1
|
Qiao J, Zhu W, Du D, Morigen M. Characterizing Common Factors Affecting Replication Initiation During H 2O 2 Exposure and Genetic Mutation-Induced Oxidative Stress in Escherichia coli. Int J Mol Sci 2025; 26:2968. [PMID: 40243598 PMCID: PMC11989076 DOI: 10.3390/ijms26072968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/13/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Oxidative stress is prevalent in organisms, and excessive oxidative damage can trigger cell death. Bacteria have evolved multiple pathways to cope with adverse stress, including the regulation of the cell cycle. Previous studies show that non-lethal exposure to H2O2 and mutations in antioxidant enzymes suppress replication initiation in Escherichia coli. The existence of common regulatory factors governing replication initiation across diverse causes-induced oxidative stress remains unclear. In this study, we utilized flow cytometry to determine the replication pattern of E. coli, and found that oxidative stress also participated in the inhibition of replication initiation by a defective iron regulation (fur-bfr-dps deletion). Adding a certain level of ATP promoted replication initiation in various antioxidant enzyme-deficient mutants and the ΔfurΔbfrΔdps mutant, suggesting that low ATP levels could be a common factor in the inhibition of replication initiation by different causes-induced oxidative stress. More potential common factors were screened using proteomics, followed by genetic validation with H2O2 stress. We found that oxidative stress might mediate the inhibition of replication initiation by interfering with the metabolism of glycine, glutamate, ornithine, and aspartate. Blocking CcmA-dependent cytochrome c biosynthesis, deleting the efflux pump proteins MdtABCD and TolC, or the arabinose transporter AraFHG eliminated the replication initiation inhibition by H2O2. In conclusion, this study uncovers a common multifactorial pathway of different causes-induced oxidative stress inhibiting replication initiation. Dormant and persistent bacteria exhibit an arrested or slow cell cycle, and non-lethal oxidative stress promotes their formation. Our findings contribute to exploring strategies to limit dormant and persistent bacterial formation by maintaining faster DNA replication initiation (cell cycle progression).
Collapse
Affiliation(s)
- Jiaxin Qiao
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (J.Q.); (D.D.)
| | - Weiwei Zhu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Dongdong Du
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (J.Q.); (D.D.)
| | - Morigen Morigen
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (J.Q.); (D.D.)
| |
Collapse
|
2
|
Herrick J, Norris V, Kohiyama M. 60 Years of Studies into the Initiation of Chromosome Replication in Bacteria. Biomolecules 2025; 15:203. [PMID: 40001506 PMCID: PMC11853086 DOI: 10.3390/biom15020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/20/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025] Open
Abstract
The Replicon Theory has guided the way experiments into DNA replication have been designed and interpreted for 60 years. As part of the related, explanatory package guiding experiments, it is thought that the timing of the cell cycle depends in some way on a critical mass for initiation, Mi, as licensed by a variety of macromolecules and molecules reflecting the state of the cell. To help in the re-interpretation of this data, we focus mainly on the roles of DnaA, RNA polymerase, SeqA, and ribonucleotide reductase in the context of the "nucleotypic effect".
Collapse
Affiliation(s)
- John Herrick
- Independent Researcher, 3 rue des Jeûneurs, 75002 Paris, France;
| | - Vic Norris
- Laboratory of Bacterial Communication and Anti-Infection Strategies, EA 4312, University of Rouen, 76000 Rouen, France
| | - Masamichi Kohiyama
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France;
| |
Collapse
|
3
|
Zhu W, Xi L, Qiao J, Du D, Wang Y, Morigen. Involvement of OxyR and Dps in the repression of replication initiation by DsrA small RNA in Escherichia coli. Gene 2023; 882:147659. [PMID: 37482259 DOI: 10.1016/j.gene.2023.147659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
Regulation of the cell cycle process is an effective measure to ensure the stability and fidelity of genetic material during the reproduction of bacteria under different stresses. The small RNA DsrA helps bacteria adapt to environments by binding to multiple targets, but its association with the cell cycle remains unclear. Detection by flow cytometry, we first found that the knockout of dsrA promoted replication initiation, and corresponding overexpression of DsrA inhibited replication initiation in Escherichia coli. The absence of the chaperone protein Hfq, the DNA replication negative regulator protein Dps, or the transcription factor OxyR, was found to cause DsrA to no longer inhibit replication initiation. Excess DsrA promotes expression of the oxyR and dps gene, whereas β-galactosidase activity assay showed that deleting oxyR limited the enhancement of dps promoter transcriptional activity by DsrA. OxyR is a known positive regulator of Dps. Our data suggests that the effect of DsrA on replication initiation requires Hfq and that the upregulation of Dps expression by OxyR in response to DsrA levels may be a potential regulatory pathway for the negative regulation of DNA replication initiation.
Collapse
Affiliation(s)
- Weiwei Zhu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Lingjun Xi
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Jiaxin Qiao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Dongdong Du
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yao Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Morigen
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
| |
Collapse
|
4
|
Yao Y, Sun H, Wurihan, Gegeheng, Gezi, Skarstad K, Fan L, Morigen. A DnaA-dependent riboswitch for transcription attenuation of the his operon. MLIFE 2023; 2:126-140. [PMID: 38817620 PMCID: PMC10989985 DOI: 10.1002/mlf2.12075] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/04/2023] [Indexed: 06/01/2024]
Abstract
Transcription attenuation in response to the availability of a specific amino acid is believed to be controlled by alternative configurations of RNA secondary structures that lead to the arrest of translation or the release of the arrested ribosome from the leader mRNA molecule. In this study, we first report a possible example of the DnaA-dependent riboswitch for transcription attenuation in Escherichia coli. We show that (i) DnaA regulates the transcription of the structural genes but not that of the leader hisL gene; (ii) DnaA might bind to rDnaA boxes present in the HisL-SL RNA, and subsequently attenuate the transcription of the operon; (iii) the HisL-SL RNA and rDnaA boxes are phylogenetically conserved and evolutionarily important; and (iv) the translating ribosome is required for deattenuation of the his operon, whereas tRNAHis strengthens attenuation. This mechanism seems to be phylogenetically conserved in Gram-negative bacteria and evolutionarily important.
Collapse
Affiliation(s)
- Yuan Yao
- State Key Laboratory of Reproductive Regulation, Breeding of Grassland Livestock, School of Life SciencesInner Mongolia UniversityHohhotChina
| | - Hongwei Sun
- State Key Laboratory of Reproductive Regulation, Breeding of Grassland Livestock, School of Life SciencesInner Mongolia UniversityHohhotChina
| | - Wurihan
- State Key Laboratory of Reproductive Regulation, Breeding of Grassland Livestock, School of Life SciencesInner Mongolia UniversityHohhotChina
| | - Gegeheng
- State Key Laboratory of Reproductive Regulation, Breeding of Grassland Livestock, School of Life SciencesInner Mongolia UniversityHohhotChina
| | - Gezi
- State Key Laboratory of Reproductive Regulation, Breeding of Grassland Livestock, School of Life SciencesInner Mongolia UniversityHohhotChina
| | - Kirsten Skarstad
- Department of Molecular Cell Biology and Department of MicrobiologyOslo University HospitalOsloNorway
| | - Lifei Fan
- State Key Laboratory of Reproductive Regulation, Breeding of Grassland Livestock, School of Life SciencesInner Mongolia UniversityHohhotChina
| | - Morigen
- State Key Laboratory of Reproductive Regulation, Breeding of Grassland Livestock, School of Life SciencesInner Mongolia UniversityHohhotChina
| |
Collapse
|
5
|
Cao Q, Huang W, Zhang Z, Chu P, Wei T, Zheng H, Liu C. The Quantification of Bacterial Cell Size: Discrepancies Arise from Varied Quantification Methods. Life (Basel) 2023; 13:1246. [PMID: 37374027 PMCID: PMC10302572 DOI: 10.3390/life13061246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/21/2023] [Accepted: 05/21/2023] [Indexed: 06/29/2023] Open
Abstract
The robust regulation of the cell cycle is critical for the survival and proliferation of bacteria. To gain a comprehensive understanding of the mechanisms regulating the bacterial cell cycle, it is essential to accurately quantify cell-cycle-related parameters and to uncover quantitative relationships. In this paper, we demonstrate that the quantification of cell size parameters using microscopic images can be influenced by software and by the parameter settings used. Remarkably, even if the consistent use of a particular software and specific parameter settings is maintained throughout a study, the type of software and the parameter settings can significantly impact the validation of quantitative relationships, such as the constant-initiation-mass hypothesis. Given these inherent characteristics of microscopic image-based quantification methods, it is recommended that conclusions be cross-validated using independent methods, especially when the conclusions are associated with cell size parameters that were obtained under different conditions. To this end, we presented a flexible workflow for simultaneously quantifying multiple bacterial cell-cycle-related parameters using microscope-independent methods.
Collapse
Affiliation(s)
- Qian’andong Cao
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqi Huang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Zhang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pan Chu
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Wei
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hai Zheng
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenli Liu
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Li G, Yao Y. TorR/TorS Two-Component system resists extreme acid environment by regulating the key response factor RpoS in Escherichia coli. Gene 2022; 821:146295. [PMID: 35181503 DOI: 10.1016/j.gene.2022.146295] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/26/2021] [Accepted: 02/04/2022] [Indexed: 01/23/2023]
Abstract
Response to acid stress is critical for Escherichia coli to successfully complete its life-cycle. Acid resistance is an indispensable mechanism that allows neutralophilic bacteria, such as E. coli, to survive in the gastrointestinal tract. Escherichia coli acid tolerance has been extensively studied over the past decades, and most studies have focused on mechanisms of gene regulation. Bacterial two-component signal transduction systems sense and respond to external environmental changes through regulating genes expression. However, there has been little research on the mechanism of the TorR/TorS system in acid resistance, and how TorR/TorS regulate the expression ofacid-resistantgenes is still unclear. We found that TorR/TorS deletion in E. coli cells led to a growth defect in extreme acid conditions,andthis defectmightdepend on the nutritional conditionsand growth phase.TorS/TorR sensed an extremely acidic environment, and this TorR phosphorylation process might not be entirely dependent on TorS.RNA-seqand RT-qPCR results suggested that TorR regulated expressions of gadB, gadC, hdeA, gadE, mdtE, mdtF, gadX, and slp acid-resistant genes. Compared with wild-type cells, the stress response factor RpoSlevels and itsexpressions were significantly decreased in Δ torR cellsstimulated by extreme acid. And under these circumstances, the expression of iraM was significantly reduced to 0.6-fold inΔ torR cells. Electrophoreticmobility shift assay showed that TorR-His6 could interact with the rpoS promoter sequence in vitro. β-galactosidase activity assayresultsapprovedthat TorR might bind the rpoS promoter region in vivo. After the mutation of the TorR-box in the rpoS promoter region, these interactions were no longer observed. Taken together, we propose thatTorS and potential Hanks model Ser/Thr kinase received an external acid stress signal and then phosphorylated TorR, which guided the expressions of a variety of acid resistance genes. Moreover,TorRcoped with extreme acid environmentsthroughRpoS, levels of which might be maintained byIraM. Finally,TorR may confer E. coli with the abilityto resist gastric acid, allowing the bacterium to reach the surface of the terminal ileum and large intestine mucosal epithelial cells through the gastric acid barrier, andestablishcolonization and pathogenicity.
Collapse
Affiliation(s)
- Guotao Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China.
| | - Yuan Yao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China; Department of Neurology, Inner Mongolia People's Hospital, Hohhot, China.
| |
Collapse
|
7
|
GeZi G, Liu R, Du D, Wu N, Bao N, Fan L, Morigen M. YfiF, an unknown protein, affects initiation timing of chromosome replication in Escherichia coli. J Basic Microbiol 2021; 61:883-899. [PMID: 34486756 DOI: 10.1002/jobm.202100265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/03/2021] [Accepted: 08/21/2021] [Indexed: 11/09/2022]
Abstract
The Escherichia coli YfiF protein is functionally unknown, being predicted as a transfer RNA/ribosomal RNA (tRNA/rRNA) methyltransferase. We find that absence of the yfiF gene delays initiation of chromosome replication and the delay is reversed by ectopic expression of YfiF, whereas excess YfiF causes an early initiation. A slight decrease in both cell size and number of origin per mass is observed in ΔyfiF cells. YfiF does not genetically interact with replication proteins such as DnaA, DnaB, and DnaC. Interestingly, YfiF is associated with ribosome modulation factor (RMF), hibernation promotion factor (HPF), and the tRNA methyltransferase TrmL. Defects in replication initiation of Δrmf, Δhpf, and ΔtrmL can be rescued by overexpression of YfiF, indicating that YfiF is functionally identical to RMF, HPF, and TrmL in terms of replication initiation. Also, YfiF interacts with the rRNA methyltransferase RsmC. Moreover, the total amount of proteins and DnaA content per cell decreases or increases in the absence of YfiF or the presence of excess YfiF. These facts suggest that YfiF is a ribosomal dormancy-like factor, affecting ribosome function. Thus, we propose that YfiF is involved in the correct timing of chromosome replication by changing the DnaA content per cell as a result of affecting ribosome function.
Collapse
Affiliation(s)
- GeZi GeZi
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Rui Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Dongdong Du
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Nier Wu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Narisu Bao
- Institute of Mongolian Medicinal Chemistry, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
| | - Lifei Fan
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Morigen Morigen
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
8
|
Grimwade JE, Rozgaja TA, Gupta R, Dyson K, Rao P, Leonard AC. Origin recognition is the predominant role for DnaA-ATP in initiation of chromosome replication. Nucleic Acids Res 2019; 46:6140-6151. [PMID: 29800247 PMCID: PMC6158602 DOI: 10.1093/nar/gky457] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 05/11/2018] [Indexed: 01/06/2023] Open
Abstract
In all cells, initiation of chromosome replication depends on the activity of AAA+ initiator proteins that form complexes with replication origin DNA. In bacteria, the conserved, adenosine triphosphate (ATP)-regulated initiator protein, DnaA, forms a complex with the origin, oriC, that mediates DNA strand separation and recruitment of replication machinery. Complex assembly and origin activation requires DnaA-ATP, which differs from DnaA-ADP in its ability to cooperatively bind specific low affinity sites and also to oligomerize into helical filaments. The degree to which each of these activities contributes to the DnaA-ATP requirement for initiation is not known. In this study, we compared the DnaA-ATP dependence of initiation from wild-type Escherichia coli oriC and a synthetic origin (oriCallADP), whose multiple low affinity DnaA sites bind DnaA-ATP and DnaA-ADP similarly. OriCallADP was fully occupied and unwound by DnaA-ADP in vitro, and, in vivo, oriCallADP suppressed lethality of DnaA mutants defective in ATP binding and ATP-specific oligomerization. However, loss of preferential DnaA-ATP binding caused over-initiation and increased sensitivity to replicative stress. The findings indicate both DnaA-ATP and DnaA-ADP can perform most of the mechanical functions needed for origin activation, and suggest that a key reason for ATP-regulation of DnaA is to control replication initiation frequency.
Collapse
Affiliation(s)
- Julia E Grimwade
- Department of Biological Sciences, Florida Institute of Technology, 150 W. University Blvd., Melbourne, FL 32901, USA
| | - Tania A Rozgaja
- AREVA Inc North America, 6100 Southwest Blvd #400, Benbrook, TX 76109, USA
| | - Rajat Gupta
- Department of Biological Sciences, Florida Institute of Technology, 150 W. University Blvd., Melbourne, FL 32901, USA
| | - Kyle Dyson
- University of Florida College of Medicine, P.O. Box 100215, Gainesville, FL 32610, USA
| | - Prassanna Rao
- Department of Biological Sciences, Florida Institute of Technology, 150 W. University Blvd., Melbourne, FL 32901, USA
| | - Alan C Leonard
- Department of Biological Sciences, Florida Institute of Technology, 150 W. University Blvd., Melbourne, FL 32901, USA
| |
Collapse
|
9
|
Zhang S, Wunier W, Yao Y, Morigen M. Defects in ribosome function delay the initiation of chromosome replication in Escherichia coli. J Basic Microbiol 2018; 58:1091-1099. [PMID: 30211949 DOI: 10.1002/jobm.201800295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/14/2018] [Accepted: 08/25/2018] [Indexed: 01/14/2023]
Abstract
The Sra protein is a component of the 30S ribosomal subunit while RimJ is a ribosome-associated protein that plays a role in the maturation of the 30S ribosomal subunit. Here we found that Δsra and ΔrimJ cells showed a delayed initiation of DNA replication, prolonged doubling time, decreased cell size, and decreased amounts of total protein and DnaA per cell compared with these observed for wild-type cells. A temperature sensitivity test demonstrated that absence of the Sra or RimJ protein did not change the temperature sensitivity of the dnaA46, dnaB252, or dnaC2 mutants. Moreover, ectopic expression of Sra reversed the mutant phenotype while cells carrying the pACYC177-rimJ plasmid did not reverse the rimJ mutant phenotype. The results indicate that deletion of sra or rimJ cause defects in ribosomal function and affect the translation process, leading to a decrease in synthesis of proteins including DnaA. Therefore, we conclude that Sra- and RimJ-mediated ribosomal function is required for precise timing of initiation of chromosome replication.
Collapse
Affiliation(s)
- Shujun Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China.,School of Life Sciences, Inner Mongolia University for Nationalities, Tongliao, China
| | - Wunier Wunier
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yuan Yao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China.,Department of Neurology, Inner Mongolia People's Hospital, Hohhot, China
| | - Morigen Morigen
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
10
|
Absence of RstA results in delayed initiation of DNA replication in Escherichia coli. PLoS One 2018; 13:e0200688. [PMID: 30011323 PMCID: PMC6047807 DOI: 10.1371/journal.pone.0200688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/23/2018] [Indexed: 11/19/2022] Open
Abstract
RstB/RstA is an uncharacterized Escherichia coli two-component system, the regulatory effects of which on the E. coli cell cycle remain unclear. We found that the doubling time and average number of replication origins per cell in an ΔrstB mutant were the same as the wild-type, and the average number of replication origins in an ΔrstA mutant was 18.2% lower than in wild-type cells. The doubling times were 34 min, 35 min, and 40 min for the wild-type, ΔrstB, and ΔrstA strains, respectively. Ectopic expression of RstA from plasmid pACYC-rstA partly reversed the ΔrstA mutant phenotypes. The amount of initiator protein DnaA per cell was reduced by 40% in the ΔrstA mutant compared with the wild-type, but the concentration of DnaA did not change as the total amount of cellular protein was also reduced in these cells. Deletion or overproduction of RstA does not change the temperature sensitivity of dnaA46, dnaB252 and dnaC2. The expression of hupA was decreased by 0.53-fold in ΔrstA. RstA interacted with Topoisomerase I weakly in vivo and increased its activity of relaxing the negative supercoiled plasmid. Our data suggest that deletion of RstA leads to delayed initiation of DNA replication, and RstA may affect initiation of replication by controlling expression of dnaA or hupA. Furthermore, the delayed initiation may by caused by the decreased activity of topoisomerase I in RstA mutant.
Collapse
|
11
|
Katayama T. Initiation of DNA Replication at the Chromosomal Origin of E. coli, oriC. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1042:79-98. [PMID: 29357054 DOI: 10.1007/978-981-10-6955-0_4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Escherichia coli chromosomal origin consists of a duplex-unwinding region and a region bearing a DNA-bending protein, IHF-binding site, and clusters of binding sites for the initiator protein DnaA. ATP-DnaA molecules form highly organized oligomers in a process stimulated by DiaA, a DnaA-binding protein. The resultant ATP-DnaA complexes promote local unwinding of oriC with the aid of IHF, for which specific interaction of DnaA with the single-stranded DNA is crucial. DnaA complexes also interact with DnaB helicases bound to DnaC loaders, promoting loading of DnaB onto the unwound DNA strands for bidirectional replication. Initiation of replication is strictly regulated during the cell cycle by multiple regulatory systems for oriC and DnaA. The activity of oriC is regulated by its methylation state, whereas that of DnaA depends on the form of the bound nucleotide. ATP-DnaA can be yielded from initiation-inactive ADP-DnaA in a timely manner depending on specific chromosomal DNA elements termed DARS (DnaA-reactivating sequences). After initiation, DnaA-bound ATP is hydrolyzed by two systems, yielding ADP-DnaA. In this review, these and other mechanisms of initiation and its regulation in E. coli are described.
Collapse
Affiliation(s)
- Tsutomu Katayama
- Department of Molecular Biology, Graduate School of Pharmaceutical Science, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
12
|
Wurihan, Gezi, Brambilla E, Wang S, Sun H, Fan L, Shi Y, Sclavi B, Morigen. DnaA and LexA Proteins Regulate Transcription of the uvrB Gene in Escherichia coli: The Role of DnaA in the Control of the SOS Regulon. Front Microbiol 2018; 9:1212. [PMID: 29967594 PMCID: PMC6015884 DOI: 10.3389/fmicb.2018.01212] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/17/2018] [Indexed: 12/27/2022] Open
Abstract
The uvrB gene belongs to the SOS network, encoding a key component of the nucleotide excision repair. The uvrB promoter region contains three identified promoters with four LexA binding sites, one consensus and six potential DnaA binding sites. A more than threefold increase in transcription of the chromosomal uvrB gene is observed in both the ΔlexA ΔsulA cells and dnaAA345S cells, and a fivefold increase in the ΔlexA ΔsulA dnaAA345S cells relative to the wild-type cells. The full activity of the uvrB promoter region requires both the uvrBp1-2 and uvrBp3 promoters and is repressed by both the DnaA and LexA proteins. LexA binds tightly to LexA-box1 at the uvrBp1-2 promoter irrespective of the presence of DnaA and this binding is important for the control of the uvrBp1-2 promoter. DnaA and LexA, however, compete for binding to and regulation of the uvrBp3 promoter in which the DnaA-box6 overlaps with LexA-box4. The transcription control of uvrBp3 largely depends on DnaA-box6. Transcription of other SOS regulon genes, such as recN and dinJ, is also repressed by both DnaA and LexA. Interestingly, the absence of LexA in the presence of the DnaAA345S mutant leads to production of elongated cells with incomplete replication, aberrant nucleoids and slow growth. We propose that DnaA is a modulator for maintenance of genome integrity during the SOS response by limiting the expression of the SOS regulon.
Collapse
Affiliation(s)
- Wurihan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Gezi
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | | | - Shuwen Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Hongwei Sun
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Lifei Fan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yixin Shi
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China.,School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Bianca Sclavi
- LBPA, UMR 8113, CNRS, ENS Paris-Saclay, Cachan, France
| | - Morigen
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
13
|
Yao Y, Enkhtsetseg S, Odsbu I, Fan L, Morigen M. Mutations of DnaA-boxes in the oriR region increase replication frequency of the MiniR1-1 plasmid. BMC Microbiol 2018; 18:27. [PMID: 29614952 PMCID: PMC5883639 DOI: 10.1186/s12866-018-1162-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 03/02/2018] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The MiniR1-1 plasmid is a derivative of the R1 plasmid, a low copy cloning vector. RESULTS Nucleotide sequencing analysis shows that the MiniR1-1 plasmid is a 6316 bp circular double-stranded DNA molecule with an oriR1 (origin for replication). The plasmid carries the repA, tap, copA and bla genes, and genes for ORF1 and ORF2. MiniR1-1 contains eight DnaA-binding sites (DnaA-boxes). DnaA-box1 is in the oriR1 region and fully matched to the DnaA-box consensus sequence, and DnaA-box8, with one mismatch, is close to the copA gene. The presence of the MiniR1-1 plasmid leads to an accumulation of the D-period cells and an increase in cell size of slowly growing Escherichia coli cells, suggesting that the presence of MiniR1-1 delays cell division. Mutations in the MiniR1-1 DnaA-box1 and DnaA-box8 significantly increase the copy number of the plasmid and the mutations in DnaA-box1 also affect cell size. It is likely that titration of DnaA to DnaA-boxes negatively controls replication of the MiniR1-1 plasmid and delays cell division. Interestingly, DnaA weakly interacts with the initiator protein RepA in vivo. CONCLUSION DnaA regulates the copy number of MiniR1-1 as a negative factor through interacting with the RepA protein.
Collapse
Affiliation(s)
- Yuan Yao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock,School of Life Sciences, Inner Mongolia University, Hohhot, 010070 China
| | - Sukhbold Enkhtsetseg
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock,School of Life Sciences, Inner Mongolia University, Hohhot, 010070 China
| | - Ingvild Odsbu
- Department of Public Health Sciences, Karolinska Institutet, Stockholm, Sweden
| | - Lifei Fan
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock,School of Life Sciences, Inner Mongolia University, Hohhot, 010070 China
| | - Morigen Morigen
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock,School of Life Sciences, Inner Mongolia University, Hohhot, 010070 China
| |
Collapse
|
14
|
Abstract
More than 50 years have passed since the presentation of the Replicon Model which states that a positively acting initiator interacts with a specific site on a circular chromosome molecule to initiate DNA replication. Since then, the origin of chromosome replication, oriC, has been determined as a specific region that carries sequences required for binding of positively acting initiator proteins, DnaA-boxes and DnaA proteins, respectively. In this review we will give a historical overview of significant findings which have led to the very detailed knowledge we now possess about the initiation process in bacteria using Escherichia coli as the model organism, but emphasizing that virtually all bacteria have DnaA proteins that interacts with DnaA boxes to initiate chromosome replication. We will discuss the dnaA gene regulation, the special features of the dnaA gene expression, promoter strength, and translation efficiency, as well as, the DnaA protein, its concentration, its binding to DnaA-boxes, and its binding of ATP or ADP. Furthermore, we will discuss the different models for regulation of initiation which have been proposed over the years, with particular emphasis on the Initiator Titration Model.
Collapse
Affiliation(s)
- Flemming G. Hansen
- Department of Bioengineering, Technical University of Denmark, Lyngby, Denmark
| | - Tove Atlung
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
15
|
Katayama T, Kasho K, Kawakami H. The DnaA Cycle in Escherichia coli: Activation, Function and Inactivation of the Initiator Protein. Front Microbiol 2017; 8:2496. [PMID: 29312202 PMCID: PMC5742627 DOI: 10.3389/fmicb.2017.02496] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 11/30/2017] [Indexed: 01/30/2023] Open
Abstract
This review summarizes the mechanisms of the initiator protein DnaA in replication initiation and its regulation in Escherichia coli. The chromosomal origin (oriC) DNA is unwound by the replication initiation complex to allow loading of DnaB helicases and replisome formation. The initiation complex consists of the DnaA protein, DnaA-initiator-associating protein DiaA, integration host factor (IHF), and oriC, which contains a duplex-unwinding element (DUE) and a DnaA-oligomerization region (DOR) containing DnaA-binding sites (DnaA boxes) and a single IHF-binding site that induces sharp DNA bending. DiaA binds to DnaA and stimulates DnaA assembly at the DOR. DnaA binds tightly to ATP and ADP. ATP-DnaA constructs functionally different sub-complexes at DOR, and the DUE-proximal DnaA sub-complex contains IHF and promotes DUE unwinding. The first part of this review presents the structures and mechanisms of oriC-DnaA complexes involved in the regulation of replication initiation. During the cell cycle, the level of ATP-DnaA level, the active form for initiation, is strictly regulated by multiple systems, resulting in timely replication initiation. After initiation, regulatory inactivation of DnaA (RIDA) intervenes to reduce ATP-DnaA level by hydrolyzing the DnaA-bound ATP to ADP to yield ADP-DnaA, the inactive form. RIDA involves the binding of the DNA polymerase clamp on newly synthesized DNA to the DnaA-inactivator Hda protein. In datA-dependent DnaA-ATP hydrolysis (DDAH), binding of IHF at the chromosomal locus datA, which contains a cluster of DnaA boxes, results in further hydrolysis of DnaA-bound ATP. SeqA protein inhibits untimely initiation at oriC by binding to newly synthesized oriC DNA and represses dnaA transcription in a cell cycle dependent manner. To reinitiate DNA replication, ADP-DnaA forms oligomers at DnaA-reactivating sequences (DARS1 and DARS2), resulting in the dissociation of ADP and the release of nucleotide-free apo-DnaA, which then binds ATP to regenerate ATP-DnaA. In vivo, DARS2 plays an important role in this process and its activation is regulated by timely binding of IHF to DARS2 in the cell cycle. Chromosomal locations of DARS sites are optimized for the strict regulation for timely replication initiation. The last part of this review describes how DDAH and DARS regulate DnaA activity.
Collapse
Affiliation(s)
- Tsutomu Katayama
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazutoshi Kasho
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hironori Kawakami
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
16
|
A Spatial Control for Correct Timing of Gene Expression during the Escherichia coli Cell Cycle. Genes (Basel) 2016; 8:genes8010001. [PMID: 28025549 PMCID: PMC5294996 DOI: 10.3390/genes8010001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/09/2016] [Accepted: 12/15/2016] [Indexed: 01/14/2023] Open
Abstract
Temporal transcriptions of genes are achieved by different mechanisms such as dynamic interaction of activator and repressor proteins with promoters, and accumulation and/or degradation of key regulators as a function of cell cycle. We find that the TorR protein localizes to the old poles of the Escherichia coli cells, forming a functional focus. The TorR focus co-localizes with the nucleoid in a cell-cycle-dependent manner, and consequently regulates transcription of a number of genes. Formation of one TorR focus at the old poles of cells requires interaction with the MreB and DnaK proteins, and ATP, suggesting that TorR delivery requires cytoskeleton organization and ATP. Further, absence of the protein–protein interactions and ATP leads to loss in function of TorR as a transcription factor. We propose a mechanism for timing of cell-cycle-dependent gene transcription, where a transcription factor interacts with its target genes during a specific period of the cell cycle by limiting its own spatial distribution.
Collapse
|
17
|
Kasho K, Tanaka H, Sakai R, Katayama T. Cooperative DnaA Binding to the Negatively Supercoiled datA Locus Stimulates DnaA-ATP Hydrolysis. J Biol Chem 2016; 292:1251-1266. [PMID: 27941026 DOI: 10.1074/jbc.m116.762815] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/07/2016] [Indexed: 11/06/2022] Open
Abstract
Timely initiation of replication in Escherichia coli requires functional regulation of the replication initiator, ATP-DnaA. The cellular level of ATP-DnaA increases just before initiation, after which its level decreases through hydrolysis of DnaA-bound ATP, yielding initiation-inactive ADP-DnaA. Previously, we reported a novel DnaA-ATP hydrolysis system involving the chromosomal locus datA and named it datA-dependent DnaA-ATP hydrolysis (DDAH). The datA locus contains a binding site for a nucleoid-associating factor integration host factor (IHF) and a cluster of three known DnaA-binding sites, which are important for DDAH. However, the mechanisms underlying the formation and regulation of the datA-IHF·DnaA complex remain unclear. We now demonstrate that a novel DnaA box within datA is essential for ATP-DnaA complex formation and DnaA-ATP hydrolysis. Specific DnaA residues, which are important for interaction with bound ATP and for head-to-tail inter-DnaA interaction, were also required for ATP-DnaA-specific oligomer formation on datA Furthermore, we show that negative DNA supercoiling of datA stabilizes ATP-DnaA oligomers, and stimulates datA-IHF interaction and DnaA-ATP hydrolysis. Relaxation of DNA supercoiling by the addition of novobiocin, a DNA gyrase inhibitor, inhibits datA function in cells. On the basis of these results, we propose a mechanistic model of datA-IHF·DnaA complex formation and DNA supercoiling-dependent regulation for DDAH.
Collapse
Affiliation(s)
- Kazutoshi Kasho
- From the Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroyuki Tanaka
- From the Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Ryuji Sakai
- From the Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Tsutomu Katayama
- From the Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
18
|
DNA Replication Control Is Linked to Genomic Positioning of Control Regions in Escherichia coli. PLoS Genet 2016; 12:e1006286. [PMID: 27589233 PMCID: PMC5010248 DOI: 10.1371/journal.pgen.1006286] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 08/09/2016] [Indexed: 11/19/2022] Open
Abstract
Chromosome replication in Escherichia coli is in part controlled by three non-coding genomic sequences, DARS1, DARS2, and datA that modulate the activity of the initiator protein DnaA. The relative distance from oriC to the non-coding regions are conserved among E. coli species, despite large variations in genome size. Here we use a combination of i) site directed translocation of each region to new positions on the bacterial chromosome and ii) random transposon mediated translocation followed by culture evolution, to show genetic evidence for the importance of position. Here we provide evidence that the genomic locations of these regulatory sequences are important for cell cycle control and bacterial fitness. In addition, our work shows that the functionally redundant DARS1 and DARS2 regions play different roles in replication control. DARS1 is mainly involved in maintaining the origin concentration, whether DARS2 is also involved in maintaining single cell synchrony.
Collapse
|
19
|
Abstract
In recent years it has become clear that complex regulatory circuits control the initiation step of DNA replication by directing the assembly of a multicomponent molecular machine (the orisome) that separates DNA strands and loads replicative helicase at oriC, the unique chromosomal origin of replication. This chapter discusses recent efforts to understand the regulated protein-DNA interactions that are responsible for properly timed initiation of chromosome replication. It reviews information about newly identified nucleotide sequence features within Escherichia coli oriC and the new structural and biochemical attributes of the bacterial initiator protein DnaA. It also discusses the coordinated mechanisms that prevent improperly timed DNA replication. Identification of the genes that encoded the initiators came from studies on temperature-sensitive, conditional-lethal mutants of E. coli, in which two DNA replication-defective phenotypes, "immediate stop" mutants and "delayed stop" mutants, were identified. The kinetics of the delayed stop mutants suggested that the defective gene products were required specifically for the initiation step of DNA synthesis, and subsequently, two genes, dnaA and dnaC, were identified. The DnaA protein is the bacterial initiator, and in E. coli, the DnaC protein is required to load replicative helicase. Regulation of DnaA accessibility to oriC, the ordered assembly and disassembly of a multi-DnaA complex at oriC, and the means by which DnaA unwinds oriC remain important questions to be answered and the chapter discusses the current state of knowledge on these topics.
Collapse
|
20
|
Khodursky A, Guzmán EC, Hanawalt PC. Thymineless Death Lives On: New Insights into a Classic Phenomenon. Annu Rev Microbiol 2015; 69:247-63. [PMID: 26253395 DOI: 10.1146/annurev-micro-092412-155749] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The primary mechanisms by which bacteria lose viability when deprived of thymine have been elusive for over half a century. Early research focused on stalled replication forks and the deleterious effects of uracil incorporation into DNA from thymidine-deficient nucleotide pools. The initiation of the replication cycle and origin-proximal DNA degradation during thymine starvation have now been quantified via whole-genome microarrays and other approaches. These advances have fostered innovative models and informative experiments in bacteria since this topic was last reviewed. Given that thymineless death is similar in mammalian cells and that certain antibacterial and chemotherapeutic drugs elicit thymine deficiency, a mechanistic understanding of this phenomenon might have valuable biomedical applications.
Collapse
Affiliation(s)
- Arkady Khodursky
- Biotechnology Institute and Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota 55108;
| | - Elena C Guzmán
- Departamento de Bioquímica Biología Molecular y Genética, Universidad de Extremadura, 06071 Badajoz, Spain;
| | - Philip C Hanawalt
- Department of Biology, Stanford University, Stanford, California 94305;
| |
Collapse
|
21
|
Flåtten I, Fossum-Raunehaug S, Taipale R, Martinsen S, Skarstad K. The DnaA Protein Is Not the Limiting Factor for Initiation of Replication in Escherichia coli. PLoS Genet 2015; 11:e1005276. [PMID: 26047361 PMCID: PMC4457925 DOI: 10.1371/journal.pgen.1005276] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/14/2015] [Indexed: 11/29/2022] Open
Abstract
The bacterial replication cycle is driven by the DnaA protein which cycles between the active ATP-bound form and the inactive ADP-bound form. It has been suggested that DnaA also is the main controller of initiation frequency. Initiation is thought to occur when enough ATP-DnaA has accumulated. In this work we have performed cell cycle analysis of cells that contain a surplus of ATP-DnaA and asked whether initiation then occurs earlier. It does not. Cells with more than a 50% increase in the concentration of ATP-DnaA showed no changes in timing of replication. We suggest that although ATP-DnaA is the main actor in initiation of replication, its accumulation does not control the time of initiation. ATP-DnaA is the motor that drives the initiation process, but other factors will be required for the exact timing of initiation in response to the cell’s environment. We also investigated the in vivo roles of datA dependent DnaA inactivation (DDAH) and the DnaA-binding protein DiaA. Loss of DDAH affected the cell cycle machinery only during slow growth and made it sensitive to the concentration of DiaA protein. The result indicates that compromised cell cycle machines perform in a less robust manner. Cell cycle regulation of the bacterium Escherichia coli has been studied for many years, and its understanding is complicated by the fact that overlapping replication cycles occur during growth in rich media. Under such conditions cells initiate several copies of the chromosome. The active form of the CDC6-like DnaA protein is required for initiation of synchronous and well-timed replication cycles and is in a sense the motor of the cell cycle machine. It has long been debated whether it is the accumulation of enough ATP-DnaA that triggers initiation and determines the replication frequency. In this work we have constructed a strain where the “accumulation of ATP-DnaA triggers initiation” model could be tested. Our results indicate that this model requires some modification. We suggest that cell cycle regulation in E. coli has similarities to that of eukaryotes in that origins are “licensed” to initiate by a cell cycle motor and that the precise timing depends on other signaling.
Collapse
Affiliation(s)
- Ingvild Flåtten
- Department of Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Solveig Fossum-Raunehaug
- Department of Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Riikka Taipale
- Department of Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Silje Martinsen
- Department of Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Kirsten Skarstad
- Department of Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- * E-mail:
| |
Collapse
|
22
|
Abstract
Thymineless death (TLD) in bacteria has been a focus of research for decades. Nevertheless, the advances in the last 5 years, with Escherichia coli as the model organism, have been outstanding. Independent research groups have presented compelling results that establish that the initiation of chromosome replication under thymine starvation is a key element in the scenario of TLD. Here we review the experimental results linking the initiation of replication to the lethality under thymine starvation and the proposed mechanisms by which TLD occurs. The concept of this relationship was ‘in the air,’ but approaches were not sufficiently developed to demonstrate the crucial role of DNA initiation in TLD. Genome-wide marker frequency analysis and Two Dimensional agarose gel electrophoresis have been critical methods employed to reveal that initiation events and the degradation of the oriC region occur during thymine starvation. The relationships between these events and TLD have established them to be the main underlying causes of the lethality under thymine starvation. Furthermore, we summarize additional important findings from the study of different mutant strains, which support the idea that the initiation of chromosomal replication and TLD are connected.
Collapse
Affiliation(s)
- Elena C Guzmán
- Departamento de Bioquímica Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura Badajoz, Spain
| | - Carmen M Martín
- Departamento de Bioquímica Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura Badajoz, Spain
| |
Collapse
|
23
|
Khlebodarova TM, Likhoshvai VA. New evidence of an old problem: The coupling of genome replication to cell growth in bacteria. RUSS J GENET+ 2014. [DOI: 10.1134/s102279541408002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
AspC-mediated aspartate metabolism coordinates the Escherichia coli cell cycle. PLoS One 2014; 9:e92229. [PMID: 24670900 PMCID: PMC3966765 DOI: 10.1371/journal.pone.0092229] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 02/19/2014] [Indexed: 01/08/2023] Open
Abstract
Background The fast-growing bacterial cell cycle consists of at least two independent cycles of chromosome replication and cell division. To ensure proper cell cycles and viability, chromosome replication and cell division must be coordinated. It has been suggested that metabolism could affect the Escherichia coli cell cycle, but the idea is still lacking solid evidences. Methodology/Principle Findings We found that absence of AspC, an aminotransferase that catalyzes synthesis of aspartate, led to generation of small cells with less origins and slow growth. In contrast, excess AspC was found to exert the opposite effect. Further analysis showed that AspC-mediated aspartate metabolism had a specific effect in the cell cycle, as only extra aspartate of the 20 amino acids triggered production of bigger cells with more origins per cell and faster growth. The amount of DnaA protein per cell was found to be changed in response to the availability of AspC. Depletion of (p)ppGpp by ΔrelAΔspoT led to a slight delay in initiation of replication, but did not change the replication pattern found in the ΔaspC mutant. Conclusion/Significances The results suggest that AspC-mediated metabolism of aspartate coordinates the E. coli cell cycle through altering the amount of the initiator protein DnaA per cell and the division signal UDP-glucose. Furthermore, AspC sequence conservation suggests similar functions in other organisms.
Collapse
|
25
|
Likhoshvai VA, Khlebodarova TM. Mathematical modeling of bacterial cell cycle: the problem of coordinating genome replication with cell growth. J Bioinform Comput Biol 2014; 12:1450009. [PMID: 24969747 DOI: 10.1142/s0219720014500097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this paper, we perform an analysis of bacterial cell-cycle models implementing different strategies to coordinately regulate genome replication and cell growth dynamics. It has been shown that the problem of coupling these processes does not depend directly on the dynamics of cell volume expansion, but does depend on the type of cell growth law. Our analysis has distinguished two types of cell growth laws, "exponential" and "linear", each of which may include both exponential and linear patterns of cell growth. If a cell grows following a law of the "exponential" type, including the exponential V(t) = V(0) exp (kt) and linear V(t) = V(0)(1 + kt) dynamic patterns, then the cell encounters the problem of coupling growth rates and replication. It has been demonstrated that to solve the problem, it is sufficient for a cell to have a repressor mechanism to regulate DNA replication initiation. For a cell expanding its volume by a law of the "linear" type, including exponential V(t) = V(0) + V(1) exp (kt) and linear V(t) = V(0) + kt dynamic patterns, the problem of coupling growth rates and replication does not exist. In other words, in the context of the coupling problem, a repressor mechanism to regulate DNA replication, and cell growth laws of the "linear" type displays the attributes of universality. The repressor-type mechanism allows a cell to follow any growth dynamic pattern, while the "linear" type growth law allows a cell to use any mechanism to regulate DNA replication.
Collapse
Affiliation(s)
- Vitaly A Likhoshvai
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Prospekt Lavrentieva 10, Novosibirsk 630090, Russia , Novosibirsk State University, av. Pirogova 2, Novosibirsk 630090, Russia
| | | |
Collapse
|
26
|
Morigen M, Flåtten I, Skarstad K. The Escherichia coli datA site promotes proper regulation of cell division. MICROBIOLOGY-SGM 2014; 160:703-710. [PMID: 24574433 DOI: 10.1099/mic.0.074898-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In Escherichia coli inhibition of replication leads to a block of cell division. This checkpoint mechanism ensures that no cell divides without having two complete copies of the genome to pass on to the two daughter cells. The chromosomal datA site is a 1 kb region that contains binding sites for the DnaA replication initiator protein, and which contributes to the inactivation of DnaA. An excess of datA sites provided on plasmids has been found to lead to both a delay in initiation of replication and in cell division during exponential growth. Here we have investigated the effect of datA on the cell division block that occurs upon inhibition of replication initiation in a dnaC2 mutant. We found that this checkpoint mechanism was aided by the presence of datA. In cells where datA was deleted or an excess of DnaA was provided, cell division occurred in the absence of replication and anucleate cells were formed. This finding indicates that loss of datA and/or excess of DnaA protein promote cell division. This conclusion was supported by the finding that the lethality of the division-compromised mutants ftsZ84 and ftsI23 was suppressed by deletion of datA, at the lowest non-permissive temperature. We propose that the cell division block that occurs upon inhibition of DNA replication is, at least in part, due to a drop in the concentration of the ATP-DnaA protein.
Collapse
Affiliation(s)
- Morigen Morigen
- College of Life Sciences, Inner Mongolia University, Da Xue Xi Lu 235, Hohhot, 010021, PR China.,Department of Cell Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo 0310, Norway
| | - Ingvild Flåtten
- Department of Cell Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo 0310, Norway
| | - Kirsten Skarstad
- Department of Cell Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo 0310, Norway
| |
Collapse
|
27
|
Chodavarapu S, Felczak MM, Simmons LA, Murillo A, Kaguni JM. Mutant DnaAs of Escherichia coli that are refractory to negative control. Nucleic Acids Res 2013; 41:10254-67. [PMID: 23990329 PMCID: PMC3905854 DOI: 10.1093/nar/gkt774] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
DnaA is the initiator of DNA replication in bacteria. A mutant DnaA named DnaAcos is unusual because it is refractory to negative regulation. We developed a genetic method to isolate other mutant DnaAs that circumvent regulation to extend our understanding of mechanisms that control replication initiation. Like DnaAcos, one mutant bearing a tyrosine substitution for histidine 202 (H202Y) withstands the regulation exerted by datA, hda and dnaN (β clamp), and both DnaAcos and H202Y resist inhibition by the Hda-β clamp complex in vitro. Other mutant DnaAs carrying G79D, E244K, V303M or E445K substitutions are either only partially sensitive or refractory to inhibition by the Hda-β clamp complex in vitro but are responsive to hda expression in vivo. All mutant DnaAs remain able to interact directly with Hda. Of interest, both DnaAcos and DnaAE244K bind more avidly to Hda. These mutants, by sequestrating Hda, may limit its availability to regulate other DnaA molecules, which remain active to induce extra rounds of DNA replication. Other evidence suggests that a mutant bearing a V292M substitution hyperinitiates by escaping the effect of an unknown regulatory factor. Together, our results provide new insight into the mechanisms that regulate replication initiation in Escherichia coli.
Collapse
Affiliation(s)
- Sundari Chodavarapu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | | | | | | | |
Collapse
|
28
|
Abstract
The replication origin and the initiator protein DnaA are the main targets for regulation of chromosome replication in bacteria. The origin bears multiple DnaA binding sites, while DnaA contains ATP/ADP-binding and DNA-binding domains. When enough ATP-DnaA has accumulated in the cell, an active initiation complex can be formed at the origin resulting in strand opening and recruitment of the replicative helicase. In Escherichia coli, oriC activity is directly regulated by DNA methylation and specific oriC-binding proteins. DnaA activity is regulated by proteins that stimulate ATP-DnaA hydrolysis, yielding inactive ADP-DnaA in a replication-coupled negative-feedback manner, and by DnaA-binding DNA elements that control the subcellular localization of DnaA or stimulate the ADP-to-ATP exchange of the DnaA-bound nucleotide. Regulation of dnaA gene expression is also important for initiation. The principle of replication-coupled negative regulation of DnaA found in E. coli is conserved in eukaryotes as well as in bacteria. Regulations by oriC-binding proteins and dnaA gene expression are also conserved in bacteria.
Collapse
Affiliation(s)
- Kirsten Skarstad
- Department of Cell Biology, Institute for Cancer Research, The Radium Hospital, Oslo University Hospital, 0310 Oslo, Norway
| | | |
Collapse
|
29
|
DnaA binding locus datA promotes DnaA-ATP hydrolysis to enable cell cycle-coordinated replication initiation. Proc Natl Acad Sci U S A 2012; 110:936-41. [PMID: 23277577 DOI: 10.1073/pnas.1212070110] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The initiation of chromosomal DNA replication is rigidly regulated to ensure that it occurs in a cell cycle-coordinated manner. To ensure this in Escherichia coli, multiple systems regulate the activity of the replication initiator ATP-DnaA. The level of ATP-DnaA increases before initiation after which it drops via DnaA-ATP hydrolysis, yielding initiation-inactive ADP-DnaA. DnaA-ATP hydrolysis is crucial to regulation of initiation and mainly occurs by a replication-coupled feedback mechanism named RIDA (regulatory inactivation of DnaA). Here, we report a second DnaA-ATP hydrolysis system that occurs at the chromosomal site datA. This locus has been annotated as a reservoir for DnaA that binds many DnaA molecules in a manner dependent upon the nucleoid-associated factor IHF (integration host factor), resulting in repression of untimely initiations; however, there is no direct evidence for the binding of many DnaA molecules at this locus. We reveal that a complex consisting of datA and IHF promotes DnaA-ATP hydrolysis in a manner dependent on specific inter-DnaA interactions. Deletion of datA or the ihf gene increased ATP-DnaA levels to the maximal attainable levels in RIDA-defective cells. Cell-cycle analysis suggested that IHF binds to datA just after replication initiation at a time when RIDA is activated. We propose a model in which cell cycle-coordinated ATP-DnaA inactivation is regulated in a concerted manner by RIDA and datA.
Collapse
|
30
|
The primosomal protein DnaD inhibits cooperative DNA binding by the replication initiator DnaA in Bacillus subtilis. J Bacteriol 2012; 194:5110-7. [PMID: 22821970 DOI: 10.1128/jb.00958-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DnaA is an AAA+ ATPase and the conserved replication initiator in bacteria. Bacteria control the timing of replication initiation by regulating the activity of DnaA. DnaA binds to multiple sites in the origin of replication (oriC) and is required for recruitment of proteins needed to load the replicative helicase. DnaA also binds to other chromosomal regions and functions as a transcription factor at some of these sites. Bacillus subtilis DnaD is needed during replication initiation for assembly of the replicative helicase at oriC and during replication restart at stalled replication forks. DnaD associates with DnaA at oriC and at other chromosomal regions bound by DnaA. Using purified proteins, we found that DnaD inhibited the ability of DnaA to bind cooperatively to DNA and caused a decrease in the apparent dissociation constant. These effects of DnaD were independent of the ability of DnaA to bind or hydrolyze ATP. Other proteins known to regulate B. subtilis DnaA also affect DNA binding, whereas much of the regulation of Escherichia coli DnaA affects nucleotide hydrolysis or exchange. We found that the rate of nucleotide exchange for B. subtilis DnaA was high and not affected by DnaD. The rapid exchange is similar to that of Staphylococcus aureus DnaA and in contrast to the low exchange rate of Escherichia coli DnaA. We suggest that organisms in which DnaA has a high rate of nucleotide exchange predominantly regulate the DNA binding activity of DnaA and that those with low rates of exchange regulate hydrolysis and exchange.
Collapse
|
31
|
Baxter JC, Sutton MD. Evidence for roles of the Escherichia coli Hda protein beyond regulatory inactivation of DnaA. Mol Microbiol 2012; 85:648-68. [PMID: 22716942 DOI: 10.1111/j.1365-2958.2012.08129.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The ATP-bound form of the Escherichia coli DnaA protein binds 'DnaA boxes' present in the origin of replication (oriC) and operator sites of several genes, including dnaA, to co-ordinate their transcription with initiation of replication. The Hda protein, together with the β sliding clamp, stimulates the ATPase activity of DnaA via a process termed regulatory inactivation of DnaA (RIDA), to regulate the activity of DnaA in DNA replication. Here, we used the mutant dnaN159 strain, which expresses the β159 clamp protein, to gain insight into how the actions of Hda are co-ordinated with replication. Elevated expression of Hda impeded growth of the dnaN159 strain in a Pol II- and Pol IV-dependent manner, suggesting a role for Hda managing the actions of these Pols. In a wild-type strain, elevated levels of Hda conferred sensitivity to nitrofurazone, and suppressed the frequency of -1 frameshift mutations characteristic of Pol IV, while loss of hda conferred cold sensitivity. Using the dnaN159 strain, we identified 24 novel hda alleles, four of which supported E. coli viability despite their RIDA defect. Taken together, these findings suggest that although one or more Hda functions are essential for cell viability, RIDA may be dispensable.
Collapse
Affiliation(s)
- Jamie C Baxter
- Department of Biochemistry, The School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | | |
Collapse
|
32
|
Grant MAA, Saggioro C, Ferrari U, Bassetti B, Sclavi B, Cosentino Lagomarsino M. DnaA and the timing of chromosome replication in Escherichia coli as a function of growth rate. BMC SYSTEMS BIOLOGY 2011; 5:201. [PMID: 22189092 PMCID: PMC3309966 DOI: 10.1186/1752-0509-5-201] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 12/21/2011] [Indexed: 11/16/2022]
Abstract
Background In Escherichia coli, overlapping rounds of DNA replication allow the bacteria to double in faster times than the time required to copy the genome. The precise timing of initiation of DNA replication is determined by a regulatory circuit that depends on the binding of a critical number of ATP-bound DnaA proteins at the origin of replication, resulting in the melting of the DNA and the assembly of the replication complex. The synthesis of DnaA in the cell is controlled by a growth-rate dependent, negatively autoregulated gene found near the origin of replication. Both the regulatory and initiation activity of DnaA depend on its nucleotide bound state and its availability. Results In order to investigate the contributions of the different regulatory processes to the timing of initiation of DNA replication at varying growth rates, we formulate a minimal quantitative model of the initiator circuit that includes the key ingredients known to regulate the activity of the DnaA protein. This model describes the average-cell oscillations in DnaA-ATP/DNA during the cell cycle, for varying growth rates. We evaluate the conditions under which this ratio attains the same threshold value at the time of initiation, independently of the growth rate. Conclusions We find that a quantitative description of replication initiation by DnaA must rely on the dependency of the basic parameters on growth rate, in order to account for the timing of initiation of DNA replication at different cell doubling times. We isolate two main possible scenarios for this, depending on the roles of DnaA autoregulation and DnaA ATP-hydrolysis regulatory process. One possibility is that the basal rate of regulatory inactivation by ATP hydrolysis must vary with growth rate. Alternatively, some parameters defining promoter activity need to be a function of the growth rate. In either case, the basal rate of gene expression needs to increase with the growth rate, in accordance with the known characteristics of the dnaA promoter. Furthermore, both inactivation and autorepression reduce the amplitude of the cell-cycle oscillations of DnaA-ATP/DNA.
Collapse
Affiliation(s)
- Matthew A A Grant
- BSS Group, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | | | | | | | | | | |
Collapse
|
33
|
Johnsen L, Flåtten I, Morigen, Dalhus B, Bjørås M, Waldminghaus T, Skarstad K. The G157C mutation in the Escherichia coli sliding clamp specifically affects initiation of replication. Mol Microbiol 2010; 79:433-46. [PMID: 21219462 DOI: 10.1111/j.1365-2958.2010.07453.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Escherichia coli cells with a point mutation in the dnaN gene causing the amino acid change Gly157 to Cys, were found to underinitiate replication and grow with a reduced origin and DNA concentration. The mutant β clamp also caused excessive conversion of ATP-DnaA to ADP-DnaA. The DnaA protein was, however, not the element limiting initiation of replication. Overproduction of DnaA protein, which in wild-type cells leads to over-replication, had no effect in the dnaN(G157C) mutant. Origins already opened by DnaA seemed to remain open for a prolonged period, with a stage of initiation involving β clamp loading, presumably limiting the initiation process. The existence of opened origins led to a moderate SOS response. Lagging strand synthesis, which also requires loading of the β clamp, was apparently unaffected. The result indicates that some aspects of β clamp activity are specific to the origin. It is possible that the origin specific activities of β contribute to regulation of initiation frequency.
Collapse
Affiliation(s)
- Line Johnsen
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
34
|
Primosomal proteins DnaD and DnaB are recruited to chromosomal regions bound by DnaA in Bacillus subtilis. J Bacteriol 2010; 193:640-8. [PMID: 21097613 DOI: 10.1128/jb.01253-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The initiation of DNA replication requires the binding of the initiator protein, DnaA, to specific binding sites in the chromosomal origin of replication, oriC. DnaA also binds to many sites around the chromosome, outside oriC, and acts as a transcription factor at several of these. In low-G+C Gram-positive bacteria, the primosomal proteins DnaD and DnaB, in conjunction with loader ATPase DnaI, load the replicative helicase at oriC, and this depends on DnaA. DnaD and DnaB also are required to load the replicative helicase outside oriC during replication restart, independently of DnaA. Using chromatin immunoprecipitation, we found that DnaD and DnaB, but not the replicative helicase, are associated with many of the chromosomal regions bound by DnaA in Bacillus subtilis. This association was dependent on DnaA, and the order of recruitment was the same as that at oriC, but it was independent of a functional oriC and suggests that DnaD and DnaB do not require open complex formation for the stable association with DNA. These secondary binding regions for DnaA could be serving as a reservoir for excess DnaA, DnaD, and DnaB to help properly regulate replication initiation and perhaps are analogous to the proposed function of the datA locus in Escherichia coli. Alternatively, DnaD and DnaB might modulate the activity of DnaA at the secondary binding regions. All three of these proteins are widely conserved and likely have similar functions in a range of organisms.
Collapse
|
35
|
Katayama T, Ozaki S, Keyamura K, Fujimitsu K. Regulation of the replication cycle: conserved and diverse regulatory systems for DnaA and oriC. Nat Rev Microbiol 2010; 8:163-70. [PMID: 20157337 DOI: 10.1038/nrmicro2314] [Citation(s) in RCA: 230] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chromosomal replication must be limited to once and only once per cell cycle. This is accomplished by multiple regulatory pathways that govern initiator proteins and replication origins. A principal feature of DNA replication is the coupling of the replication reaction to negative-feedback regulation. Some of the factors that are important in this process have been discovered, including the clamp (DNA polymerase III subunit-beta (DnaN)), the datA locus, SeqA, DnaA homologue protein (Hda) and YabA, as well as factors that are involved at other stages of the regulatory mechanism, such as DnaA initiator-associating protein (DiaA), the DnaA-reactivating sequence (DARS) loci and Soj. Here, we describe the regulation of DnaA, one of the central proteins involved in bacterial DNA replication, by these factors in Escherichia coli, Bacillus subtilis and Caulobacter crescentus.
Collapse
Affiliation(s)
- Tsutomu Katayama
- Department of Molecular Biology, Kyushu University Graduate School of Pharmaceutical Sciences, Fukuoka 812-8582, Japan.
| | | | | | | |
Collapse
|
36
|
Felczak MM, Kaguni JM. DnaAcos hyperinitiates by circumventing regulatory pathways that control the frequency of initiation in Escherichia coli. Mol Microbiol 2009; 72:1348-63. [PMID: 19432804 DOI: 10.1111/j.1365-2958.2009.06724.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Mutants of dnaAcos are inviable at 30 degrees C because DnaAcos hyperinitiates, leading to new replication forks that apparently collide from behind with stalled forks, thereby generating lethal double-strand breaks. By comparison, an elevated level of DnaA also induces extra initiations, but lethality occurs only in strains defective in repairing double-strand breaks. To explore the model that the chromosomal level of DnaAcos, or the increased abundance of DnaA, increases initiation frequency by, escaping or overcoming pathways that control initiation, respectively, we developed a genetic selection and identified seqA, datA, dnaN and hda, which function in pathways that either act at oriC or modulate DnaA activity. To assess each pathway's relative effectiveness, we used genetically inactivated strains, and quantified initiation frequency after elevating the level of DnaA. The results indicate that the hda-dependent pathway has a stronger effect on initiation than pathways involving seqA and datA. Testing the model that DnaAcos overinitiates because it fails to respond to one or more regulatory mechanisms, we show that dnaAcos is unresponsive to hda and dnaN, which encodes the beta clamp, and also datA, a locus proposed to titer excess DnaA. These results explain how DnaAcos hyperinitiates to interfere with viability.
Collapse
Affiliation(s)
- Magdalena M Felczak
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA
| | | |
Collapse
|
37
|
Nozaki S, Yamada Y, Ogawa T. Initiator titration complex formed at datA with the aid of IHF regulates replication timing in Escherichia coli. Genes Cells 2009; 14:329-41. [PMID: 19170757 DOI: 10.1111/j.1365-2443.2008.01269.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The initiation of replication in Escherichia coli is negatively controlled by a mechanism referred to as 'initiator titration', a process by which the initiator protein, DnaA, is titrated to newly replicated binding sequences on the chromosome to reduce the initiation potential for replication. Initiator titration occurs predominantly at the datA locus that binds exceptionally large amounts of DnaA molecules to prevent aberrant initiations. We found that this was enabled by integration host factor (IHF). Within datA, there is a consensus IHF recognition sequence between the two DnaA recognition sequences (DnaA boxes) essential for its function. Binding of IHF to this site was demonstrated both in vitro and in vivo. Disruption of the core sequence in the consensus of the IHF-binding resulted in increased origin concentration as observed in Delta datA cells. Furthermore, the number of DnaA molecules bound to datA was reduced in cells carrying a disruption in the IHF-binding core sequence. The IHF-binding site and the essential DnaA boxes had to be located at a proper distance and orientation to maintain the accurate initiation timing. Therefore, IHF is a unique element in the control of replication initiation that acts negatively at datA, while known to act as a positive regulator at oriC.
Collapse
Affiliation(s)
- Shingo Nozaki
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | |
Collapse
|
38
|
Flåtten I, Morigen, Skarstad K. DnaA protein interacts with RNA polymerase and partially protects it from the effect of rifampicin. Mol Microbiol 2008; 71:1018-30. [PMID: 19170875 DOI: 10.1111/j.1365-2958.2008.06585.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The Escherichia coli DnaA protein forms an oligomer at the origin and initiates chromosome replication with the aid of architectural elements and transcription by RNA polymerase. Rifampicin inhibits initiation of transcription by RNA polymerase and thus also initiation of replication. Here, we report that wild-type cells undergo rifampicin-resistant initiation of replication during slow growth in acetate medium. The rifampicin-resistant initiation was prevented by reducing the availability of DnaA. In vitro experiments showed that the DnaA protein interacted with RNA polymerase and that it afforded a partial protection from the negative effect of rifampicin. It is possible that rifampicin-resistant rounds of replication occur when a surplus of DnaA is available at the origin. In rich medium wild-type cells do not exhibit rifampicin-resistant rounds of replication, possibly indicating that there is no surplus DnaA, and that DnaA activity is the factor limiting the process of initiation. During growth in acetate medium, on the contrary, DnaA activity is not limiting in the same way because an initiation potential is present and can be turned into extra rounds of replication when rifampicin is added. The result suggests that regulation of replication initiation may differ at different growth rates.
Collapse
Affiliation(s)
- Ingvild Flåtten
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Rikshospitalet, University of Oslo, 0310 Oslo, Norway
| | | | | |
Collapse
|
39
|
Kato JI. Regulatory Network of the Initiation of Chromosomal Replication inEscherichia coli. Crit Rev Biochem Mol Biol 2008; 40:331-42. [PMID: 16338685 DOI: 10.1080/10409230500366090] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The bacterial chromosome is replicated once during the division cycle, a process ensured by the tight regulation of initiation at oriC. In prokaryotes, the initiator protein DnaA plays an essential role at the initiation step, and feedback control is critical in regulating initiation. Three systems have been identified that exert feedback control in Escherichia coli, all of which are necessary for tight strict regulation of the initiation step. In particular, the ATP-dependent control of DnaA activity is essential. A missing link in initiator activity regulation has been identified, facilitating analysis of the reaction mechanism. Furthermore, key components of this regulatory network have also been described. Because the eukaryotic initiator complex, ORC, is also regulated by ATP, the bacterial system provides an important model for understanding initiation in eukaryotes. This review summarizes recent studies on the regulation of initiator activity.
Collapse
Affiliation(s)
- Jun-ichi Kato
- Department of Biology, Graduate School of Science, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo, Japan
| |
Collapse
|
40
|
Ishikawa S, Ogura Y, Yoshimura M, Okumura H, Cho E, Kawai Y, Kurokawa K, Oshima T, Ogasawara N. Distribution of stable DnaA-binding sites on the Bacillus subtilis genome detected using a modified ChIP-chip method. DNA Res 2007; 14:155-68. [PMID: 17932079 PMCID: PMC2533591 DOI: 10.1093/dnares/dsm017] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We developed a modified ChIP-chip method, designated ChAP-chip (Chromatin Affinity Precipitation coupled with tiling chip). The binding sites of Bacillus subtilis Spo0J determined using this technique were consistent with previous findings. A DNA replication initiator protein, DnaA, formed stable complexes at eight intergenic regions on the B. subtilis genome. Characterization of the binding sequences suggested that two factors—the local density of DnaA boxes and their affinities for DnaA—are critical for stable binding. We further showed that in addition to autoregulation, DnaA directly modulate the expression of sda in a positive, and ywlC and yydA in a negative manner. Examination of possible stable DnaA-binding sequences in other Bacillus species suggested that DnaA-dependent regulation of those genes is maintained in most bacteria examined, supporting their biological significance. In addition, a possible stable DnaA-binding site downstream of gcp is also suggested to be conserved. Furthermore, potential DnaA-binding sequences specific for each bacterium have been identified, generally in close proximity to oriC. These findings suggest that DnaA plays several additional roles, such as control of the level of effective initiator, ATP-DnaA, and/or stabilization of the domain structure of the genome around oriC for the proper initiation of chromosome replication.
Collapse
Affiliation(s)
- Shu Ishikawa
- Graduate School of Information Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Rasmussen T, Jensen RB, Skovgaard O. The two chromosomes of Vibrio cholerae are initiated at different time points in the cell cycle. EMBO J 2007; 26:3124-31. [PMID: 17557077 PMCID: PMC1914095 DOI: 10.1038/sj.emboj.7601747] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Accepted: 05/16/2007] [Indexed: 01/09/2023] Open
Abstract
The bacterium Vibrio cholerae, the cause of the diarrhoeal disease cholera, has its genome divided between two chromosomes, a feature uncommon for bacteria. The two chromosomes are of different sizes and different initiator molecules control their replication independently. Using novel methods for analysing flow cytometry data and marker frequency analysis, we show that the small chromosome II is replicated late in the C period of the cell cycle, where most of chromosome I has been replicated. Owing to the delay in initiation of chromosome II, the two chromosomes terminate replication at approximately the same time and the average number of replication origins per cell is higher for chromosome I than for chromosome II. Analysis of cell-cycle parameters shows that chromosome replication and segregation is exceptionally fast in V. cholerae. The divided genome and delayed replication of chromosome II may reduce the metabolic burden and complexity of chromosome replication by postponing DNA synthesis to the last part of the cell cycle and reducing the need for overlapping replication cycles during rapid proliferation.
Collapse
Affiliation(s)
- Tue Rasmussen
- Department of Science, Systems and Models, Roskilde University, Roskilde, Denmark
| | - Rasmus Bugge Jensen
- Department of Science, Systems and Models, Roskilde University, Roskilde, Denmark
| | - Ole Skovgaard
- Department of Science, Systems and Models, Roskilde University, Roskilde, Denmark
- Department of Science, Systems and Models, 18-1, Roskilde University, Universitetsvej 1, Roskilde 4000, Denmark. Tel.: +45 4674 2405; Fax: +45 4674 3011; E-mail:
| |
Collapse
|
42
|
Abstract
Escherichia coli is a model system to study the mechanism of DNA replication and its regulation during the cell cycle. One regulatory pathway ensures that initiation of DNA replication from the chromosomal origin, oriC, is synchronous and occurs at the proper time in the bacterial cell cycle. A major player in this pathway is SeqA protein and involves its ability to bind preferentially to oriC when it is hemi-methylated. The second pathway modulates DnaA activity by stimulating the hydrolysis of ATP bound to DnaA protein. The regulatory inactivation of DnaA function involves an interaction with Hda protein and the beta dimer, which functions as a sliding clamp for the replicase, DNA polymerase III holoenzyme. The datA locus represents a third mechanism, which appears to influence the availability of DnaA protein in supporting rifampicin-resistant initiations.
Collapse
Affiliation(s)
- Jon M Kaguni
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA.
| |
Collapse
|
43
|
Smulczyk-Krawczyszyn A, Jakimowicz D, Ruban-Osmialowska B, Zawilak-Pawlik A, Majka J, Chater K, Zakrzewska-Czerwinska J. Cluster of DnaA boxes involved in regulation of Streptomyces chromosome replication: from in silico to in vivo studies. J Bacteriol 2006; 188:6184-94. [PMID: 16923885 PMCID: PMC1595370 DOI: 10.1128/jb.00528-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Accepted: 06/12/2006] [Indexed: 11/20/2022] Open
Abstract
In Streptomyces coelicolor, replication is initiated by the DnaA protein in the centrally located oriC region and proceeds bidirectionally until the replication forks reach the ends of the linear chromosome. We identified three clusters of DnaA boxes (H69, H24, and D78) which are in a relatively short segment of the chromosome centered on the oriC region. Of the clusters analyzed, D78 exhibited the highest affinity for the DnaA protein; the affinity of DnaA for the D78 cluster was about eightfold higher than the affinity for oriC. The high-affinity DnaA boxes appear to be involved in the control of chromosome replication. Deletion of D78 resulted in more frequent chromosome replication (an elevated ratio of origins to chromosome ends was observed) and activated aerial mycelium formation, leading to earlier colony maturation. In contrast, extra copies of D78 (delivered on a plasmid) caused slow colony growth, presumably because of a reduction in the frequency of initiation of chromosome replication. This suggests that the number of high-affinity DnaA boxes is relatively constant in hyphal compartments and that deletion of D78 therefore permits an increased copy number of either the chromosomal origin region or a plasmid harboring the D78 cluster. This system conceivably influences the timing of decisions to initiate aerial mycelial formation and sporulation.
Collapse
Affiliation(s)
- Aleksandra Smulczyk-Krawczyszyn
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Weigla 12, 53-114 Wrocław, Poland
| | | | | | | | | | | | | |
Collapse
|
44
|
Kawakami H, Su'etsugu M, Katayama T. An isolated Hda-clamp complex is functional in the regulatory inactivation of DnaA and DNA replication. J Struct Biol 2006; 156:220-9. [PMID: 16603382 DOI: 10.1016/j.jsb.2006.02.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 02/20/2006] [Accepted: 02/23/2006] [Indexed: 01/17/2023]
Abstract
In Escherichia coli, a complex consisting of Hda and the DNA-loaded clamp-subunit of the DNA polymerase III holoenzyme promotes hydrolysis of DnaA-ATP. The resultant ADP-DnaA is inactive for initiation of chromosomal DNA replication, thereby repressing excessive initiations. As the cellular content of the clamp is 10-100 times higher than that of Hda, most Hda molecules might be complexed with the clamp in vivo. Although Hda predominantly forms irregular aggregates when overexpressed, in the present study we found that co-overexpression of the clamp with Hda enhances Hda solubility dramatically and we efficiently isolated the Hda-clamp complex. A single molecule of the complex appears to consist of two Hda molecules and a single clamp. The complex is competent in DnaA-ATP hydrolysis and DNA replication in the presence of DNA and the clamp deficient subassembly of the DNA polymerase III holoenzyme (pol III*). These findings indicate that the clamp contained in the complex is loaded onto DNA through an interaction with the pol III* and that the Hda activity is preserved in these processes. The complex consisting of Hda and the DNA-unloaded clamp may play a specific role in a process proceeding to the DnaA-ATP hydrolysis in vivo.
Collapse
Affiliation(s)
- Hironori Kawakami
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan
| | | | | |
Collapse
|
45
|
Aranovich A, Gdalevsky GY, Cohen-Luria R, Fishov I, Parola AH. Membrane-catalyzed nucleotide exchange on DnaA. Effect of surface molecular crowding. J Biol Chem 2006; 281:12526-34. [PMID: 16517983 DOI: 10.1074/jbc.m510266200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DnaA is the initiator protein for chromosomal replication in bacteria; its activity plays a central role in the timing of the primary initiations within the Escherichia coli cell cycle. A controlled, reversible conversion between the active ATP-DnaA and the inactive ADP forms modulates this activity. In a DNA-dependent manner, bound ATP is hydrolyzed to ADP. Acidic phospholipids with unsaturated fatty acids are capable of reactivating ADP-DnaA by promoting the release of the tightly bound ADP. The nucleotide dissociation kinetics, measured in the present study with the fluorescent derivative 3'-O-(N-methylantraniloyl)-5'-adenosine triphosphate, was dependent on the density of DnaA on the membrane in a cooperative manner: it increased 5-fold with decreased protein density. At all surface densities the nucleotide was completely released, presumably due to protein exchange on the membrane. Distinct temperature dependences and the effect of the crowding agent Ficoll suggest that two functional states of DnaA exist at high and low membrane occupancy, ascribed to local macromolecular crowding on the membrane surface. These novel phenomena are thought to play a major role in the mechanism regulating the initiation of chromosomal replication in bacteria.
Collapse
Affiliation(s)
- Alexander Aranovich
- Department of Life Sciences, Ben-Gurion University of the Negev, P. O. B. 653, Beer-Sheva 84105, Israel
| | | | | | | | | |
Collapse
|
46
|
Noirot-Gros MF, Velten M, Yoshimura M, McGovern S, Morimoto T, Ehrlich SD, Ogasawara N, Polard P, Noirot P. Functional dissection of YabA, a negative regulator of DNA replication initiation in Bacillus subtilis. Proc Natl Acad Sci U S A 2006; 103:2368-73. [PMID: 16461910 PMCID: PMC1413692 DOI: 10.1073/pnas.0506914103] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The regulation of initiation of DNA replication is crucial to ensure that the genome is replicated only once per cell cycle. In the Gram-positive bacterium Bacillus subtilis, the function of the YabA protein in initiation control was assigned based on its interaction with the DnaA initiator and the DnaN sliding clamp in the yeast two-hybrid and on the overinitiation phenotype observed in a yabA null strain. However, YabA is unrelated to known regulators of initiation and interacts with several additional proteins that could also be involved directly or not in initiation control. Here, we investigated the specific role of YabA interactions with DnaA and DnaN in initiation control by identifying single amino acid changes in YabA that disrupted solely the interaction with DnaA or DnaN. These disruptive mutations delineated specific interacting surfaces involving a Zn2+-cluster structure in YabA. In B. subtilis, these YabA interaction mutations abolished both initiation control and the formation of YabA foci at the replication factory. Upon coexpression of deficient YabA mutants, mixed oligomers formed foci at the replisome and restored initiation control, indicating that YabA acts within a heterocomplex with DnaA and DnaN. In agreement, purified YabA oligomerized and formed complexes with DnaA and DnaN. These findings underscore the functional association of YabA with the replication machinery, indicating that YabA regulates initiation through coupling with the elongation of replication.
Collapse
Affiliation(s)
- Marie-Françoise Noirot-Gros
- *Laboratoire de Génétique Microbienne, Domaine de Vilvert, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France; and
- To whom correspondence should be addressed. E-mail:
| | - M. Velten
- *Laboratoire de Génétique Microbienne, Domaine de Vilvert, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France; and
| | - M. Yoshimura
- Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101, Japan
| | - S. McGovern
- *Laboratoire de Génétique Microbienne, Domaine de Vilvert, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France; and
| | - T. Morimoto
- To whom correspondence should be addressed. E-mail:
| | - S. D. Ehrlich
- *Laboratoire de Génétique Microbienne, Domaine de Vilvert, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France; and
| | - N. Ogasawara
- Graduate School of Biological Science, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101, Japan
| | - P. Polard
- *Laboratoire de Génétique Microbienne, Domaine de Vilvert, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France; and
| | - Philippe Noirot
- *Laboratoire de Génétique Microbienne, Domaine de Vilvert, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France; and
| |
Collapse
|
47
|
Camara JE, Breier AM, Brendler T, Austin S, Cozzarelli NR, Crooke E. Hda inactivation of DnaA is the predominant mechanism preventing hyperinitiation of Escherichia coli DNA replication. EMBO Rep 2006; 6:736-41. [PMID: 16041320 PMCID: PMC1369143 DOI: 10.1038/sj.embor.7400467] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 05/30/2005] [Accepted: 06/02/2005] [Indexed: 11/09/2022] Open
Abstract
Initiation of DNA replication from the Escherichia coli chromosomal origin is highly regulated, assuring that replication occurs precisely once per cell cycle. Three mechanisms for regulation of replication initiation have been proposed: titration of free DnaA initiator protein by the datA locus, sequestration of newly replicated origins by SeqA protein and regulatory inactivation of DnaA (RIDA), in which active ATP-DnaA is converted to the inactive ADP-bound form. DNA microarray analyses showed that the level of initiation in rapidly growing cells that lack datA was indistinguishable from that in wild-type cells, and that the absence of SeqA protein caused only a modest increase in initiation, in agreement with flow-cytometry data. In contrast, cells lacking Hda overinitiated replication twofold, implicating RIDA as the predominant mechanism preventing extra initiation events in a cell cycle.
Collapse
Affiliation(s)
- Johanna E Camara
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington, District of Columbia 20007, USA
| | - Adam M Breier
- Molecular and Cell Biology, University of California, Berkeley, 16 Barker Hall, Berkeley, California 94720, USA
| | - Therese Brendler
- NCI-DBS, Frederick Cancer Research and Development Center, Box B, Building 539/223, Frederick, Maryland 21702, USA
| | - Stuart Austin
- NCI-DBS, Frederick Cancer Research and Development Center, Box B, Building 539/223, Frederick, Maryland 21702, USA
| | - Nicholas R Cozzarelli
- Molecular and Cell Biology, University of California, Berkeley, 16 Barker Hall, Berkeley, California 94720, USA
| | - Elliott Crooke
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington, District of Columbia 20007, USA
- Tel: +1 202 687 1644; Fax: +1 202 687 7186; E-mail:
| |
Collapse
|
48
|
Riber L, Løbner-Olesen A. Coordinated replication and sequestration of oriC and dnaA are required for maintaining controlled once-per-cell-cycle initiation in Escherichia coli. J Bacteriol 2005; 187:5605-13. [PMID: 16077105 PMCID: PMC1196069 DOI: 10.1128/jb.187.16.5605-5613.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli cells were constructed in which the dnaA gene was moved to a location opposite oriC on the circular chromosome. In these cells the dnaA gene was replicated with significant delay relative to the origin. Consequently, the period where the newly replicated and hemimethylated oriC was sequestered no longer coincided with the period where the dnaA gene promoter was sequestered. DnaA protein synthesis was therefore expected to continue during origin sequestration. Despite a normal length of the sequestration period in such cells, they had increased origin content and also displayed asynchrony of initiation. This indicated that reinitiation occasionally occurred at some origins within the same cell cycle. The extra initiations took place in spite of a reduction in total DnaA protein concentration to about half of the wild-type level. We propose that this more efficient utilization of DnaA protein results from an increased availability at the end of the origin sequestration period. Therefore, coordinated sequestration of oriC and dnaA is required for maintaining controlled once-per-cell-cycle initiation.
Collapse
Affiliation(s)
- Leise Riber
- Department of Life Sciences and Chemistry, Roskilde University, DK-4000 Roskilde, Denmark
| | | |
Collapse
|