1
|
He H, Zheng W, Xiao S, Gong L, Li H, Zhou K, Zhang L, Tu Q, Zhu YZ, Zhang Y. Deciphering the Nitrogen Fixation Gene Cluster in Vibrio natriegens: A Study on Optimized Expression and Application of Nitrogenase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12618-12629. [PMID: 38778776 DOI: 10.1021/acs.jafc.4c01232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Microbial nitrogen fixation presents a viable alternative to chemical fertilizers, yet the limited colonization and specificity of naturally occurring nitrogen-fixing microorganisms present significant challenges to their widespread application. In this study, we identified a nitrogen fixation gene cluster (VNnif) in Vibrio natriegens (VN) and tested its nitrogenase activity through the acetylene reduction assay. We investigated the potential utilization of nitrogenase by incorporating the nitrogenase gene cluster from VN into plant growth-promoting rhizosphere bacteria Pseudomonas protegens CHA0 and enhancing its activity to 48.16 nmol C2H2/mg/h through promoter replacement and cluster rearrangement. The engineered strain CHA0-PVNnif was found to positively impact the growth of Arabidopsis thaliana col-0 and Triticum aestivum L. (wheat). This study expanded the role of plant growth-promoting rhizobacteria (PGPR) and provided a research foundation for enhancing nitrogenase activity.
Collapse
Affiliation(s)
- Haocheng He
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Weijin Zheng
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- College of Life and Geographic Sciences, Kashi University, Kashi 844099, China
| | - Shuai Xiao
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liang Gong
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - He Li
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR 999078, China
| | - Kexuan Zhou
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR 999078, China
| | - Letian Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- State Key Lab of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Qiang Tu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yi Zhun Zhu
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR 999078, China
- State Key Lab of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Youming Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
2
|
Chanderban M, Hill CA, Dhamad AE, Lessner DJ. Expression of V-nitrogenase and Fe-nitrogenase in Methanosarcina acetivorans is controlled by molybdenum, fixed nitrogen, and the expression of Mo-nitrogenase. Appl Environ Microbiol 2023; 89:e0103323. [PMID: 37695043 PMCID: PMC10537573 DOI: 10.1128/aem.01033-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/07/2023] [Indexed: 09/12/2023] Open
Abstract
All nitrogen-fixing bacteria and archaea (diazotrophs) use molybdenum (Mo) nitrogenase to reduce dinitrogen (N2) to ammonia, with some also containing vanadium (V) and iron-only (Fe) nitrogenases that lack Mo. Among diazotrophs, the regulation and usage of the alternative V-nitrogenase and Fe-nitrogenase in methanogens are largely unknown. Methanosarcina acetivorans contains nif, vnf, and anf gene clusters encoding putative Mo-nitrogenase, V-nitrogenase, and Fe-nitrogenase, respectively. This study investigated nitrogenase expression and growth by M. acetivorans in response to fixed nitrogen, Mo/V availability, and CRISPRi repression of the nif, vnf, and/or anf gene clusters. The availability of Mo and V significantly affected growth of M. acetivorans with N2 but not with NH4Cl. M. acetivorans exhibited the fastest growth rate and highest cell yield during growth with N2 in medium containing Mo, and the slowest growth in medium lacking Mo and V. qPCR analysis revealed the transcription of the nif operon is only moderately affected by depletion of fixed nitrogen and Mo, whereas vnf and anf transcription increased significantly when fixed nitrogen and Mo were depleted, with removal of Mo being key. Immunoblot analysis revealed Mo-nitrogenase is detected when fixed nitrogen is depleted regardless of Mo availability, while V-nitrogenase and Fe-nitrogenase are detected only in the absence of fixed nitrogen and Mo. CRISPRi repression studies revealed that V-nitrogenase and/or Fe-nitrogenase are required for Mo-independent diazotrophy, and unexpectedly that the expression of Mo-nitrogenase is also required. These results reveal that alternative nitrogenase production in M. acetivorans is tightly controlled and dependent on Mo-nitrogenase expression. IMPORTANCE Methanogens and closely related methanotrophs are the only archaea known or predicted to possess nitrogenase. Methanogens play critical roles in both the global biological nitrogen and carbon cycles. Moreover, methanogens are an ancient microbial lineage and nitrogenase likely originated in methanogens. An understanding of the usage and properties of nitrogenases in methanogens can provide new insight into the evolution of nitrogen fixation and aid in the development nitrogenase-based biotechnology. This study provides the first evidence that a methanogen can produce all three forms of nitrogenases, including simultaneously. The results reveal components of Mo-nitrogenase regulate or are needed to produce V-nitrogenase and Fe-nitrogenase in methanogens, a result not seen in bacteria. Overall, this study provides a foundation to understand the assembly, regulation, and activity of the alternative nitrogenases in methanogens.
Collapse
Affiliation(s)
- Melissa Chanderban
- Department of Biological Sciences, University of Arkansas-Fayetteville, Fayetteville, Arkansas, USA
| | - Christopher A. Hill
- Department of Biological Sciences, University of Arkansas-Fayetteville, Fayetteville, Arkansas, USA
| | - Ahmed E. Dhamad
- Department of Biological Sciences, University of Arkansas-Fayetteville, Fayetteville, Arkansas, USA
- Department of Biological Sciences, Wasit University, Wasit, Iraq
| | - Daniel J. Lessner
- Department of Biological Sciences, University of Arkansas-Fayetteville, Fayetteville, Arkansas, USA
| |
Collapse
|
3
|
Pérez‐González A, Jimenez‐Vicente E, Salinero‐Lanzarote A, Harris DF, Seefeldt LC, Dean DR. AnfO
controls fidelity of nitrogenase
FeFe
protein maturation by preventing misincorporation of
FeV
‐cofactor. Mol Microbiol 2022; 117:1080-1088. [PMID: 35220629 PMCID: PMC9310841 DOI: 10.1111/mmi.14890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 11/26/2022]
Abstract
Azotobacter vinelandii produces three genetically distinct, but structurally and mechanistically similar nitrogenase isozymes designated as Mo‐dependent, V‐dependent, or Fe‐only based on the heterometal contained within their associated active site cofactors. These catalytic cofactors, which provide the site for N2 binding and reduction, are, respectively, designated as FeMo‐cofactor, FeV‐cofactor, and FeFe‐cofactor. Fe‐only nitrogenase is a poor catalyst for N2 fixation, when compared to the Mo‐dependent and V‐dependent nitrogenases and is only produced when neither Mo nor V is available. Under conditions favoring the production of Fe‐only nitrogenase a gene product designated AnfO preserves the fidelity of Fe‐only nitrogenase by preventing the misincorporation of FeV‐cofactor, which results in the accumulation of a hybrid enzyme that cannot reduce N2. These results are interpreted to indicate that AnfO controls the fidelity of Fe‐only nitrogenase maturation during the physiological transition from conditions that favor V‐dependent nitrogenase utilization to Fe‐only nitrogenase utilization to support diazotrophic growth.
Collapse
Affiliation(s)
| | | | - Alvaro Salinero‐Lanzarote
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Pozuelo de Alarcón, 28223 Madrid Spain
| | - Derek F. Harris
- Department of Chemistry and Biochemistry Utah State University Logan UT USA
| | - Lance C. Seefeldt
- Department of Chemistry and Biochemistry Utah State University Logan UT USA
| | - Dennis R. Dean
- Department of Biochemistry, Virginia Tech, Blacksburg Virginia USA
| |
Collapse
|
4
|
Zanello P. Structure and electrochemistry of proteins harboring iron-sulfur clusters of different nuclearities. Part V. Nitrogenases. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
5
|
Varghese F, Kabasakal BV, Cotton CAR, Schumacher J, Rutherford AW, Fantuzzi A, Murray JW. A low-potential terminal oxidase associated with the iron-only nitrogenase from the nitrogen-fixing bacterium Azotobacter vinelandii. J Biol Chem 2019; 294:9367-9376. [PMID: 31043481 PMCID: PMC6579470 DOI: 10.1074/jbc.ra118.007285] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/26/2019] [Indexed: 11/06/2022] Open
Abstract
The biological route for nitrogen gas entering the biosphere is reduction to ammonia by the nitrogenase enzyme, which is inactivated by oxygen. Three types of nitrogenase exist, the least-studied of which is the iron-only nitrogenase. The Anf3 protein in the bacterium Rhodobacter capsulatus is essential for diazotrophic (i.e. nitrogen-fixing) growth with the iron-only nitrogenase, but its enzymatic activity and function are unknown. Here, we biochemically and structurally characterize Anf3 from the model diazotrophic bacterium Azotobacter vinelandii Determining the Anf3 crystal structure to atomic resolution, we observed that it is a dimeric flavocytochrome with an unusually close interaction between the heme and the FAD cofactors. Measuring the reduction potentials by spectroelectrochemical redox titration, we observed values of -420 ± 10 and -330 ± 10 mV for the two FAD potentials and -340 ± 1 mV for the heme. We further show that Anf3 accepts electrons from spinach ferredoxin and that Anf3 consumes oxygen without generating superoxide or hydrogen peroxide. We predict that Anf3 protects the iron-only nitrogenase from oxygen inactivation by functioning as an oxidase in respiratory protection, with flavodoxin or ferredoxin as the physiological electron donors.
Collapse
Affiliation(s)
- Febin Varghese
- From the Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Burak Veli Kabasakal
- From the Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Charles A R Cotton
- From the Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jörg Schumacher
- From the Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - A William Rutherford
- From the Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Andrea Fantuzzi
- From the Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - James W Murray
- From the Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
6
|
Proteome Profiling of the Rhodobacter capsulatus Molybdenum Response Reveals a Role of IscN in Nitrogen Fixation by Fe-Nitrogenase. J Bacteriol 2015; 198:633-43. [PMID: 26644433 DOI: 10.1128/jb.00750-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/12/2015] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED Rhodobacter capsulatus is capable of synthesizing two nitrogenases, a molybdenum-dependent nitrogenase and an alternative Mo-free iron-only nitrogenase, enabling this diazotroph to grow with molecular dinitrogen (N2) as the sole nitrogen source. Here, the Mo responses of the wild type and of a mutant lacking ModABC, the high-affinity molybdate transporter, were examined by proteome profiling, Western analysis, epitope tagging, and lacZ reporter fusions. Many Mo-controlled proteins identified in this study have documented or presumed roles in nitrogen fixation, demonstrating the relevance of Mo control in this highly ATP-demanding process. The levels of Mo-nitrogenase, NifHDK, and the Mo storage protein, Mop, increased with increasing Mo concentrations. In contrast, Fe-nitrogenase, AnfHDGK, and ModABC, the Mo transporter, were expressed only under Mo-limiting conditions. IscN was identified as a novel Mo-repressed protein. Mo control of Mop, AnfHDGK, and ModABC corresponded to transcriptional regulation of their genes by the Mo-responsive regulators MopA and MopB. Mo control of NifHDK and IscN appeared to be more complex, involving different posttranscriptional mechanisms. In line with the simultaneous control of IscN and Fe-nitrogenase by Mo, IscN was found to be important for Fe-nitrogenase-dependent diazotrophic growth. The possible role of IscN as an A-type carrier providing Fe-nitrogenase with Fe-S clusters is discussed. IMPORTANCE Biological nitrogen fixation is a central process in the global nitrogen cycle by which the abundant but chemically inert dinitrogen (N2) is reduced to ammonia (NH3), a bioavailable form of nitrogen. Nitrogen reduction is catalyzed by nitrogenases found in diazotrophic bacteria and archaea but not in eukaryotes. All diazotrophs synthesize molybdenum-dependent nitrogenases. In addition, some diazotrophs, including Rhodobacter capsulatus, possess catalytically less efficient alternative Mo-free nitrogenases, whose expression is repressed by Mo. Despite the importance of Mo in biological nitrogen fixation, this is the first study analyzing the proteome-wide Mo response in a diazotroph. IscN was recognized as a novel member of the molybdoproteome in R. capsulatus. It was dispensable for Mo-nitrogenase activity but supported diazotrophic growth under Mo-limiting conditions.
Collapse
|
7
|
NifA- and CooA-coordinated cowN expression sustains nitrogen fixation by Rhodobacter capsulatus in the presence of carbon monoxide. J Bacteriol 2014; 196:3494-502. [PMID: 25070737 DOI: 10.1128/jb.01754-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhodobacter capsulatus fixes atmospheric dinitrogen via two nitrogenases, Mo- and Fe-nitrogenase, which operate under different conditions. Here, we describe the functions in nitrogen fixation and regulation of the rcc00574 (cooA) and rcc00575 (cowN) genes, which are located upstream of the structural genes of Mo-nitrogenase, nifHDK. Disruption of cooA or cowN specifically impaired Mo-nitrogenase-dependent growth at carbon monoxide (CO) concentrations still tolerated by the wild type. The cooA gene was shown to belong to the Mo-nitrogenase regulon, which is exclusively expressed when ammonium is limiting. Its expression was activated by NifA1 and NifA2, the transcriptional activators of nifHDK. AnfA, the transcriptional activator of Fe-nitrogenase genes, repressed cooA, thereby counteracting NifA activation. CooA activated cowN expression in response to increasing CO concentrations. Base substitutions in the presumed CooA binding site located upstream of the cowN transcription start site abolished cowN expression, indicating that cowN regulation by CooA is direct. In conclusion, a transcription factor-based network controls cowN expression to protect Mo-nitrogenase (but not Fe-nitrogenase) under appropriate conditions.
Collapse
|
8
|
Coordinated expression of fdxD and molybdenum nitrogenase genes promotes nitrogen fixation by Rhodobacter capsulatus in the presence of oxygen. J Bacteriol 2013; 196:633-40. [PMID: 24272776 DOI: 10.1128/jb.01235-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Rhodobacter capsulatus is able to grow with N2 as the sole nitrogen source using either a molybdenum-dependent or a molybdenum-free iron-only nitrogenase whose expression is strictly inhibited by ammonium. Disruption of the fdxD gene, which is located directly upstream of the Mo-nitrogenase genes, nifHDK, abolished diazotrophic growth via Mo-nitrogenase at oxygen concentrations still tolerated by the wild type, thus demonstrating the importance of FdxD under semiaerobic conditions. In contrast, FdxD was not beneficial for diazotrophic growth depending on Fe-nitrogenase. These findings suggest that the 2Fe2S ferredoxin FdxD specifically supports the Mo-nitrogenase system, probably by protecting Mo-nitrogenase against oxygen, as previously shown for its Azotobacter vinelandii counterpart, FeSII. Expression of fdxD occurred under nitrogen-fixing conditions, but not in the presence of ammonium. Expression of fdxD strictly required NifA1 and NifA2, the transcriptional activators of the Mo-nitrogenase genes, but not AnfA, the transcriptional activator of the Fe-nitrogenase genes. Expression of the fdxD and nifH genes, as well as the FdxD and NifH protein levels, increased with increasing molybdate concentrations. Molybdate induction of fdxD was independent of the molybdate-sensing regulators MopA and MopB, which repress anfA transcription at micromolar molybdate concentrations. In this report, we demonstrate the physiological relevance of an fesII-like gene, fdxD, and show that the cellular nitrogen and molybdenum statuses are integrated to control its expression.
Collapse
|
9
|
Bacteroidales ectosymbionts of gut flagellates shape the nitrogen-fixing community in dry-wood termites. ISME JOURNAL 2011; 6:1302-13. [PMID: 22189498 DOI: 10.1038/ismej.2011.194] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Although it is well documented that the lack of nitrogen in the diet of wood-feeding termites is compensated by the nitrogen-fixing capacity of their gut microbiota, the bacteria responsible for this activity are largely unknown. Here, we analyzed the diversity and expression of nitrogenase genes (homologs of nifH) in four species of dry-wood termites (Kalotermitidae), which thrive on a particularly nitrogen-poor resource. Although each species harbored a highly diverse suite of termite-specific homologs in their microliter-sized hindgut, only a core set related to nifH genes of Treponema and Azoarcus spp., 'Azobacteroides pseudotrichonymphae', the first member of the Bacteroidales identified as a diazotroph, and termite-gut-specific anfH genes of hitherto unknown origin were preferentially expressed. Transcription patterns corroborated that the populations of active diazotrophs differ fundamentally between termite genera. Capillary-picked suspensions of the flagellates Devescovina arta and Snyderella tabogae revealed that their bacterial ectosymbionts each possess two paralogs of nifH, which apparently have been acquired consecutively during evolution of Bacteroidales, but only one of them (anfH) is actively expressed. Transcription patterns correlated neither with the molybdenum content of the diet nor with intestinal hydrogen concentrations, measured with microsensors. We propose that the nitrogen-fixing community in different dry-wood termites is shaped by the symbionts of their specific flagellate populations. Our findings suggest that the diazotrophic nature of 'Armantifilum devescovinae' has an important role in the nitrogen metabolism of dry-wood termites and is the driving force of co-evolution with its flagellate host.
Collapse
|
10
|
Nitrogenase gene amplicons from global marine surface waters are dominated by genes of non-cyanobacteria. PLoS One 2011; 6:e19223. [PMID: 21559425 PMCID: PMC3084785 DOI: 10.1371/journal.pone.0019223] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 03/22/2011] [Indexed: 11/23/2022] Open
Abstract
Cyanobacteria are thought to be the main N2-fixing organisms
(diazotrophs) in marine pelagic waters, but recent molecular analyses indicate
that non-cyanobacterial diazotrophs are also present and active. Existing data
are, however, restricted geographically and by limited sequencing depths. Our
analysis of 79,090 nitrogenase (nifH) PCR amplicons encoding
7,468 unique proteins from surface samples (ten DNA samples and two RNA samples)
collected at ten marine locations world-wide provides the first in-depth survey
of a functional bacterial gene and yield insights into the composition and
diversity of the nifH gene pool in marine waters. Great
divergence in nifH composition was observed between sites.
Cyanobacteria-like genes were most frequent among amplicons from the warmest
waters, but overall the data set was dominated by nifH
sequences most closely related to non-cyanobacteria. Clusters related to Alpha-,
Beta-, Gamma-, and Delta-Proteobacteria were most common and showed distinct
geographic distributions. Sequences related to anaerobic bacteria
(nifH Cluster III) were generally rare, but preponderant in
cold waters, especially in the Arctic. Although the two transcript samples were
dominated by unicellular cyanobacteria, 42% of the identified
non-cyanobacterial nifH clusters from the corresponding DNA
samples were also detected in cDNA. The study indicates that non-cyanobacteria
account for a substantial part of the nifH gene pool in marine
surface waters and that these genes are at least occasionally expressed. The
contribution of non-cyanobacterial diazotrophs to the global N2
fixation budget cannot be inferred from sequence data alone, but the prevalence
of non-cyanobacterial nifH genes and transcripts suggest that
these bacteria are ecologically significant.
Collapse
|
11
|
Gisin J, Müller A, Pfänder Y, Leimkühler S, Narberhaus F, Masepohl B. A Rhodobacter capsulatus member of a universal permease family imports molybdate and other oxyanions. J Bacteriol 2010; 192:5943-52. [PMID: 20851900 PMCID: PMC2976454 DOI: 10.1128/jb.00742-10] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 09/03/2010] [Indexed: 02/04/2023] Open
Abstract
Molybdenum (Mo) is an important trace element that is toxic at high concentrations. To resolve the mechanisms underlying Mo toxicity, Rhodobacter capsulatus mutants tolerant to high Mo concentrations were isolated by random transposon Tn5 mutagenesis. The insertion sites of six independent isolates mapped within the same gene predicted to code for a permease of unknown function located in the cytoplasmic membrane. During growth under Mo-replete conditions, the wild-type strain accumulated considerably more Mo than the permease mutant. For mutants defective for the permease, the high-affinity molybdate importer ModABC, or both transporters, in vivo Mo-dependent nitrogenase (Mo-nitrogenase) activities at different Mo concentrations suggested that ModABC and the permease import molybdate in nanomolar and micromolar ranges, respectively. Like the permease mutants, a mutant defective for ATP sulfurylase tolerated high Mo concentrations, suggesting that ATP sulfurylase is the main target of Mo inhibition in R. capsulatus. Sulfate-dependent growth of a double mutant defective for the permease and the high-affinity sulfate importer CysTWA was reduced compared to those of the single mutants, implying that the permease plays an important role in sulfate uptake. In addition, permease mutants tolerated higher tungstate and vanadate concentrations than the wild type, suggesting that the permease acts as a general oxyanion importer. We propose to call this permease PerO (for oxyanion permease). It is the first reported bacterial molybdate transporter outside the ABC transporter family.
Collapse
Affiliation(s)
- Jonathan Gisin
- Biologie der Mikroorganismen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44780 Bochum, Germany, Molekulare Mikrobiologie und Enzymologie, Fachbereich Biologie, Universität Konstanz, 78457 Constance, Germany, Molekulare Enzymologie, Institut für Biochemie und Biologie, Universität Potsdam, 14469 Potsdam, Germany
| | - Alexandra Müller
- Biologie der Mikroorganismen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44780 Bochum, Germany, Molekulare Mikrobiologie und Enzymologie, Fachbereich Biologie, Universität Konstanz, 78457 Constance, Germany, Molekulare Enzymologie, Institut für Biochemie und Biologie, Universität Potsdam, 14469 Potsdam, Germany
| | - Yvonne Pfänder
- Biologie der Mikroorganismen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44780 Bochum, Germany, Molekulare Mikrobiologie und Enzymologie, Fachbereich Biologie, Universität Konstanz, 78457 Constance, Germany, Molekulare Enzymologie, Institut für Biochemie und Biologie, Universität Potsdam, 14469 Potsdam, Germany
| | - Silke Leimkühler
- Biologie der Mikroorganismen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44780 Bochum, Germany, Molekulare Mikrobiologie und Enzymologie, Fachbereich Biologie, Universität Konstanz, 78457 Constance, Germany, Molekulare Enzymologie, Institut für Biochemie und Biologie, Universität Potsdam, 14469 Potsdam, Germany
| | - Franz Narberhaus
- Biologie der Mikroorganismen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44780 Bochum, Germany, Molekulare Mikrobiologie und Enzymologie, Fachbereich Biologie, Universität Konstanz, 78457 Constance, Germany, Molekulare Enzymologie, Institut für Biochemie und Biologie, Universität Potsdam, 14469 Potsdam, Germany
| | - Bernd Masepohl
- Biologie der Mikroorganismen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44780 Bochum, Germany, Molekulare Mikrobiologie und Enzymologie, Fachbereich Biologie, Universität Konstanz, 78457 Constance, Germany, Molekulare Enzymologie, Institut für Biochemie und Biologie, Universität Potsdam, 14469 Potsdam, Germany
| |
Collapse
|
12
|
Müller A, Püttmann L, Barthel R, Schön M, Lackmann JW, Narberhaus F, Masepohl B. Relevance of individual Mo-box nucleotides to DNA binding by the related molybdenum-responsive regulators MopA and MopB in Rhodobacter capsulatus. FEMS Microbiol Lett 2010; 307:191-200. [PMID: 20455946 DOI: 10.1111/j.1574-6968.2010.01981.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Either of two related molybdenum-responsive regulators, MopA and MopB, of Rhodobacter capsulatus is sufficient to repress the nitrogen-fixation gene anfA. In contrast, MopA (but not MopB) activates mop, which codes for a molybdate (Mo)-binding molbindin. Both regulators bind to conserved cis-regulatory elements called Mo-boxes. Single-base substitution of two highly conserved nucleotides within the anfA-Mo-box (T21C and C24T) had little effect on regulator binding and anfA expression as shown by DNA mobility shift assays and reporter gene fusions, respectively. In contrast to C24T, mutation C24A strongly diminished binding and repression by MopA and MopB, showing that different nucleotide substitutions at the same position may have very different effects. A triple mutation destroying the left half-site of the mop-Mo-box completely abolished mop expression by MopA, demonstrating the importance of the mop-Mo-box for mop activation. Two point mutations (T23A and T24C) still allowed binding by MopA, but abolished mop activation, most likely because these nucleotides overlap with the RNA polymerase-binding site. A mutant mop promoter, in which the mop-Mo-box was exchanged against the anfA-Mo-box, allowed activation by MopA, showing that a former repressor-binding site may act as an activator-binding site depending on its location relative to the other promoter elements.
Collapse
Affiliation(s)
- Alexandra Müller
- Lehrstuhl für Biologie der Mikroorganismen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, Bochum, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Wiethaus J, Wirsing A, Narberhaus F, Masepohl B. Overlapping and specialized functions of the molybdenum-dependent regulators MopA and MopB in Rhodobacter capsulatus. J Bacteriol 2006; 188:8441-51. [PMID: 17028278 PMCID: PMC1698257 DOI: 10.1128/jb.01188-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The phototrophic purple bacterium Rhodobacter capsulatus encodes two similar but functionally not identical molybdenum-dependent regulator proteins (MopA and MopB), which are known to replace each other in repression of the modABC genes (coding for an ABC-type high-affinity Mo transport system) and anfA (coding for the transcriptional activator of Fe-nitrogenase genes). We identified further Mo-regulated (mor) genes coding for a putative ABC-type transport system of unknown function (MorABC) and a putative Mo-binding protein (Mop). The genes coding for MopA and the ModABC transporter form part of a single transcriptional unit, mopA-modABCD, as shown by reverse transcriptase PCR. Immediately upstream of mopA and transcribed in the opposite direction is mopB. The genes coding for the putative MorABC transporter belong to two divergently transcribed operons, morAB and morC. Expression studies based on lacZ reporter gene fusions in mutant strains defective for either MopA, MopB, or both revealed that the regulators substitute for each other in Mo-dependent repression of morAB and morC. Specific Mo-dependent activation of the mop gene by MopA, but not MopB, was found to control the putative Mo-binding protein. Both MopA and MopB are thought to bind to conserved DNA sequences with dyad symmetry in the promoter regions of all target genes. The positions of these so-called Mo boxes relative to the transcription start sites (as determined by primer extension analyses) differed between Mo-repressed genes and the Mo-activated mop gene. DNA mobility shift assays showed that MopA and MopB require molybdenum to bind to their target sites with high affinity.
Collapse
Affiliation(s)
- Jessica Wiethaus
- Lehrstuhl für Biologie der Mikroorganismen, Fakultät für Biologie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | | | | | | |
Collapse
|