupta S, Goel SS, Siebner H, Ronen Z, Ramanathan G. Transformation of 2, 4, 6-trinitrotoluene by Stenotrophomonas strain SG1 under aerobic and anaerobic conditions. CHEMOSPHERE 2023; 311:137085. [PMID: 36328316 DOI: 10.1016/j.chemosphere.2022.137085] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
TNT, or 2,4,6-trinitrotoluene, is a common explosive that can contaminate soil and groundwater in production sites, military training areas, and disposal locations. The compound is highly toxic; therefore, there is an urgent need to rehabilitate the impacted environments. Harnessing the microbial ability to biodegrade TNT into environmentally harmless compound(s) is one approach to remediating contaminated sites. In our study, we report on the genomic and metabolic ability of Stenotrophomonas strain SG1 to degrade TNT under aerobic and anaerobic conditions. The bacterial strain SG1 was first isolated as a contaminant from a culture of Diaphorobacter sp. strain DS2 over minimal media supplemented with TNT. The draft genome assembly of strain SG1 is ∼4.7 Mb and is distributed among 358 contigs. The homology search against the custom database of enzymes responsible for TNT biodegradation revealed the presence of three N-ethylmaleimide reductases (NemA) with a defined KEGG ortholog and KEGG pathway of TNT degradation. The presence of respiratory nitrate reductases has also been mapped, which supports denitrification under anaerobic conditions. Experimentally, the TNT transformation rate accelerated when carbon sources, such as sodium acetate, sodium citrate, sodium succinate, sucrose, and glucose (final concentration of 5 mM), were added. Citrate promoted the highest growth and TNT transformation ratio (88.35%) in 120 h. With the addition of 5 mM ammonium chloride, TNT completely disappeared in the citrate and sucrose-containing treatments in 120 h. However, higher biomass was obtained in the sucrose and glucose-containing treatments in 120 h. During incubation, the formation of amino dinitrotoluene isomers, dinitrotoluene isomers, trinitrobenzene, azoxy isomers, diaryl hydroxylamines, and corresponding secondary amines was confirmed by GC/MS and UPLC/MS. 2-Amino-4-nitrotoluene, 4-amino-2-nitrotoluene, and 2-amino-6-nitrotoluene were also identified in the culture supernatant by GC/MS. Under anaerobic conditions, TNT completely disappeared in the citrate and citrate plus nitrate treatments. Since the strain shows the ability to remove TNT, this research should be useful in basic research and practical applications for removing TNT from wastewater.
Collapse
Affiliation(s)
- Swati Gupta
- Department of Environmental Hydrology and Microbiology, The Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker Campus, 8490000, Israel; Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Shikhar S Goel
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Hagar Siebner
- Department of Environmental Hydrology and Microbiology, The Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker Campus, 8490000, Israel
| | - Zeev Ronen
- Department of Environmental Hydrology and Microbiology, The Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker Campus, 8490000, Israel.
| | - Gurunath Ramanathan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| |
Collapse
|
5
|
Nitrogen Metabolism in Pseudomonas putida: Functional Analysis Using Random Barcode Transposon Sequencing. Appl Environ Microbiol 2022; 88:e0243021. [PMID: 35285712 DOI: 10.1128/aem.02430-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida KT2440 has long been studied for its diverse and robust metabolisms, yet many genes and proteins imparting these growth capacities remain uncharacterized. Using pooled mutant fitness assays, we identified genes and proteins involved in the assimilation of 52 different nitrogen containing compounds. To assay amino acid biosynthesis, 19 amino acid drop-out conditions were also tested. From these 71 conditions, significant fitness phenotypes were elicited in 672 different genes including 100 transcriptional regulators and 112 transport-related proteins. We divide these conditions into 6 classes, and propose assimilatory pathways for the compounds based on this wealth of genetic data. To complement these data, we characterize the substrate range of three promiscuous aminotransferases relevant to metabolic engineering efforts in vitro. Furthermore, we examine the specificity of five transcriptional regulators, explaining some fitness data results and exploring their potential to be developed into useful synthetic biology tools. In addition, we use manifold learning to create an interactive visualization tool for interpreting our BarSeq data, which will improve the accessibility and utility of this work to other researchers. IMPORTANCE Understanding the genetic basis of P. putida's diverse metabolism is imperative for us to reach its full potential as a host for metabolic engineering. Many target molecules of the bioeconomy and their precursors contain nitrogen. This study provides functional evidence linking hundreds of genes to their roles in the metabolism of nitrogenous compounds, and provides an interactive tool for visualizing these data. We further characterize several aminotransferases, lactamases, and regulators, which are of particular interest for metabolic engineering.
Collapse
|
6
|
Zhang H, Ouyang Z, Zhao N, Han S, Zheng S. Transcriptional Regulation of the Creatine Utilization Genes of Corynebacterium glutamicum ATCC 14067 by AmtR, a Central Nitrogen Regulator. Front Bioeng Biotechnol 2022; 10:816628. [PMID: 35223787 PMCID: PMC8864220 DOI: 10.3389/fbioe.2022.816628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/13/2022] [Indexed: 11/23/2022] Open
Abstract
In the genus Corynebacterium, AmtR is a key component of the nitrogen regulatory system, and it belongs to the TetR family of transcription regulators. There has been much research on AmtR structure, functions, and regulons in the type strain C. glutamicum ATCC 13032, but little research in other C. glutamicum strains. In this study, chromatin immunoprecipitation and massively parallel DNA sequencing (ChIP-seq) was performed to identify the AmtR regulon in C. glutamicum ATCC 14067. Ten peaks were obtained in the C. glutamicum ATCC 14067 genome including two new peaks related to three operons (RS_01910-RS_01915, RS_15995, and RS_16000). The interactions between AmtR and the promoter regions of the three operons were confirmed by electrophoretic mobility shift assays (EMSAs). The RS_01910, RS_01915, RS_15995, and RS_16000 are not present in the type strain C. glutamicum ATCC 13032. Sequence analysis indicates that RS_01910, RS_01915, RS_15995, and RS_16000, are related to the degradation of creatine and creatinine; RS_01910 may encode a protein related to creatine transport. The genes RS_01910, RS_01915, RS_15995, and RS_16000 were given the names crnA, creT, cshA, and hyuB, respectively. Real-time quantitative PCR (RT-qPCR) analysis and sfGFP (superfolder green fluorescent protein) analysis reveal that AmtR directly and negatively regulates the transcription and expression of crnA, creT, cshA, and hyuB. A growth test shows that C. glutamicum ATCC 14067 can use creatine or creatinine as a sole nitrogen source. In comparison, a creT deletion mutant strain is able to grow on creatinine but loses the ability to grow on creatine. This study provides the first genome-wide captures of the dynamics of in vivo AmtR binding events and the regulatory network they define. These elements provide more options for synthetic biology by extending the scope of the AmtR regulon.
Collapse
Affiliation(s)
- Hao Zhang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.,Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zhilin Ouyang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.,Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Nannan Zhao
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.,Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shuangyan Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.,Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Suiping Zheng
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.,Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
7
|
Hobmeier K, Löwe H, Liefeldt S, Kremling A, Pflüger-Grau K. A Nitrate-Blind P. putida Strain Boosts PHA Production in a Synthetic Mixed Culture. Front Bioeng Biotechnol 2020; 8:486. [PMID: 32523942 PMCID: PMC7261876 DOI: 10.3389/fbioe.2020.00486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/27/2020] [Indexed: 11/24/2022] Open
Abstract
One of the major challenges for the present and future generations is to find suitable substitutes for the fossil resources we rely on today. In this context, cyanobacterial carbohydrates have been discussed as an emerging renewable feedstock in industrial biotechnology for the production of fuels and chemicals. Based on this, we recently presented a synthetic bacterial co-culture for the production of medium-chain-length polyhydroxyalkanoates (PHAs) from CO2. This co-cultivation system is composed of two partner strains: Synechococcus elongatus cscB which fixes CO2, converts it to sucrose and exports it into the culture supernatant, and a Pseudomonas putida strain that metabolizes this sugar and accumulates PHAs in the cytoplasm. However, these biopolymers are preferably accumulated under conditions of nitrogen limitation, a situation difficult to achieve in a co-culture as the other partner, at best, should not perceive any limitation. In this article, we will present an approach to overcome this dilemma by uncoupling the PHA production from the presence of nitrate in the medium. This is achieved by the construction of a P. putida strain that is no longer able to grow with nitrate as nitrogen source -is thus nitrate blind, and able to grow with sucrose as carbon source. The deletion of the nasT gene encoding the response regulator of the NasS/NasT two-component system resulted in such a strain that has lost the ability use nitrate, but growth with ammonium was not affected. Subsequently, the nasT deletion was implemented in P. putida cscRABY, an efficient sucrose consuming strain. This genetic engineering approach introduced an artificial unilateral nitrogen limitation in the co-cultivation process, and the amount of PHA produced from light and CO2 was 8.8 fold increased to 14.8% of its CDW compared to the nitrate consuming reference strain. This nitrate blind strain, P. putidaΔnasT attTn7:cscRABY, is not only a valuable partner in the co-cultivation but additionally enables the use of other nitrate containing substrates for medium-chain-length PHA production, like for example waste-water.
Collapse
Affiliation(s)
- Karina Hobmeier
- Systems Biotechnology, Technical University of Munich, Garching, Germany
| | - Hannes Löwe
- Systems Biotechnology, Technical University of Munich, Garching, Germany
| | - Stephan Liefeldt
- Systems Biotechnology, Technical University of Munich, Garching, Germany
| | - Andreas Kremling
- Systems Biotechnology, Technical University of Munich, Garching, Germany
| | | |
Collapse
|
8
|
Riveros-Rosas H, Julián-Sánchez A, Moreno-Hagelsieb G, Muñoz-Clares RA. Aldehyde dehydrogenase diversity in bacteria of the Pseudomonas genus. Chem Biol Interact 2019; 304:83-87. [PMID: 30862475 DOI: 10.1016/j.cbi.2019.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/07/2019] [Indexed: 10/27/2022]
Abstract
Aldehyde dehydrogenases (ALDHs) comprise one of the most ancient protein superfamilies widely distributed in the three domains of life. Their members have been extensively studied in animals and plants, sorted out in different ALDH protein families and their participation in a broad variety of metabolic pathways has been documented. Paradoxically, no systematic studies comprising ALDHs from bacteria have been performed so far. Among bacteria, the genus Pseudomonas occupies numerous ecological niches, and is one of the most complex bacterial genera with the largest number of known species. For these reasons, we selected Pseudomonas as a paradigm to analyze the diversity of ALDHs in bacteria. With this aim, complete Pseudomonas genome sequences and annotations were retrieved from NCBI's RefSeq genome database. The 258 Pseudomonas strains belong to 46 different species, along with 23 with no species designation. The genomes of these Pseudomonas contain from 3,315 to 6,825 annotated protein coding genes. A total of 6,510 ALDH sequences were found in the selected Pseudomonas, with a median of 24 ALDH-coding genes per strain (by comparison humans possess only 19 different ALDH loci). Pseudomonas saudiphocaensis possesses the lowest number of aldh genes (9), while Pseudomonas pseudoalcaligenes KF707 NBRC110670 possesses the maximum number of aldh genes (49). The ALDHs found in Pseudomonas can be sorted out into 42 protein families, with a predominance of 14 families, which contained 76% of all ALDHs found. In this regard, it is important to note that many Pseudomonas genomes have multiple aldh genes coding for proteins belonging to the same family. Given that all strains contained members of families ALDH4, ALDH5, ALDH6, ALDH14, ALDH18 and ALDH27, we consider these families to be part of the core Pseudomonas genome.
Collapse
Affiliation(s)
- Héctor Riveros-Rosas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, CdMx, 04510, México; Department of Biology, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada.
| | - Adriana Julián-Sánchez
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, CdMx, 04510, México
| | | | - Rosario A Muñoz-Clares
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, CdMx, 04510, México
| |
Collapse
|
9
|
Thijs S, Sillen W, Truyens S, Beckers B, van Hamme J, van Dillewijn P, Samyn P, Carleer R, Weyens N, Vangronsveld J. The Sycamore Maple Bacterial Culture Collection From a TNT Polluted Site Shows Novel Plant-Growth Promoting and Explosives Degrading Bacteria. FRONTIERS IN PLANT SCIENCE 2018; 9:1134. [PMID: 30123233 PMCID: PMC6085565 DOI: 10.3389/fpls.2018.01134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/13/2018] [Indexed: 05/23/2023]
Abstract
Military activities have worldwide introduced toxic explosives into the environment with considerable effects on soil and plant-associated microbiota. Fortunately, these microorganisms, and their collective metabolic activities, can be harnessed for site restoration via in situ phytoremediation. We characterized the bacterial communities inhabiting the bulk soil and rhizosphere of sycamore maple (Acer pseudoplatanus) in two chronically 2,4,6-trinitrotoluene (TNT) polluted soils. Three hundred strains were isolated, purified and characterized, a majority of which showed multiple plant growth promoting (PGP) traits. Several isolates showed high nitroreductase enzyme activity and concurrent TNT-transformation. A 12-member bacterial consortium, comprising selected TNT-detoxifying and rhizobacterial strains, significantly enhanced TNT removal from soil compared to non-inoculated plants, increased root and shoot weight, and the plants were less stressed than the un-inoculated plants as estimated by the responses of antioxidative enzymes. The sycamore maple tree (SYCAM) culture collection is a significant resource of plant-associated strains with multiple PGP and catalytic properties, available for further genetic and phenotypic discovery and use in field applications.
Collapse
Affiliation(s)
- Sofie Thijs
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Wouter Sillen
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Sascha Truyens
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Bram Beckers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Jonathan van Hamme
- Department of Biological Sciences, Thompson Rivers University, Kamloops, BC, Canada
| | - Pieter van Dillewijn
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Pieter Samyn
- Applied and Analytical Chemistry, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Robert Carleer
- Applied and Analytical Chemistry, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Nele Weyens
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Jaco Vangronsveld
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
10
|
Transcriptional and translational adaptation to aerobic nitrate anabolism in the denitrifier Paracoccus denitrificans. Biochem J 2017; 474:1769-1787. [PMID: 28385879 PMCID: PMC5424462 DOI: 10.1042/bcj20170115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/04/2017] [Accepted: 04/06/2017] [Indexed: 01/05/2023]
Abstract
Transcriptional adaptation to nitrate-dependent anabolism by Paracoccus denitrificans PD1222 was studied. A total of 74 genes were induced in cells grown with nitrate as N-source compared with ammonium, including nasTSABGHC and ntrBC genes. The nasT and nasS genes were cotranscribed, although nasT was more strongly induced by nitrate than nasS. The nasABGHC genes constituted a transcriptional unit, which is preceded by a non-coding region containing hairpin structures involved in transcription termination. The nasTS and nasABGHC transcripts were detected at similar levels with nitrate or glutamate as N-source, but nasABGHC transcript was undetectable in ammonium-grown cells. The nitrite reductase NasG subunit was detected by two-dimensional polyacrylamide gel electrophoresis in cytoplasmic fractions from nitrate-grown cells, but it was not observed when either ammonium or glutamate was used as the N-source. The nasT mutant lacked both nasABGHC transcript and nicotinamide adenine dinucleotide (NADH)-dependent nitrate reductase activity. On the contrary, the nasS mutant showed similar levels of the nasABGHC transcript to the wild-type strain and displayed NasG protein and NADH–nitrate reductase activity with all N-sources tested, except with ammonium. Ammonium repression of nasABGHC was dependent on the Ntr system. The ntrBC and ntrYX genes were expressed at low levels regardless of the nitrogen source supporting growth. Mutational analysis of the ntrBCYX genes indicated that while ntrBC genes are required for nitrate assimilation, ntrYX genes can only partially restore growth on nitrate in the absence of ntrBC genes. The existence of a regulation mechanism for nitrate assimilation in P. denitrificans, by which nitrate induction operates at both transcriptional and translational levels, is proposed.
Collapse
|
11
|
Liang SH, Hsu DW, Lin CY, Kao CM, Huang DJ, Chien CC, Chen SC, Tsai IJ, Chen CC. Enhancement of microbial 2,4,6-trinitrotoluene transformation with increased toxicity by exogenous nutrient amendment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 138:39-46. [PMID: 28006730 DOI: 10.1016/j.ecoenv.2016.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/18/2016] [Accepted: 12/08/2016] [Indexed: 06/06/2023]
Abstract
In this study, the bacterial strain Citrobacter youngae strain E4 was isolated from 2,4,6-trinitrotoluene (TNT)-contaminated soil and used to assess the capacity of TNT transformation with/without exogenous nutrient amendments. C. youngae E4 poorly degraded TNT without an exogenous amino nitrogen source, whereas the addition of an amino nitrogen source considerably increased the efficacy of TNT transformation in a dose-dependent manner. The enhanced TNT transformation of C. youngae E4 was mediated by increased cell growth and up-regulation of TNT nitroreductases, including NemA, NfsA and NfsB. This result indicates that the increase in TNT transformation by C. youngae E4 via nitrogen nutrient stimulation is a cometabolism process. Consistently, TNT transformation was effectively enhanced when C. youngae E4 was subjected to a TNT-contaminated soil slurry in the presence of an exogenous amino nitrogen amendment. Thus, effective enhancement of TNT transformation via the coordinated inoculation of the nutrient-responsive C. youngae E4 and an exogenous nitrogen amendment might be applicable for the remediation of TNT-contaminated soil. Although the TNT transformation was significantly enhanced by C. youngae E4 in concert with biostimulation, the 96-h LC50 value of the TNT transformation product mixture on the aquatic invertebrate Tigriopus japonicas was higher than the LC50 value of TNT alone. Our results suggest that exogenous nutrient amendment can enhance microbial TNT transformation; however, additional detoxification processes may be needed due to the increased toxicity after reduced TNT transformation.
Collapse
Affiliation(s)
- Shih-Hsiung Liang
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Duen-Wei Hsu
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Chia-Ying Lin
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Chih-Ming Kao
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Da-Ji Huang
- Department of Environmental Resources Management, Chia Nan University of Pharmacy & Science, Tainan, Taiwan
| | - Chih-Ching Chien
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Chung-Li, Taiwan
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | | | - Chien-Cheng Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan.
| |
Collapse
|
12
|
Shinkai Y, Nishihara Y, Amamiya M, Wakayama T, Li S, Kikuchi T, Nakai Y, Shimojo N, Kumagai Y. NADPH-cytochrome P450 reductase-mediated denitration reaction of 2,4,6-trinitrotoluene to yield nitrite in mammals. Free Radic Biol Med 2016; 91:178-87. [PMID: 26454083 DOI: 10.1016/j.freeradbiomed.2015.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/01/2015] [Accepted: 09/03/2015] [Indexed: 10/22/2022]
Abstract
While the biodegradation of 2,4,6-trinitrotoluene (TNT) via the release of nitrite is well established, mechanistic details of the reaction in mammals are unknown. To address this issue, we attempted to identify the enzyme from rat liver responsible for the production of nitrite from TNT. A NADPH-cytochrome P450 reductase (P450R) was isolated and identified from rat liver microsomes as the enzyme responsible for not only the release of nitrite from TNT but also formation of superoxide and 4-hydroxyamino-2,6-dinitrotoluene (4-HADNT) under aerobic conditions. In this context, reactive oxygen species generated during P450R-catalyzed TNT reduction were found to be, at least in part, a mediator for the production of 4-HADNT from TNT via formation of 4-nitroso-2,6-dinitrotoluene. P450R did not catalyze the formation of the hydride-Meisenheimer complex (H(-)-TNT) that is thought to be an intermediate for nitrite release from TNT. Furthermore, in a time-course experiment, 4-HADNT formation reached a plateau level and then declined during the reaction between TNT and P450R with NADPH, while the release of nitrite was subjected to a lag period. Notably, the produced 4-HADNT can react with the parent compound TNT to produce nitrite and dimerized products via formation of a Janovsky complex. Our results demonstrate for the first time that P450R-mediated release of nitrite from TNT results from the process of chemical interaction of TNT and its 4-electron reduction metabolite 4-HADNT.
Collapse
Affiliation(s)
- Yasuhiro Shinkai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Graduate School of Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuya Nishihara
- Graduate School of Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Masahiro Amamiya
- Graduate School of Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Toshihiko Wakayama
- Graduate School of Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Song Li
- Doctoral Program in Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Tomohiro Kikuchi
- Graduate School of Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yumi Nakai
- Application and Research Center, JEOL Ltd., 3-1-2 Musashino, Akishima, Tokyo 196-8558, Japan
| | - Nobuhiro Shimojo
- Graduate School of Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Doctoral Program in Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoshito Kumagai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Graduate School of Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Doctoral Program in Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
13
|
Draft Genome Sequence of Pseudomonas putida JLR11, a Facultative Anaerobic 2,4,6-Trinitrotoluene Biotransforming Bacterium. GENOME ANNOUNCEMENTS 2015; 3:3/5/e00904-15. [PMID: 26337875 PMCID: PMC4559724 DOI: 10.1128/genomea.00904-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the draft genome sequence of Pseudomonas putida JLR11, a facultative anaerobic bacterium that has been studied in detail for its capacity to use the explosive 2,4,6-trinitrotoluene (TNT) as a nitrogen source. The sequence confirms the mechanisms used by this versatile strain to reduce and assimilate nitrogen from TNT.
Collapse
|
14
|
Bardot C, Besse-Hoggan P, Carles L, Le Gall M, Clary G, Chafey P, Federici C, Broussard C, Batisson I. How the edaphic Bacillus megaterium strain Mes11 adapts its metabolism to the herbicide mesotrione pressure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 199:198-208. [PMID: 25679981 DOI: 10.1016/j.envpol.2015.01.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 12/23/2014] [Accepted: 01/24/2015] [Indexed: 05/26/2023]
Abstract
Toxicity of pesticides towards microorganisms can have a major impact on ecosystem function. Nevertheless, some microorganisms are able to respond quickly to this stress by degrading these molecules. The edaphic Bacillus megaterium strain Mes11 can degrade the herbicide mesotrione. In order to gain insight into the cellular response involved, the intracellular proteome of Mes11 exposed to mesotrione was analyzed using the two-dimensional differential in-gel electrophoresis (2D-DIGE) approach coupled with mass spectrometry. The results showed an average of 1820 protein spots being detected. The gel profile analyses revealed 32 protein spots whose abundance is modified after treatment with mesotrione. Twenty spots could be identified, leading to 17 non redundant proteins, mainly involved in stress, metabolic and storage mechanisms. These findings clarify the pathways used by B. megaterium strain Mes11 to resist and adapt to the presence of mesotrione.
Collapse
Affiliation(s)
- Corinne Bardot
- Clermont Université, Université Blaise Pascal, LMGE, F-63000 Clermont-Ferrand, France; CNRS, UMR 6023, Laboratoire Microorganismes: Génome et Environnement, F-63177 Aubière, France
| | - Pascale Besse-Hoggan
- Clermont Université, Université Blaise Pascal, ICCF, F-63000 Clermont Ferrand, France; CNRS, UMR 6296, Institut de Chimie de Clermont-Ferrand, BP 80026, F-63171 Aubière Cedex, France
| | - Louis Carles
- Clermont Université, Université Blaise Pascal, LMGE, F-63000 Clermont-Ferrand, France; CNRS, UMR 6023, Laboratoire Microorganismes: Génome et Environnement, F-63177 Aubière, France
| | - Morgane Le Gall
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Paris, France; Plate-forme Protéomique 3P5, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Guilhem Clary
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Paris, France; Plate-forme Protéomique 3P5, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Philippe Chafey
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Paris, France; Plate-forme Protéomique 3P5, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Christian Federici
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Paris, France; Plate-forme Protéomique 3P5, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Cédric Broussard
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris Descartes, Paris, France; Plate-forme Protéomique 3P5, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Isabelle Batisson
- Clermont Université, Université Blaise Pascal, LMGE, F-63000 Clermont-Ferrand, France; CNRS, UMR 6023, Laboratoire Microorganismes: Génome et Environnement, F-63177 Aubière, France.
| |
Collapse
|
15
|
Wang B, Rensing C, Pierson LS, Zhao H, Kennedy C. Translational coupling of nasST expression in Azotobacter vinelandii prevents overexpression of the nasT gene. FEMS Microbiol Lett 2014; 361:123-30. [PMID: 25302751 DOI: 10.1111/1574-6968.12621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/03/2014] [Accepted: 10/06/2014] [Indexed: 11/26/2022] Open
Abstract
The nasST operon encodes the transcriptional regulators of assimilatory nitrate reductase operons in phylogenetically diverse bacteria. NasT is a RNA-binding antiterminator and helps RNA polymerase read through the regulatory terminator sequences upstream of the structural genes. NasS senses nitrate and nitrite and regulates the activity of NasT through stoichiometric interaction. In this study, we analyzed the nasST sequence in Azotobacter vinelandii and revealed that the nasS and nasT genes overlap by 19 nucleotides. Our genetic analyses suggested that translational initiation of NasT was coupled with NasS translation, a regulatory mechanism that prevents overproduction of NasT. The significance of tight control of nasT expression was demonstrated in a nasT-overexpression strain, where expression of the assimilatory nitrate reductase operon was deregulated.
Collapse
Affiliation(s)
- Baomin Wang
- The School of Plant Sciences, University of Arizona, Tucson, AZ, USA; Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | | | | | | | | |
Collapse
|
16
|
Microbial Degradation of 2,4,6-Trinitrotoluene In Vitro and in Natural Environments. ENVIRONMENTAL SCIENCE AND ENGINEERING 2014. [DOI: 10.1007/978-3-319-01083-0_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
17
|
Mercimek HA, Dincer S, Guzeldag G, Ozsavli A, Matyar F. Aerobic biodegradation of 2,4,6-trinitrotoluene (TNT) by Bacillus cereus isolated from contaminated soil. MICROBIAL ECOLOGY 2013; 66:512-521. [PMID: 23715804 DOI: 10.1007/s00248-013-0248-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/15/2013] [Indexed: 06/02/2023]
Abstract
In this study, biological degradation of 2,4,6-trinitrotoluene (TNT) which is very highly toxic environmentally and an explosive in nitroaromatic character was researched in minimal medium by Bacillus cereus isolated from North Atlantic Treaty Organization (NATO) TNT-contaminated soils. In contrast to most previous studies, the capability of this bacteria to transform in liquid medium containing TNT was investigated. During degradation, treatment of TNT was followed by high-performance liquid chromatography (HPLC) and achievement of degradation was calculated as percentage. At an initial concentration of 50 and 75 mg L(-1), TNT was degraded respectively 68 % and 77 % in 96 h. It transformed into 2,4-dinitrotoluene and 4-aminodinitrotoluene derivates, which could be detected as intermediate metabolites by using thin-layer chromatography and gas chromatography-mass spectrometry analyses. Release of nitrite and nitrate ions were searched by spectrophotometric analyses. Depending upon Meisenheimer complex, while nitrite production was observed, nitrate was detected in none of the cultures. Results of our study propose which environmental pollutant can be removed by using microorganisms that are indigenous to the contaminated site.
Collapse
Affiliation(s)
- H Aysun Mercimek
- The Faculty of Sciences and Letters, Department of Molecular Biology and Genetics, Kilis 7 Aralık University, 79000, Kilis, Turkey,
| | | | | | | | | |
Collapse
|
18
|
Luque-Almagro VM, Lyall VJ, Ferguson SJ, Roldán MD, Richardson DJ, Gates AJ. Nitrogen oxyanion-dependent dissociation of a two-component complex that regulates bacterial nitrate assimilation. J Biol Chem 2013; 288:29692-702. [PMID: 24005668 PMCID: PMC3795266 DOI: 10.1074/jbc.m113.459032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitrogen is an essential nutrient for growth and is readily available to microbes in many environments in the form of ammonium and nitrate. Both ions are of environmental significance due to sustained use of inorganic fertilizers on agricultural soils. Diverse species of bacteria that have an assimilatory nitrate/nitrite reductase system (NAS) can use nitrate or nitrite as the sole nitrogen source for growth when ammonium is limited. In Paracoccus denitrificans, the pathway-specific two-component regulator for NAS expression is encoded by the nasT and nasS genes. Here, we show that the putative RNA-binding protein NasT is a positive regulator essential for expression of the nas gene cluster (i.e. nasABGHC). By contrast, a nitrogen oxyanion-binding sensor (NasS) is required for nitrate/nitrite-responsive control of nas gene expression. The NasS and NasT proteins co-purify as a stable heterotetrameric regulatory complex, NasS-NasT. This protein-protein interaction is sensitive to nitrate and nitrite, which cause dissociation of the NasS-NasT complex into monomeric NasS and an oligomeric form of NasT. NasT has been shown to bind the leader RNA for nasA. Thus, upon liberation from the complex, the positive regulator NasT is free to up-regulate nas gene expression.
Collapse
|
19
|
Udaondo Z, Molina L, Daniels C, Gómez MJ, Molina-Henares MA, Matilla MA, Roca A, Fernández M, Duque E, Segura A, Ramos JL. Metabolic potential of the organic-solvent tolerant Pseudomonas putida DOT-T1E deduced from its annotated genome. Microb Biotechnol 2013; 6:598-611. [PMID: 23815283 PMCID: PMC3918161 DOI: 10.1111/1751-7915.12061] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/27/2013] [Accepted: 03/31/2013] [Indexed: 11/30/2022] Open
Abstract
Pseudomonas putida DOT-T1E is an organic solvent tolerant strain capable of degrading aromatic hydrocarbons. Here we report the DOT-T1E genomic sequence (6 394 153 bp) and its metabolic atlas based on the classification of enzyme activities. The genome encodes for at least 1751 enzymatic reactions that account for the known pattern of C, N, P and S utilization by this strain. Based on the potential of this strain to thrive in the presence of organic solvents and the subclasses of enzymes encoded in the genome, its metabolic map can be drawn and a number of potential biotransformation reactions can be deduced. This information may prove useful for adapting desired reactions to create value-added products. This bioengineering potential may be realized via direct transformation of substrates, or may require genetic engineering to block an existing pathway, or to re-organize operons and genes, as well as possibly requiring the recruitment of enzymes from other sources to achieve the desired transformation. Funding Information Work in our laboratory was supported by Fondo Social Europeo and Fondos FEDER from the European Union, through several projects (BIO2010-17227, Consolider-Ingenio CSD2007-00005, Excelencia 2007 CVI-3010, Excelencia 2011 CVI-7391 and EXPLORA BIO2011-12776-E).
Collapse
Affiliation(s)
- Zulema Udaondo
- Estación Experimental del Zadín-CSIC, Profesor Albareda 1, 18008 Granada, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Duan J, Jiang W, Cheng Z, Heikkila JJ, Glick BR. The complete genome sequence of the plant growth-promoting bacterium Pseudomonas sp. UW4. PLoS One 2013; 8:e58640. [PMID: 23516524 PMCID: PMC3596284 DOI: 10.1371/journal.pone.0058640] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 02/05/2013] [Indexed: 11/18/2022] Open
Abstract
The plant growth-promoting bacterium (PGPB) Pseudomonas sp. UW4, previously isolated from the rhizosphere of common reeds growing on the campus of the University of Waterloo, promotes plant growth in the presence of different environmental stresses, such as flooding, high concentrations of salt, cold, heavy metals, drought and phytopathogens. In this work, the genome sequence of UW4 was obtained by pyrosequencing and the gaps between the contigs were closed by directed PCR. The P. sp. UW4 genome contains a single circular chromosome that is 6,183,388 bp with a 60.05% G+C content. The bacterial genome contains 5,423 predicted protein-coding sequences that occupy 87.2% of the genome. Nineteen genomic islands (GIs) were predicted and thirty one complete putative insertion sequences were identified. Genes potentially involved in plant growth promotion such as indole-3-acetic acid (IAA) biosynthesis, trehalose production, siderophore production, acetoin synthesis, and phosphate solubilization were determined. Moreover, genes that contribute to the environmental fitness of UW4 were also observed including genes responsible for heavy metal resistance such as nickel, copper, cadmium, zinc, molybdate, cobalt, arsenate, and chromate. Whole-genome comparison with other completely sequenced Pseudomonas strains and phylogeny of four concatenated “housekeeping” genes (16S rRNA, gyrB, rpoB and rpoD) of 128 Pseudomonas strains revealed that UW4 belongs to the fluorescens group, jessenii subgroup.
Collapse
Affiliation(s)
- Jin Duan
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada.
| | | | | | | | | |
Collapse
|
21
|
Effect of biostimulants on 2,4,6-trinitrotoluene (TNT) degradation and bacterial community composition in contaminated aquifer sediment enrichments. Biodegradation 2012; 24:179-90. [PMID: 22791276 DOI: 10.1007/s10532-012-9569-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 06/22/2012] [Indexed: 10/28/2022]
Abstract
2,4,6-Trinitrotoluene (TNT) is a toxic and persistent explosive compound occurring as a contaminant at numerous sites worldwide. Knowledge of the microbial dynamics driving TNT biodegradation is limited, particularly in native aquifer sediments where it poses a threat to water resources. The purpose of this study was to quantify the effect of organic amendments on anaerobic TNT biodegradation rate and pathway in an enrichment culture obtained from historically contaminated aquifer sediment and to compare the bacterial community dynamics. TNT readily biodegraded in all microcosms, with the highest biodegradation rate obtained under the lactate amended condition followed by ethanol amended and naturally occurring organic matter (extracted from site sediment) amended conditions. Although a reductive pathway of TNT degradation was observed across all conditions, denaturing gradient gel electrophoresis (DGGE) analysis revealed distinct bacterial community compositions. In all microcosms, Gram-negative γ- or β-Proteobacteria and Gram-positive Negativicutes or Clostridia were observed. A Pseudomonas sp. in particular was observed to be stimulated under all conditions. According to non-metric multidimensional scaling analysis of DGGE profiles, the microcosm communities were most similar to heavily TNT-contaminated field site sediment, relative to moderately and uncontaminated sediments, suggesting that TNT contamination itself is a major driver of microbial community structure. Overall these results provide a new line of evidence of the key bacteria driving TNT degradation in aquifer sediments and their dynamics in response to organic carbon amendment, supporting this approach as a promising technology for stimulating in situ TNT bioremediation in the subsurface.
Collapse
|
22
|
Abstract
In the context of the global nitrogen cycle, the importance of inorganic nitrate for the nutrition and growth of marine and freshwater autotrophic phytoplankton has long been recognized. In contrast, the utilization of nitrate by heterotrophic bacteria has historically received less attention because the primary role of these organisms has classically been considered to be the decomposition and mineralization of dissolved and particulate organic nitrogen. In the pre-genome sequence era, it was known that some, but not all, heterotrophic bacteria were capable of growth on nitrate as a sole nitrogen source. However, examination of currently available prokaryotic genome sequences suggests that assimilatory nitrate reductase (Nas) systems are widespread phylogenetically in bacterial and archaeal heterotrophs. Until now, regulation of nitrate assimilation has been mainly studied in cyanobacteria. In contrast, in heterotrophic bacterial strains, the study of nitrate assimilation regulation has been limited to Rhodobacter capsulatus, Klebsiella oxytoca, Azotobacter vinelandii and Bacillus subtilis. In Gram-negative bacteria, the nas genes are subjected to dual control: ammonia repression by the general nitrogen regulatory (Ntr) system and specific nitrate or nitrite induction. The Ntr system is widely distributed in bacteria, whereas the nitrate/nitrite-specific control is variable depending on the organism.
Collapse
|
23
|
Soils contaminated with explosives: Environmental fate and evaluation of state-of-the-art remediation processes (IUPAC Technical Report). PURE APPL CHEM 2011. [DOI: 10.1351/pac-rep-10-01-05] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An explosion occurs when a large amount of energy is suddenly released. This energy may come from an over-pressurized steam boiler, from the products of a chemical reaction involving explosive materials, or from a nuclear reaction that is uncontrolled. In order for an explosion to occur, there must be a local accumulation of energy at the site of the explosion, which is suddenly released. This release of energy can be dissipated as blast waves, propulsion of debris, or by the emission of thermal and ionizing radiation. Modern explosives or energetic materials are nitrogen-containing organic compounds with the potential for self-oxidation to small gaseous molecules (N2, H2O, and CO2). Explosives are classified as primary or secondary based on their susceptibility of initiation. Primary explosives are highly susceptible to initiation and are often used to ignite secondary explosives, such as TNT (2,4,6-trinitrotoluene), RDX (1,3,5-trinitroperhydro-1,3,5-triazine), HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocane), and tetryl (N-methyl-N-2,4,6-tetranitro-aniline).
Collapse
|
24
|
Stenuit BA, Agathos SN. Microbial 2,4,6-trinitrotoluene degradation: could we learn from (bio)chemistry for bioremediation and vice versa? Appl Microbiol Biotechnol 2010; 88:1043-64. [DOI: 10.1007/s00253-010-2830-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 08/06/2010] [Accepted: 08/08/2010] [Indexed: 12/11/2022]
|
25
|
Abstract
Nitroaromatic compounds are relatively rare in nature and have been introduced into the environment mainly by human activities. This important class of industrial chemicals is widely used in the synthesis of many diverse products, including dyes, polymers, pesticides, and explosives. Unfortunately, their extensive use has led to environmental contamination of soil and groundwater. The nitro group, which provides chemical and functional diversity in these molecules, also contributes to the recalcitrance of these compounds to biodegradation. The electron-withdrawing nature of the nitro group, in concert with the stability of the benzene ring, makes nitroaromatic compounds resistant to oxidative degradation. Recalcitrance is further compounded by their acute toxicity, mutagenicity, and easy reduction into carcinogenic aromatic amines. Nitroaromatic compounds are hazardous to human health and are registered on the U.S. Environmental Protection Agency's list of priority pollutants for environmental remediation. Although the majority of these compounds are synthetic in nature, microorganisms in contaminated environments have rapidly adapted to their presence by evolving new biodegradation pathways that take advantage of them as sources of carbon, nitrogen, and energy. This review provides an overview of the synthesis of both man-made and biogenic nitroaromatic compounds, the bacteria that have been identified to grow on and completely mineralize nitroaromatic compounds, and the pathways that are present in these strains. The possible evolutionary origins of the newly evolved pathways are also discussed.
Collapse
Affiliation(s)
- Kou-San Ju
- Department of Microbiology, University of California, Davis, California 95616
| | - Rebecca E. Parales
- Department of Microbiology, University of California, Davis, California 95616
| |
Collapse
|
26
|
Abstract
Pseudomonas putida DOT-T1E was used as a model to develop a "phenomics" platform to investigate the ability of P. putida to grow using different carbon, nitrogen, and sulfur sources and in the presence of stress molecules. Results for growth of wild-type DOT-T1E on 90 different carbon sources revealed the existence of a number of previously uncharted catabolic pathways for compounds such as salicylate, quinate, phenylethanol, gallate, and hexanoate, among others. Subsequent screening on the subset of compounds on which wild-type DOT-TIE could grow with four knockout strains in the global regulatory genes Deltacrc, Deltacrp, DeltacyoB, and DeltaptsN allowed analysis of the global response to nutrient supply and stress. The data revealed that most global regulator mutants could grow in a wide variety of substrates, indicating that metabolic fluxes are physiologically balanced. It was found that the Crc mutant did not differ much from the wild-type regarding the use of carbon sources. However, certain pathways are under the preferential control of one global regulator, i.e., metabolism of succinate and d-fructose is influenced by CyoB, and l-arginine is influenced by PtsN. Other pathways can be influenced by more than one global regulator; i.e., l-valine catabolism can be influenced by CyoB and Crp (cyclic AMP receptor protein) while phenylethylamine is affected by Crp, CyoB, and PtsN. These results emphasize the cross talk required in order to ensure proper growth and survival. With respect to N sources, DOT-T1E can use a wide variety of inorganic and organic nitrogen sources. As with the carbon sources, more than one global regulator affected growth with some nitrogen sources; for instance, growth with nucleotides, dipeptides, d-amino acids, and ethanolamine is influenced by Crp, CyoB, and PtsN. A surprising finding was that the Crp mutant was unable to flourish on ammonium. Results for assayed sulfur sources revealed that CyoB controls multiple points in methionine/cysteine catabolism while PtsN and Crc are needed for N-acetyl-l-cysteamine utilization. Growth of global regulator mutants was also influenced by stressors of different types (antibiotics, oxidative agents, and metals). Overall and in combination with results for growth in the presence of various stressors, these phenomics assays provide multifaceted insights into the complex decision-making process involved in nutrient supply, optimization, and survival.
Collapse
|
27
|
Modified 3-oxoadipate pathway for the biodegradation of methylaromatics in Pseudomonas reinekei MT1. J Bacteriol 2010; 192:1543-52. [PMID: 20061479 DOI: 10.1128/jb.01208-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Catechols are central intermediates in the metabolism of aromatic compounds. Degradation of 4-methylcatechol via intradiol cleavage usually leads to the formation of 4-methylmuconolactone (4-ML) as a dead-end metabolite. Only a few microorganisms are known to mineralize 4-ML. The mml gene cluster of Pseudomonas reinekei MT1, which encodes enzymes involved in the metabolism of 4-ML, is shown here to encode 10 genes found in a 9.4-kb chromosomal region. Reverse transcription assays revealed that these genes form a single operon, where their expression is controlled by two promoters. Promoter fusion assays identified 4-methyl-3-oxoadipate as an inducer. Mineralization of 4-ML is initiated by the 4-methylmuconolactone methylisomerase encoded by mmlI. This reaction produces 3-ML and is followed by a rearrangement of the double bond catalyzed by the methylmuconolactone isomerase encoded by mmlJ. Deletion of mmlL, encoding a protein of the metallo-beta-lactamase superfamily, resulted in a loss of the capability of the strain MT1 to open the lactone ring, suggesting its function as a 4-methyl-3-oxoadipate enol-lactone hydrolase. Further metabolism can be assumed to occur by analogy with reactions known from the 3-oxoadipate pathway. mmlF and mmlG probably encode a 4-methyl-3-oxoadipyl-coenzyme A (CoA) transferase, and the mmlC gene product functions as a thiolase, transforming 4-methyl-3-oxoadipyl-CoA into methylsuccinyl-CoA and acetyl-CoA, as indicated by the accumulation of 4-methyl-3-oxoadipate in the respective deletion mutant. Accumulation of methylsuccinate by an mmlK deletion mutant indicates that the encoded acetyl-CoA hydrolase/transferase is crucial for channeling methylsuccinate into the central metabolism.
Collapse
|
28
|
NtrC-dependent regulatory network for nitrogen assimilation in Pseudomonas putida. J Bacteriol 2009; 191:6123-35. [PMID: 19648236 DOI: 10.1128/jb.00744-09] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida KT2440 is a model strain for studying bacterial biodegradation processes. However, very little is known about nitrogen regulation in this strain. Here, we show that the nitrogen regulatory NtrC proteins from P. putida and Escherichia coli are functionally equivalent and that substitutions leading to partially active forms of enterobacterial NtrC provoke the same phenotypes in P. putida NtrC. P. putida has only a single P(II)-like protein, encoded by glnK, whose expression is nitrogen regulated. Two contiguous NtrC binding sites located upstream of the sigma(N)-dependent glnK promoter have been identified by footprinting analysis. In vitro experiments with purified proteins demonstrated that glnK transcription was directly activated by NtrC and that open complex formation at this promoter required integration host factor. Transcription of genes orthologous to enterobacterial codB, dppA, and ureD genes, whose transcription is dependent on sigma(70) and which are activated by Nac in E. coli, has also been analyzed for P. putida. Whereas dppA does not appear to be regulated by nitrogen via NtrC, the codB and ureD genes have sigma(N)-dependent promoters and their nitrogen regulation was exerted directly by NtrC, thus avoiding the need for Nac, which is missing in this bacterial species. Based upon these results, we propose a simplified nitrogen regulatory network in P. putida (compared to that in enterobacteria), which involves an indirect-feedback autoregulation of glnK using NtrC as an intermediary.
Collapse
|
29
|
Comparative analysis of 2,4,6-trinitrotoluene (TNT)-induced cellular responses and proteomes in Pseudomonas sp. HK-6 in two types of media. J Microbiol 2009; 47:220-4. [DOI: 10.1007/s12275-008-0108-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 12/08/2008] [Indexed: 11/26/2022]
|
30
|
Wittich RM, Ramos JL, van Dillewijn P. Microorganisms and explosives: mechanisms of nitrogen release from TNT for use as an N-source for growth. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:2773-2776. [PMID: 19475948 DOI: 10.1021/es803372n] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Unstable reduced derivatives of 2,4,6-trinitrotoluene (TNT) produced by microorganisms have been found to release nitrite by rearomatization and/or condensation. Here, we present further information regarding the novel mechanism of the condensation of reactive hydroxylaminodinitrotoluene and the Meisenheimer dihydride complex of TNT to produce two secondary diarylamine isomers. Using uniformly 15N-labeled (15N3) TNT, we show that the nitrite is being released by the condensation reaction and, also under environmental conditions, will originate from the microbiologically generated dihydride complex.
Collapse
Affiliation(s)
- Rolf-Michael Wittich
- Departamento de Protección Ambiental, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Calle Profesor Albareda 1, E-18008 Granada, Spain.
| | | | | |
Collapse
|
31
|
Subfunctionality of hydride transferases of the old yellow enzyme family of flavoproteins of Pseudomonas putida. Appl Environ Microbiol 2008; 74:6703-8. [PMID: 18791012 DOI: 10.1128/aem.00386-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To investigate potential complementary activities of multiple enzymes belonging to the same family within a single microorganism, we chose a set of Old Yellow Enzyme (OYE) homologs of Pseudomonas putida. The physiological function of these enzymes is not well established; however, an activity associated with OYE family members from different microorganisms is their ability to reduce nitroaromatic compounds. Using an in silico approach, we identified six OYE homologs in P. putida KT2440. Each gene was subcloned into an expression vector, and each corresponding gene product was purified to homogeneity prior to in vitro analysis for its catalytic activity against 2,4,6-trinitrotoluene (TNT). One of the enzymes, called XenD, lacked in vitro activity, whereas the other five enzymes demonstrated type I hydride transferase activity and reduced the nitro groups of TNT to hydroxylaminodinitrotoluene derivatives. XenB has the additional ability to reduce the aromatic ring of TNT to produce Meisenheimer complexes, defined as type II hydride transferase activity. The condensations of the primary products of type I and type II hydride transferases react with each other to yield diarylamines and nitrite; the latter can be further reduced to ammonium and serves as a nitrogen source for microorganisms in vivo.
Collapse
|
32
|
Roldán MD, Pérez-Reinado E, Castillo F, Moreno-Vivián C. Reduction of polynitroaromatic compounds: the bacterial nitroreductases. FEMS Microbiol Rev 2008; 32:474-500. [PMID: 18355273 DOI: 10.1111/j.1574-6976.2008.00107.x] [Citation(s) in RCA: 303] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Most nitroaromatic compounds are toxic and mutagenic for living organisms, but some microorganisms have developed oxidative or reductive pathways to degrade or transform these compounds. Reductive pathways are based either on the reduction of the aromatic ring by hydride additions or on the reduction of the nitro groups to hydroxylamino and/or amino derivatives. Bacterial nitroreductases are flavoenzymes that catalyze the NAD(P)H-dependent reduction of the nitro groups on nitroaromatic and nitroheterocyclic compounds. Nitroreductases have raised a great interest due to their potential applications in bioremediation, biocatalysis, and biomedicine, especially in prodrug activation for chemotherapeutic cancer treatments. Different bacterial nitroreductases have been purified and their biochemical and kinetic parameters have been determined. The crystal structure of some nitroreductases have also been solved. However, the physiological role(s) of these enzymes remains unclear. Nitroreductase genes are widely spread within bacterial genomes, but are also found in archaea and some eukaryotic species. Although studies on regulation of nitroreductase gene expression are scarce, it seems that nitroreductase genes may be controlled by the MarRA and SoxRS regulatory systems that are involved in responses to several antibiotics and environmental chemical hazards and to specific oxidative stress conditions. This review covers the microbial distribution, types, biochemical properties, structure and regulation of the bacterial nitroreductases. The possible physiological functions and the biotechnological applications of these enzymes are also discussed.
Collapse
Affiliation(s)
- María Dolores Roldán
- Departamento de Bioquímica y Biología Molecular, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain.
| | | | | | | |
Collapse
|
33
|
Smets BF, Yin H, Esteve-Nuñez A. TNT biotransformation: when chemistry confronts mineralization. Appl Microbiol Biotechnol 2007; 76:267-77. [PMID: 17534614 DOI: 10.1007/s00253-007-1008-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 04/19/2007] [Accepted: 04/19/2007] [Indexed: 10/23/2022]
Abstract
Our understanding of the genetics and biochemistry of microbial 2,4,6-trinitrotoluene (TNT) biotransformation has advanced significantly during the past 10 years, and biotreatment technologies have developed. In this review, we summarize this new knowledge. A number of enzyme classes involved in TNT biotransformation include the type I nitroreductases, the old yellow enzyme family, a respiration-associated nitroreductase, and possibly ring hydroxylating dioxygenases. Several strains harbor dual pathways: nitroreduction (reduction of the nitro group in TNT to a hydroxylamino and/or amino group) and denitration (reduction of the aromatic ring of TNT to Meisenheimer complexes with nitrite release). TNT can serve as a nitrogen source for some strains, and the postulated mechanism involves ammonia release from hydroxylamino intermediates. Field biotreatment technologies indicate that both stimulation of microbial nitroreduction and phytoremediation result in significant and permanent immobilization of TNT via its metabolites. While the possibility for TNT mineralization was rekindled with the discovery of TNT denitration and oxygenolytic and respiration-associated pathways, further characterization of responsible enzymes and their reaction mechanisms are required.
Collapse
Affiliation(s)
- Barth F Smets
- Institute of Environment and Resources, Technical University of Denmark, Bygningstorvet, Bldg 115, 2800 Kgs. Lyngby, Denmark.
| | | | | |
Collapse
|
34
|
Van Dillewijn P, Caballero A, Paz JA, Gonzalez-Pérez MM, Oliva JM, Ramos JL. Bioremediation of 2,4,6-trinitrotoluene under field conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:1378-83. [PMID: 17593745 DOI: 10.1021/es062165z] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In situ bioremediation of the nitroaromatic explosive 2,4,6-trinitrotoluene (TNT) provides a cost-effective alternative for cleaning up contaminated sites. Here we compare the effectiveness of several bioremediation techniques: natural attenuation, bioaugmentation with TNT-degrading Pseudomonas putida JLR11, phytoremediation with maize (Zea mays L.) and broad beans (Vicia faba L.), and rhizoremediation with maize and broad beans inoculated with P. putida JLR11. Experiments in spiked hydroponic medium demonstrated that inoculation with bacteria did not affect TNT levels. On the other hand, axenic plants were able to remove 32% to 38% of the TNT from the medium. However, when plants were inoculated with bacteria,TNT disappeared to an even greater extent (80% to 88%), a result that advocates a role for P. putida JLR11 in rhizoremediation. In field experiments neither natural attenuation nor bioaugmentation with P. putida JLR11 affected TNT levels to a significant degree. However, the extractable TNT content in rhizosphere soil associated to maize roots decreased by more than 96% in 60 days regardless of inoculation. This indicates that under these field conditions, the effect of phytoremediation by maize overshadowed any effect of rhizoremediation by P. putida JLR11.
Collapse
Affiliation(s)
- Pieter Van Dillewijn
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Apdo. Correos 419, E-18008 Granada, Spain
| | | | | | | | | | | |
Collapse
|
35
|
Juhasz AL, Naidu R. Explosives: fate, dynamics, and ecological impact in terrestrial and marine environments. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2007; 191:163-215. [PMID: 17708075 DOI: 10.1007/978-0-387-69163-3_6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
An explosive or energetic compound is a chemical material that, under the influence of thermal or chemical shock, decomposes rapidly with the evolution of large amounts of heat and gas. Numerous compounds and compositions may be classified as energetic compounds; however, secondary explosives, such as TNT, RDX, and HMX pose the largest potential concern to the environment because they are produced and used in defense in the greatest quantities. The environmental fate and potential hazard of energetic compounds in the environment is affected by a number of physical, chemical, and biological processes. Energetic compounds may undergo transformation through biotic or abiotic degradation. Numerous organisms have been isolated with the ability to degrade/transform energetic compounds as a sole carbon source, sole nitrogen source, or through cometabolic processes under aerobic or anaerobic conditions. Abiotic processes that lead to the transformation of energetic compounds include photolysis, hydrolysis, and reduction. The products of these reactions may be further transformed by microorganisms or may bind to soil/sediment surfaces through covalent binding or polymerization and oligomerization reactions. Although considerable research has been performed on the fate and dynamics of energetic compounds in the environment, data are still gathering on the impact of TNT, RDX, and HMX on ecological receptors. There is an urgent need to address this issue and to direct future research on expanding our knowledge on the ecological impact of energetic transformation products. In addition, it is important that energetic research considers the concept of bioavailability, including factors influencing soil/sediment aging, desorption of energetic compounds from varying soil and sediment types, methods for modeling/predicting energetic bioavailability, development of biomarkers of energetic exposure or effect, and the impact of bioavailability on ecological risk assessment.
Collapse
Affiliation(s)
- Albert L Juhasz
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, Adelaide, Australia, 5095
| | | |
Collapse
|
36
|
Stenuit B, Eyers L, Rozenberg R, Habib-Jiwan JL, Agathos SN. Aerobic growth of Escherichia coli with 2,4,6-trinitrotoluene (TNT) as the sole nitrogen source and evidence of TNT denitration by whole cells and cell-free extracts. Appl Environ Microbiol 2006; 72:7945-8. [PMID: 17012591 PMCID: PMC1694216 DOI: 10.1128/aem.01052-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Accepted: 09/25/2006] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli grew aerobically with 2,4,6-trinitrotoluene (TNT) as sole nitrogen source and caused TNT's partial denitration. This reaction was enhanced in nongrowing cell suspensions with 0.516 mol nitrite released per mol TNT. Cell extracts denitrated TNT in the presence of NAD(P)H. Isomers of amino-dimethyl-tetranitrobiphenyl were detected and confirmed with U-15N-labeled TNT.
Collapse
Affiliation(s)
- Ben Stenuit
- Unit of Bioengineering, Department of Applied Chemistry and Bioindustries, Catholic University of Lovain, Place Croix du Sud 2/19, 1348 Louvain-la-Neuve, Belgium
| | | | | | | | | |
Collapse
|
37
|
Claus H, Perret N, Bausinger T, Fels G, Preuss J, König H. TNT transformation products are affected by the growth conditions of Raoultella terrigena. Biotechnol Lett 2006; 29:411-9. [PMID: 17136570 DOI: 10.1007/s10529-006-9244-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 10/19/2006] [Indexed: 10/23/2022]
Abstract
High concentrations of 2,4,6-trinitrotoluene (TNT) and related nitroaromatic compounds are commonly found in soil and groundwater at former explosive plants. The bacterium, Raoultella terrigena strain HB, isolated from a contaminated site, converts TNT into the corresponding amino products. Radio-HPLC analysis with [(14)C]TNT identified aminodinitrotoluene, diaminonitrotoluene and azoxy-dimers as the main metabolites. Transformation rate and the type of metabolites that predominated in the culture medium and within the cells were significantly influenced by the culture conditions. The NAD(P)H-dependent enzymatic reduction of nitro-substituted compounds by cell-free extracts of R. terrigena was evaluated in vitro.
Collapse
Affiliation(s)
- Harald Claus
- Johannes Gutenberg-University Mainz, Institute of Microbiology and Wine Research, Mainz, Germany.
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
The last one hundred years have seen a massive expansion in the chemicals industry; however, with this progress came the concomitant pollution of the environment with a significant range of xenobiotics.Nitroaromatic compounds form one such category of novel environmental contaminants and are produced through a large number of industrial processes, most notably the pesticides, dyes and explosives industries. Whilst singly nitrated aromatic compounds are usually mineralised in the environment, multiply nitrated aromatics, such as the explosive 2,4,6-trinitrotoluene (TNT), are recalcitrant and highly toxic. The predominant route of biological transformation of aromatic compounds is oxidation; however, the presence of three electron-withdrawing nitro-groups around the ring prevents oxidation, rendering such compounds resistant to biodegradation. The subsequent accumulation of these contaminants has stimulated much research leading to the isolation of bacteria that possess, to varying extents, the ability to remediate explosives and other nitroaromatic pollutants.The extreme environments created by these toxic substances accelerate the evolutionary process and examples of bacteria that have conscripted metabolic enzymes for novel remediatory pathways are included. This Highlight ends with a discussion of the future of nitroaromatic bioremediation including engineering plants to express bacterial enzymes for use in bioremediation programs.
Collapse
Affiliation(s)
- Zoe C Symons
- CNAP, The Department of Biology, AREA 8, The University of York, PO Box 373, York, England YO10 5YW
| | | |
Collapse
|
39
|
Caballero A, Ramos JL. A double mutant of Pseudomonas putida JLR11 deficient in the synthesis of the nitroreductase PnrA and assimilatory nitrite reductase NasB is impaired for growth on 2,4,6-trinitrotoluene (TNT). Environ Microbiol 2006; 8:1306-10. [PMID: 16817939 DOI: 10.1111/j.1462-2920.2006.01012.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pseudomonas putida JLR11 can grow on 2,4,6-trinitrotoluene (TNT) as the sole nitrogen source. We created nasB (nitrite reductase), pnrA (nitroaromatic reductase) and pnrA nasB mutants and tested their growth with TNT as the sole N source. The nasB and pnrA mutants grew at a reduced rate on TNT, whereas the double nasB pnrA mutant did not. This suggests that P. putida JLR11 carries out multiple enzymatic attacks on TNT-releasing nitrite and/or ammonium. The PnrA nitroreductase plays a key role in the reduction of TNT to 2,6-dinitro-4-hydroxylaminotoluene and the subsequent release of ammonium for growth.
Collapse
Affiliation(s)
- Antonio Caballero
- Estación Experimental del Zaidin, Department of Biochemistry, Profesor Albareda 1, 18008 Granada, Spain
| | | |
Collapse
|
40
|
Revelles O, Espinosa-Urgel M, Fuhrer T, Sauer U, Ramos JL. Multiple and interconnected pathways for L-lysine catabolism in Pseudomonas putida KT2440. J Bacteriol 2005; 187:7500-10. [PMID: 16237033 PMCID: PMC1272968 DOI: 10.1128/jb.187.21.7500-7510.2005] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Accepted: 08/24/2005] [Indexed: 11/20/2022] Open
Abstract
L-lysine catabolism in Pseudomonas putida KT2440 was generally thought to occur via the aminovalerate pathway. In this study we demonstrate the operation of the alternative aminoadipate pathway with the intermediates D-lysine, L-pipecolate, and aminoadipate. The simultaneous operation of both pathways for the use of L-lysine as the sole carbon and nitrogen source was confirmed genetically. Mutants with mutations in either pathway failed to use L-lysine as the sole carbon and nitrogen source, although they still used L-lysine as the nitrogen source, albeit at reduced growth rates. New genes were identified in both pathways, including the davB and davA genes that encode the enzymes involved in the oxidation of L-lysine to delta-aminovaleramide and the hydrolysis of the latter to delta-aminovalerate, respectively. The amaA, dkpA, and amaB genes, in contrast, encode proteins involved in the transformation of Delta1-piperidine-2-carboxylate into aminoadipate. Based on L-[U-13C, U-15N]lysine experiments, we quantified the relative use of pathways in the wild type and its isogenic mutants. The fate of 13C label of L-lysine indicates that in addition to the existing connection between the D- and L-lysine pathways at the early steps of the catabolism of L-lysine mediated by a lysine racemase, there is yet another interconnection at the lower end of the pathways in which aminoadipate is channeled to yield glutarate. This study establishes an unequivocal relationship between gene and pathway enzymes in the metabolism of L-lysine, which is of crucial importance for the successful colonization of the rhizosphere of plants by this microorganism.
Collapse
Affiliation(s)
- Olga Revelles
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/Prof. Albareda 1, 18008 Granada, Spain
| | | | | | | | | |
Collapse
|
41
|
Caballero A, Lázaro JJ, Ramos JL, Esteve-Núñez A. PnrA, a new nitroreductase-family enzyme in the TNT-degrading strain Pseudomonas putida JLR11. Environ Microbiol 2005; 7:1211-9. [PMID: 16011758 DOI: 10.1111/j.1462-2920.2005.00801.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nitroreductases are a group of proteins that catalyse pyridine nucleotide-dependent reduction of nitroaromatics compounds, showing significant human health and environmental implications. In this study we have identified the nitroreductase-family enzymes PnrA and PnrB from the TNT-degrading strain Pseudomonas putida. The enzyme encoded by the pnrA gene was expressed in Escherichia coli, purified to homogeneity and shown to be a flavoprotein that used 2 mol of NADPH to reduce 1 mol of 2,4,6-trinitrotoluene (TNT) to 4-hydroxylamine-2,6-dinitrotoluene, using a ping-pong bi-bi mechanism. The PnrA enzyme also recognized as substrates as a number of other nitroaromatic compounds, i.e. 2,4-dinitrotoluene, 3-nitrotoluene, 3- and 4-nitrobenzoate, 3,5-dinitrobenzamide and 3,5-dinitroaniline expanding the substrates profile from previously described nitroreductases. However, TNT resulted to be the most efficient substrate examined according to the Vmax/Km parameter. Expression analysis of pnrA- and pnrB-mRNA isolated from cells growing on different nitrogen sources suggested that expression of both genes was constitutive and that its level of expression was relatively constant regardless of the growth substrate. This is in agreement with enzyme-specific activity determined with cells growing with different N-sources.
Collapse
Affiliation(s)
- Antonio Caballero
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Apdo Correos 419, E-18008 Granada, Spain
| | | | | | | |
Collapse
|
42
|
Tront JM, Hughes JB. Oxidative microbial degradation of 2,4,6-trinitrotoluene via 3-methyl-4,6-dinitrocatechol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2005; 39:4540-9. [PMID: 16047791 DOI: 10.1021/es048014i] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A novel pathway for biodegradation of 2,4,6-trinitrotoluene (TNT) was investigated where TNT was the sole carbon, nitrogen, and energy source. Results showed the ability of microorganismsto metabolize TNT through removal of a nitro-group, oxygenation of the aromatic ring, and production of a metabolite that is typically a precursor to oxygenolytic ring cleavage. Nitrite production was observed in active systems, and TNT degradation activity was repeatable and transferable. The metabolic intermediate, 3-methyl-4,6-dinitrocatechol, was positively identified through stable isotope mass spectrometry and tandem mass spectrometry. Experimentation with 14C-TNT showed >3% 14C-labeled CO2 in active systems after 30 d exposure to microorganisms. An increasing fraction of 14C-labeled material was associated with biomass with time, where 11.41 +/- 2.91% and 17.09 +/- 1.49% of 14C was associated with biomass in active systems after 20 and 30 d, respectively, as compared with 5.68 +/- 1.33% and 6.08 +/- 1.27% in inactive systems. Parallel degradation of TNT and production of organic metabolites and nitrite were observed in shake flasks constructed with soil from historically contaminated sites, indicating that the novel pathway identified herein is disturbed in the environment. Therefore, results presented provide evidence of a previously unreported pathway for oxidative degradation of TNT.
Collapse
Affiliation(s)
- Jacqueline M Tront
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | |
Collapse
|
43
|
Ramos JL, González-Pérez MM, Caballero A, van Dillewijn P. Bioremediation of polynitrated aromatic compounds: plants and microbes put up a fight. Curr Opin Biotechnol 2005; 16:275-81. [PMID: 15961028 DOI: 10.1016/j.copbio.2005.03.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 03/15/2005] [Accepted: 03/24/2005] [Indexed: 11/22/2022]
Abstract
Industrialization and the quest for a more comfortable lifestyle have led to increasing amounts of pollution in the environment. To address this problem, several biotechnological applications aimed at removing this pollution have been investigated. Among these pollutants are xenobiotic compounds such as polynitroaromatic compounds--recalcitrant chemicals that are degraded slowly. Whereas 2,4,6-trinitrophenol (TNP) can be mineralized and converted into carbon dioxide, nitrite and water, 2,4,6-trinitrotoluene (TNT) is more recalcitrant--although several microbes can use it as a nitrogen source. The most effective in situ biotreatments for TNT are the use of bioslurry (which can be preceded by an abiotic step) and phytoremediation. Phytoremediation can be enhanced by using transgenic plants alone or together with microbes.
Collapse
Affiliation(s)
- Juan L Ramos
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Apdo Correos 419, E-18008 Granada, Spain.
| | | | | | | |
Collapse
|