1
|
Huynh U, King J, Zastrow ML. Calcium modulates growth and biofilm formation of Lactobacillus acidophilus ATCC 4356 and Lactiplantibacillus plantarum ATCC 14917. Sci Rep 2025; 15:14246. [PMID: 40274962 PMCID: PMC12022101 DOI: 10.1038/s41598-025-98577-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
Lactobacillaceae are a large, diverse family of Gram-positive lactic acid-producing bacteria. As gut microbiota residents in many mammals, these bacteria are beneficial for health and frequently used as probiotics. Lactobacillaceae abundance in the gastrointestinal tract has been correlated with gastrointestinal pathologies and infection. Microbiota residents must compete for nutrients, including essential metal ions like calcium, zinc, and iron. Recent animal and human studies have revealed that dietary calcium can positively influence the diversity of the gut microbiota and abundance of intestinal Lactobacillaceae species, but the underlying molecular mechanisms remain poorly understood. Here, we investigated the impacts of calcium on the growth and biofilm formation of two distinct Lactobacillaceae species found in the gut microbiota, Lactobacillus acidophilus ATCC 4356 and Lactiplantibacillus plantarum ATCC 14917. We found that calcium ions differentially affect both growth and biofilm formation of these species. In general, calcium supplementation promotes the growth of both species, albeit with some variations in the extent to which different growth parameters were impacted. Calcium ions strongly induce biofilm formation of L. acidophilus ATCC 4356 but not L. plantarum ATCC 14917. Based on bioinformatic analyses and experimental chelator studies, we hypothesize that surface proteins specific to L. acidophilus ATCC 4356, like S-layer proteins, are responsible for Ca2+-induced biofilm formation. The ability of bacteria to form biofilms has been linked with their ability to colonize in the gut microbiota. This work shows how metal ions like Ca2+ may be important not just as nutrients for bacteria growth, but also for their ability to facilitate cell-cell interactions and possibly colonization in the gut microbiota.
Collapse
Affiliation(s)
- Uyen Huynh
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, 77204, USA
| | - John King
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, 77204, USA
| | - Melissa L Zastrow
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, 77204, USA.
| |
Collapse
|
2
|
Zhang Z, Niu H, Qu Q, Guo D, Wan X, Yang Q, Mo Z, Tan S, Xiang Q, Tian X, Yang H, Liu Z. Advancements in Lactiplantibacillus plantarum: probiotic characteristics, gene editing technologies and applications. Crit Rev Food Sci Nutr 2025:1-22. [PMID: 39745813 DOI: 10.1080/10408398.2024.2448562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The exploration of microorganisms in fermented products has become a pivotal area of scientific research, primarily due to their widespread availability and profound potential to improve human health. Among these, Lactiplantibacillus plantarum (formerly known as Lactobacillus plantarum) stands out as a versatile lactic acid bacterium, prevalent across diverse ecological niches. Its appeal extends beyond its well-documented probiotic benefits to include the remarkable plasticity of its genome, which has captivated both scientific and industrial stakeholders. Despite this interest, substantial challenges persist in fully understanding and harnessing the potential of L. plantarum. This review aims to illuminate the probiotic attributes of L. plantarum, consolidate current advancements in gene editing technologies, and explore the multifaceted applications of both wild-type and genetically engineered strains.
Collapse
Affiliation(s)
- Zhiqi Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Haorui Niu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qiu Qu
- Division of geriatric Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Dingming Guo
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xuchun Wan
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qianqian Yang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zihao Mo
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Siyu Tan
- Department of Biotechnology, Wuhan No. 2 High School, Wuhan, China
| | - Qian Xiang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xue Tian
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Hongju Yang
- Division of geriatric Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Zhi Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Li Y, Wang Y, Li Y, Yan S, Gao X, Li P, Zheng X, Gu Q. Dress me an outfit: advanced probiotics hybrid systems for intelligent IBD therapy. Crit Rev Food Sci Nutr 2024:1-24. [PMID: 39007752 DOI: 10.1080/10408398.2024.2359135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Inflammation bowel disease (IBD) has emerged as a public health challenge worldwide; with high incidence and rapid prevalence, it has troubled billions of people and further induced multitudinous systemic complications. Recent decade has witnessed the vigorous application of food-borne probiotics for IBD therapy; however, the complicated and changeable environments of digestive tract have forced probiotics to face multiple in vivo pressures, consequently causing unsatisfied prophylactic or therapeutic efficacy attributed to off-targeted arrival, damaged viability, insufficient colonization efficiency, etc. Fortunately, arisen hybrid technology has provided versatile breakthroughs for the targeted transplantation of probiotics. By ingeniously modifying probiotics to form probiotics hybrid systems (PHS), the biological behaviors of probiotics in vivo could be mediated, the interactions between probiotics with intestinal components can be facilitated, and diverse advanced probiotic-based therapies for IBD challenge can be developed, which attribute to the intelligent response to microenvironment of PHS, and intelligent design of PHS for multiple functions combination. In this review, various PHS were categorized and their intestinal behaviors were elucidated systematically, their therapeutic effects and intrinsic mechanism were further analyzed. Besides, shortages of present PHS and the corresponding solutions have been discussed, based on which the future perspectives of this field have also been proposed. The undeniable fact is that PHS show an incomparable future to bring the next generation of advanced food science.
Collapse
Affiliation(s)
- Yonglu Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Yadi Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Yapeng Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Shihai Yan
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Xin Gao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Ping Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition; Zhejiang Key Laboratory for Agro-food Processing; Fuli Institute of Food Science; National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou, People's Republic of China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
4
|
Doloman A, Sousa DZ. Mechanisms of microbial co-aggregation in mixed anaerobic cultures. Appl Microbiol Biotechnol 2024; 108:407. [PMID: 38963458 PMCID: PMC11224092 DOI: 10.1007/s00253-024-13246-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Co-aggregation of anaerobic microorganisms into suspended microbial biofilms (aggregates) serves ecological and biotechnological functions. Tightly packed aggregates of metabolically interdependent bacteria and archaea play key roles in cycling of carbon and nitrogen. Additionally, in biotechnological applications, such as wastewater treatment, microbial aggregates provide a complete metabolic network to convert complex organic material. Currently, experimental data explaining the mechanisms behind microbial co-aggregation in anoxic environments is scarce and scattered across the literature. To what extent does this process resemble co-aggregation in aerobic environments? Does the limited availability of terminal electron acceptors drive mutualistic microbial relationships, contrary to the commensal relationships observed in oxygen-rich environments? And do co-aggregating bacteria and archaea, which depend on each other to harvest the bare minimum Gibbs energy from energy-poor substrates, use similar cellular mechanisms as those used by pathogenic bacteria that form biofilms? Here, we provide an overview of the current understanding of why and how mixed anaerobic microbial communities co-aggregate and discuss potential future scientific advancements that could improve the study of anaerobic suspended aggregates. KEY POINTS: • Metabolic dependency promotes aggregation of anaerobic bacteria and archaea • Flagella, pili, and adhesins play a role in the formation of anaerobic aggregates • Cyclic di-GMP/AMP signaling may trigger the polysaccharides production in anaerobes.
Collapse
Affiliation(s)
- Anna Doloman
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
- Centre for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Princetonlaan 6, 3584 CB, Utrecht, The Netherlands
| |
Collapse
|
5
|
Cai X, Yi P, Chen X, Wu J, Lan G, Li S, Luo S, Huang F, Huang J, Shen P. Intake of compound probiotics accelerates the construction of immune function and gut microbiome in Holstein calves. Microbiol Spectr 2024; 12:e0190923. [PMID: 38651859 PMCID: PMC11237676 DOI: 10.1128/spectrum.01909-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 02/22/2024] [Indexed: 04/25/2024] Open
Abstract
Acquired immunity is an important way to construct the intestinal immune barrier in mammals, which is almost dependent on suckling. To develop a new strategy for accelerating the construction of gut microbiome, newborn Holstein calves were continuously fed with 40 mL of compound probiotics (containing Lactobacillus plantarum T-14, Enterococcus faecium T-11, Saccharomyces cerevisiae T-209, and Bacillus licheniformis T-231) per day for 60 days. Through diarrhea rate monitoring, immune index testing, antioxidant capacity detection, and metagenome sequencing, the changes in diarrhea incidence, average daily gain, immune index, and gut microbiome of newborn calves within 60 days were investigated. Results indicated that feeding the compound probiotics reduced the average diarrhea rate of calves by 42.90%, increased the average daily gain by 43.40%, raised the antioxidant indexes of catalase, superoxide dismutase, total antioxidant capacity, and Glutathione peroxidase by 22.81%, 6.49%, 8.33%, and 13.67%, respectively, and increased the immune indexes of IgA, IgG, and IgM by 10.44%, 4.85%, and 6.12%, respectively. Moreover, metagenome sequencing data showed that feeding the compound probiotics increased the abundance of beneficial strains (e.g., Lactococcus lactis and Bacillus massionigeriensis) and decreased the abundance of some harmful strains (e.g., Escherichia sp. MOD1-EC5189 and Mycobacterium brisbane) in the gut microbiome of calves, thus contributing to accelerating the construction of healthy gut microbiome in newborn Holstein calves. IMPORTANCE The unstable gut microbiome and incomplete intestinal function of newborn calves are important factors for the high incidence of early diarrhea. This study presents an effective strategy to improve the overall immunity and gut microbiome in calves and provides new insights into the application of compound probiotics in mammals.
Collapse
Affiliation(s)
- Xinghua Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Ping Yi
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Xuewen Chen
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
- Guangxi UBIT Biotechnology Co., Ltd., Nanning, China
| | - Junhua Wu
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Key Laboratory of Bio-refinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Ganqiu Lan
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Shijian Li
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Shasha Luo
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Fengdie Huang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Jinrong Huang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Peihong Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
6
|
Lin Q, Lin S, Fan Z, Liu J, Ye D, Guo P. A Review of the Mechanisms of Bacterial Colonization of the Mammal Gut. Microorganisms 2024; 12:1026. [PMID: 38792855 PMCID: PMC11124445 DOI: 10.3390/microorganisms12051026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
A healthy animal intestine hosts a diverse population of bacteria in a symbiotic relationship. These bacteria utilize nutrients in the host's intestinal environment for growth and reproduction. In return, they assist the host in digesting and metabolizing nutrients, fortifying the intestinal barrier, defending against potential pathogens, and maintaining gut health. Bacterial colonization is a crucial aspect of this interaction between bacteria and the intestine and involves the attachment of bacteria to intestinal mucus or epithelial cells through nonspecific or specific interactions. This process primarily relies on adhesins. The binding of bacterial adhesins to host receptors is a prerequisite for the long-term colonization of bacteria and serves as the foundation for the pathogenicity of pathogenic bacteria. Intervening in the adhesion and colonization of bacteria in animal intestines may offer an effective approach to treating gastrointestinal diseases and preventing pathogenic infections. Therefore, this paper reviews the situation and mechanisms of bacterial colonization, the colonization characteristics of various bacteria, and the factors influencing bacterial colonization. The aim of this study was to serve as a reference for further research on bacteria-gut interactions and improving animal gut health.
Collapse
Affiliation(s)
- Qingjie Lin
- College of Animal Science, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Fuzhou 350002, China; (Q.L.); (S.L.); (Z.F.)
| | - Shiying Lin
- College of Animal Science, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Fuzhou 350002, China; (Q.L.); (S.L.); (Z.F.)
| | - Zitao Fan
- College of Animal Science, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Fuzhou 350002, China; (Q.L.); (S.L.); (Z.F.)
| | - Jing Liu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China;
| | - Dingcheng Ye
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China;
| | - Pingting Guo
- College of Animal Science, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Fuzhou 350002, China; (Q.L.); (S.L.); (Z.F.)
| |
Collapse
|
7
|
Pascoal C, Francisco R, Mexia P, Pereira BL, Granjo P, Coelho H, Barbosa M, dos Reis Ferreira V, Videira PA. Revisiting the immunopathology of congenital disorders of glycosylation: an updated review. Front Immunol 2024; 15:1350101. [PMID: 38550576 PMCID: PMC10972870 DOI: 10.3389/fimmu.2024.1350101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/26/2024] [Indexed: 04/02/2024] Open
Abstract
Glycosylation is a critical post-translational modification that plays a pivotal role in several biological processes, such as the immune response. Alterations in glycosylation can modulate the course of various pathologies, such as the case of congenital disorders of glycosylation (CDG), a group of more than 160 rare and complex genetic diseases. Although the link between glycosylation and immune dysfunction has already been recognized, the immune involvement in most CDG remains largely unexplored and poorly understood. In this study, we provide an update on the immune dysfunction and clinical manifestations of the 12 CDG with major immune involvement, organized into 6 categories of inborn errors of immunity according to the International Union of Immunological Societies (IUIS). The immune involvement in phosphomannomutase 2 (PMM2)-CDG - the most frequent CDG - was comprehensively reviewed, highlighting a higher prevalence of immune issues during infancy and childhood and in R141H-bearing genotypes. Finally, using PMM2-CDG as a model, we point to links between abnormal glycosylation patterns in host cells and possibly favored interactions with microorganisms that may explain the higher susceptibility to infection. Further characterizing immunopathology and unusual host-pathogen adhesion in CDG can not only improve immunological standards of care but also pave the way for innovative preventive measures and targeted glycan-based therapies that may improve quality of life for people living with CDG.
Collapse
Affiliation(s)
- Carlota Pascoal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| | - Rita Francisco
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| | - Patrícia Mexia
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| | - Beatriz Luís Pereira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| | - Pedro Granjo
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| | - Helena Coelho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Mariana Barbosa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| | - Vanessa dos Reis Ferreira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| | - Paula Alexandra Videira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| |
Collapse
|
8
|
Zhang Y, Tong C, Chen Y, Xia X, Jiang S, Qiu C, Pang J. Advances in the construction and application of konjac glucomannan-based delivery systems. Int J Biol Macromol 2024; 262:129940. [PMID: 38320637 DOI: 10.1016/j.ijbiomac.2024.129940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/08/2024]
Abstract
Konjac glucomannan (KGM) has been widely used to deliver bioactive components due to its naturalness, non-toxicity, excellent biodegradability, biocompatibility, and other characteristics. This review presents an overview of konjac glucomannan as a matrix, and the types of konjac glucomannan-based delivery systems (such as hydrogels, food packaging films, microencapsulation, emulsions, nanomicelles) and their construction methods are introduced in detail. Furthermore, taking polyphenol compounds, probiotics, flavor substances, fatty acids, and other components as representatives, the applied research progress of konjac glucomannan-based delivery systems in food are summarized. Finally, the prospects for research directions in konjac glucomannan-based delivery systems are examined, thereby providing a theoretical basis for expanding the application of konjac glucomannan in other industries, such as food and medicine.
Collapse
Affiliation(s)
- Yanting Zhang
- College of Food Science, Fujian Agriculture and Forestry University, 350000, China
| | - Cailing Tong
- College of Food Science, Fujian Agriculture and Forestry University, 350000, China
| | - Yuanyuan Chen
- College of Food Science, Fujian Agriculture and Forestry University, 350000, China
| | - Xiaolu Xia
- College of Food Science, Fujian Agriculture and Forestry University, 350000, China
| | - Shizhong Jiang
- College of Food Science, Fujian Agriculture and Forestry University, 350000, China
| | - Chao Qiu
- School of Food Science and Technology, Jiangnan University, 214122, China.
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University, 350000, China.
| |
Collapse
|
9
|
Lau LYJ, Quek SY. Probiotics: Health benefits, food application, and colonization in the human gastrointestinal tract. FOOD BIOENGINEERING 2024; 3:41-64. [DOI: 10.1002/fbe2.12078] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/29/2024] [Indexed: 01/04/2025]
Abstract
AbstractProbiotics have become increasingly popular over the past two decades due to the continuously expanding scientific evidence indicating their beneficial effects on human health. Therefore, they have been applied in the food industry to produce functional food, which plays a significant role in human health and reduces disease risk. However, maintaining the viability of probiotics and targeting the successful delivery to the gastrointestinal tract remain two challenging tasks in food applications. Specifically, this paper reviews the potentially beneficial properties of probiotics, highlighting the use and challenges of probiotics in food application and the associated health benefits. Of foremost importance, this paper also explores the potential underlying molecular mechanisms of the enhanced effect of probiotics on gastrointestinal epithelial cells, including a discussion on various surface adhesion‐related proteins on the probiotic cell surface that facilitate colonization.
Collapse
Affiliation(s)
- Li Ying Jessie Lau
- Food Science, School of Chemical Sciences The University of Auckland Auckland New Zealand
| | - Siew Young Quek
- Food Science, School of Chemical Sciences The University of Auckland Auckland New Zealand
| |
Collapse
|
10
|
Fu M, Gao J, Mao K, Sun J, Ahmed Sadiq F, Sang Y. Interaction mechanism between surface layer protein and yeast mannan: Insights from multi-spectroscopic and molecular dynamics simulation analyses. Food Chem 2024; 433:137352. [PMID: 37678123 DOI: 10.1016/j.foodchem.2023.137352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/05/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
Tibet kefir grain (TKG) formation is mainly dependent on the aggregation of lactobacillus and yeasts. The interaction of surface layer protein (SLP) and yeast mannan plays an important role in mediating the co-aggregation of Lactobacillus kefiri with Saccharomyces cerevisiae. The interaction mechanism of the two was researched through multispectral spectroscopy, morphology observation and silico approaches. Fluorescence spectra data revealed that mannan was bound to SLP through a spontaneous binding process. The particle size of the binding complex increased as the mannan concentration increased. Synchronous fluorescence spectroscopy and circular dichroism (CD) spectra showed the conformational and microenvironment alteration of SLP treated with mannan. Molecular docking results indicated that hydrophobic interactions played major roles in the formation of SLP-mannan complexes. These findings provide a deeper insight into the interactions of protein and polysaccharide, and this knowledge is valuable in the application of SLP and mannan in co-fermentation systems.
Collapse
Affiliation(s)
- Mengqi Fu
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jie Gao
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, China.
| | - Kemin Mao
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jilu Sun
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | | | - Yaxin Sang
- Collage of Food Science and Technology, Hebei Agricultural University, Baoding, China.
| |
Collapse
|
11
|
Du W, Wang X, Hu M, Hou J, Du Y, Si W, Yang L, Xu L, Xu Q. Modulating gastrointestinal microbiota to alleviate diarrhea in calves. Front Microbiol 2023; 14:1181545. [PMID: 37362944 PMCID: PMC10286795 DOI: 10.3389/fmicb.2023.1181545] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
The calf stage is a critical period for the development of heifers. Newborn calves have low gastrointestinal barrier function and immunity before weaning, making them highly susceptible to infection by various intestinal pathogens. Diarrhea in calves poses a significant threat to the health of young ruminants and may cause serious economic losses to livestock farms. Antibiotics are commonly used to treat diarrhea and promote calf growth, leading to bacterial resistance and increasing antibiotic residues in meat. Therefore, finding new technologies to improve the diarrhea of newborn calves is a challenge for livestock production and public health. The operation of the gut microbiota in the early stages after birth is crucial for optimizing immune function and body growth. Microbiota colonization of newborn animals is crucial for healthy development. Early intervention of the calf gastrointestinal microbiota, such as oral probiotics, fecal microbiota transplantation and rumen microbiota transplantation can effectively relieve calf diarrhea. This review focuses on the role and mechanisms of oral probiotics such as Lactobacillus, Bifidobacterium and Faecalibacterium in relieving calf diarrhea. The aim is to develop appropriate antibiotic alternatives to improve calf health in a sustainable and responsible manner, while addressing public health issues related to the use of antibiotics in livestock.
Collapse
|
12
|
Cell-surface protein YwfG of Lactococcus lactis binds to α-1,2-linked mannose. PLoS One 2023; 18:e0273955. [PMID: 36602978 DOI: 10.1371/journal.pone.0273955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023] Open
Abstract
Lactococcus lactis strains are used as starter cultures in the production of fermented dairy and vegetable foods, but the species also occurs in other niches such as plant material. Lactococcus lactis subsp. lactis G50 (G50) is a plant-derived strain and potential candidate probiotics. Western blotting of cell-wall proteins using antibodies generated against whole G50 cells detected a 120-kDa protein. MALDI-TOF MS analysis identified it as YwfG, a Leu-Pro-any-Thr-Gly cell-wall-anchor-domain-containing protein. Based on a predicted domain structure, a recombinant YwfG variant covering the N-terminal half (aa 28-511) of YwfG (YwfG28-511) was crystallized and the crystal structure was determined. The structure consisted of an L-type lectin domain, a mucin-binding protein domain, and a mucus-binding protein repeat. Recombinant YwfG variants containing combinations of these domains (YwfG28-270, YwfG28-336, YwfG28-511, MubR4) were prepared and their interactions with monosaccharides were examined by isothermal titration calorimetry; the only interaction observed was between YwfG28-270, which contained the L-type lectin domain, and d-mannose. Among four mannobioses, α-1,2-mannobiose had the highest affinity for YwfG28-270 (dissociation constant = 34 μM). YwfG28-270 also interacted with yeast mannoproteins and yeast mannan. Soaking of the crystals of YwfG28-511 with mannose or α-1,2-mannobiose revealed that both sugars bound to the L-type lectin domain in a similar manner, although the presence of the mucin-binding protein domain and the mucus-binding protein repeat within the recombinant protein inhibited the interaction between the L-type lectin domain and mannose residues. Three of the YwfG variants (except MubR4) induced aggregation of yeast cells. Strain G50 also induced aggregation of yeast cells, which was abolished by deletion of ywfG from G50, suggesting that surface YwfG contributes to the interaction with yeast cells. These findings provide new structural and functional insights into the interaction between L. lactis and its ecological niche via binding of the cell-surface protein YwfG with mannose.
Collapse
|
13
|
Yeast cell wall polysaccharides in Tibetan kefir grains are key substances promoting the formation of bacterial biofilm. Carbohydr Polym 2023; 300:120247. [DOI: 10.1016/j.carbpol.2022.120247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/04/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022]
|
14
|
Spacova I, De Boeck I, Cauwenberghs E, Delanghe L, Bron PA, Henkens T, Simons A, Gamgami I, Persoons L, Claes I, van den Broek MFL, Schols D, Delputte P, Coenen S, Verhoeven V, Lebeer S. Development of a live biotherapeutic throat spray with lactobacilli targeting respiratory viral infections. Microb Biotechnol 2022; 16:99-115. [PMID: 36468246 PMCID: PMC9803329 DOI: 10.1111/1751-7915.14189] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 12/09/2022] Open
Abstract
Respiratory viruses such as influenza viruses, respiratory syncytial virus (RSV), and coronaviruses initiate infection at the mucosal surfaces of the upper respiratory tract (URT), where the resident respiratory microbiome has an important gatekeeper function. In contrast to gut-targeting administration of beneficial bacteria against respiratory viral disease, topical URT administration of probiotics is currently underexplored, especially for the prevention and/or treatment of viral infections. Here, we report the formulation of a throat spray with live lactobacilli exhibiting several in vitro mechanisms of action against respiratory viral infections, including induction of interferon regulatory pathways and direct inhibition of respiratory viruses. Rational selection of Lactobacillaceae strains was based on previously documented beneficial properties, up-scaling and industrial production characteristics, clinical safety parameters, and potential antiviral and immunostimulatory efficacy in the URT demonstrated in this study. Using a three-step selection strategy, three strains were selected and further tested in vitro antiviral assays and in formulations: Lacticaseibacillus casei AMBR2 as a promising endogenous candidate URT probiotic with previously reported barrier-enhancing and anti-pathogenic properties and the two well-studied model strains Lacticaseibacillus rhamnosus GG and Lactiplantibacillus plantarum WCFS1 that display immunomodulatory capacities. The three strains and their combination significantly reduced the cytopathogenic effects of RSV, influenza A/H1N1 and B viruses, and HCoV-229E coronavirus in co-culture models with bacteria, virus, and host cells. Subsequently, these strains were formulated in a throat spray and human monocytes were employed to confirm the formulation process did not reduce the interferon regulatory pathway-inducing capacity. Administration of the throat spray in healthy volunteers revealed that the lactobacilli were capable of temporary colonization of the throat in a metabolically active form. Thus, the developed spray with live lactobacilli will be further explored in the clinic as a potential broad-acting live biotherapeutic strategy against respiratory viral diseases.
Collapse
Affiliation(s)
- Irina Spacova
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience EngineeringUniversity of AntwerpAntwerpBelgium
| | - Ilke De Boeck
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience EngineeringUniversity of AntwerpAntwerpBelgium
| | - Eline Cauwenberghs
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience EngineeringUniversity of AntwerpAntwerpBelgium
| | - Lize Delanghe
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience EngineeringUniversity of AntwerpAntwerpBelgium
| | - Peter A. Bron
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience EngineeringUniversity of AntwerpAntwerpBelgium
| | | | | | | | - Leentje Persoons
- Laboratory of Virology and Chemotherapy, KU Leuven Department of Microbiology, Immunology and TransplantationRega InstituteLeuvenBelgium
| | | | - Marianne F. L. van den Broek
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience EngineeringUniversity of AntwerpAntwerpBelgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, KU Leuven Department of Microbiology, Immunology and TransplantationRega InstituteLeuvenBelgium
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene, Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium
| | - Samuel Coenen
- Family Medicine and Population Health (FAMPOP)University of AntwerpAntwerpBelgium,Vaccine & Infectious Disease Institute (VAXINFECTIO)University of AntwerpAntwerpBelgium
| | - Veronique Verhoeven
- Family Medicine and Population Health (FAMPOP)University of AntwerpAntwerpBelgium
| | - Sarah Lebeer
- Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience EngineeringUniversity of AntwerpAntwerpBelgium
| |
Collapse
|
15
|
Lactiplantibacillus plantarum LOC1 Isolated from Fresh Tea Leaves Modulates Macrophage Response to TLR4 Activation. Foods 2022. [DOI: 10.3390/foods11203257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Previously, we demonstrated that Lactiplantibacillus plantarum LOC1, originally isolated from fresh tea leaves, was able to improve epithelial barrier integrity in in vitro models, suggesting that this strain is an interesting probiotic candidate. In this work, we aimed to continue characterizing the potential probiotic properties of the LOC1 strain, focusing on its immunomodulatory properties in the context of innate immunity triggered by Toll-like receptor 4 (TLR4) activation. These studies were complemented by comparative and functional genomics analysis to characterize the bacterial genes involved in the immunomodulatory capacity. We carried out a transcriptomic study to evaluate the effect of L. plantarum LOC1 on the response of murine macrophages (RAW264.7 cells) to the activation of TLR4. We demonstrated that L. plantarum LOC1 exerts a modulatory effect on lipopolysaccharide (LPS)-induced inflammation, resulting in a differential regulation of immune factor expression in macrophages. The LOC1 strain markedly reduced the LPS-induced expression of some inflammatory cytokines (IL-1β, IL-12, and CSF2) and chemokines (CCL17, CCL28, CXCL3, CXCL13, CXCL1, and CX3CL1), while it significantly increased the expression of other cytokines (TNF-α, IL-6, IL-18, IFN-β, IFN-γ, and CSF3), chemokines (IL-15 and CXCL9), and activation markers (H2-k1, H2-M3, CD80, and CD86) in RAW macrophages. Our results show that L. plantarum LOC1 would enhance the intrinsic functions of macrophages, promoting their protective effects mediated by the stimulation of the Th1 response without affecting the regulatory mechanisms that help control inflammation. In addition, we sequenced the LOC1 genome and performed a genomic characterization. Genomic comparative analysis with the well-known immunomodulatory strains WCSF1 and CRL1506 demonstrated that L. plantarum LOC1 possess a set of adhesion factors and genes involved in the biosynthesis of teichoic acids and lipoproteins that could be involved in its immunomodulatory capacity. The results of this work can contribute to the development of immune-related functional foods containing L. plantarum LOC1.
Collapse
|
16
|
Wei C, Luo K, Wang M, Li Y, Pan M, Xie Y, Qin G, Liu Y, Li L, Liu Q, Tian X. Evaluation of Potential Probiotic Properties of a Strain of Lactobacillus plantarum for Shrimp Farming: From Beneficial Functions to Safety Assessment. Front Microbiol 2022; 13:854131. [PMID: 35401447 PMCID: PMC8989281 DOI: 10.3389/fmicb.2022.854131] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years the safety of probiotics has received increasing attention due to the possible transfer and spread of virulence factors (VFs) and antibiotic resistance genes (ARGs) among microorganisms. The safety of a strain of Lactobacillus plantarum named W2 was evaluated in phenotype and genotype in the present study. Its probiotic properties were also evaluated both in vivo and in vitro, including adherence properties, antibacterial properties and beneficial effects on the growth and immunity of Pacific white shrimp, Penaeus vannamei. Hemolysis tests, antibiotic resistance tests and whole genome sequence analysis showed that W2 had no significant virulence effects and did not carry high virulence factors. W2 was found to be sensitive to chloramphenicol, clindamycin, gentamicin, kanamycin and tetracycline, and to be resistant to ampicillin and erythromycin. Most ARGs have no transfer risk and a few have transfer risk but no significant enrichment in human-associated environments. The autoaggregation of W2 was 82.6% and the hydrophobicity was 81.0%. Coaggregation rate with Vibrio parahaemolyticus (24.9%) was significantly higher than Vibrio's autoaggregation rate (17.8%). This suggested that W2 had adhesion potential to mucosal/intestinal surfaces and was able to attenuate the adherence of V. parahaemolyticus. In addition, several adhesion-related protein genes, including 1 S-layer protein, 1 collagen-binding protein and 9 mucus-binding proteins were identified in the W2 genome. W2 had efficiently antagonistic activity against 7 aquatic pathogenic strains. Antagonistic components analysis indicated that active antibacterial substances might be organic acids. W2 can significantly promote the growth of shrimp when supplemented with 1 × 1010 cfu/kg live cells. Levels of 7 serological immune indicators and expression levels of 12 hepatopancreatic immune-related genes were up-regulated, and the mortality of shrimp exposed to V. parahaemolyticus was significantly reduced. Based on the above, L. plantarum W2 can be applied safely as a potential probiotic to enhance the growth performance, immunity capacity and disease resistance of P. vannamei.
Collapse
Affiliation(s)
- Cong Wei
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Kai Luo
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Mingyang Wang
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yongmei Li
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Miaojun Pan
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yumeng Xie
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Guangcai Qin
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yijun Liu
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Li
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | | | - Xiangli Tian
- The Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
17
|
Huang R, Wu F, Zhou Q, Wei W, Yue J, Xiao B, Luo Z. Lactobacillus and intestinal diseases: mechanisms of action and clinical applications. Microbiol Res 2022; 260:127019. [DOI: 10.1016/j.micres.2022.127019] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 12/12/2022]
|
18
|
Li X, Zhu L, Wang X, Li J, Tang B. Evaluation of IR Biotyper for Lactiplantibacillus plantarum Typing and Its Application Potential in Probiotic Preliminary Screening. Front Microbiol 2022; 13:823120. [PMID: 35401469 PMCID: PMC8988154 DOI: 10.3389/fmicb.2022.823120] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/24/2022] [Indexed: 12/25/2022] Open
Abstract
IR Biotyper (IRBT), which is a spectroscopic system for microorganism typing based on Fourier transform infrared (FTIR) technology, has been used to detect the spread of clones in clinical microbiology laboratories. However, the use of IRBT to detect probiotics has rarely been reported. Herein, we evaluated the discriminatory power of IRBT to type Lactiplantibacillus plantarum isolates at the strain level and explored its application potential in probiotic preliminary selection. Twenty Lactiplantibacillus isolates collected from pickled radishes during successive fermentation were used to test the robustness of IRBT at the strain level. IRBT was then compared with genotyping methods such as whole-genome sequencing (WGS), pulsed-field gel electrophoresis (PFGE), and multilocus sequence typing (MLST) to evaluate its discrimination power. IRBT distributed the 20 isolates into five clusters, with L. argentoratensis isolate C7-83 being the most distant from the other isolates, which belonged to L. plantarum. IRBT showed good reproducibility, although deviation in the discriminative power of IRBT was found at the strain level across laboratories, probably due to technical variance. All examined methods allowed bacterial identification at the strain level, but IRBT had higher discriminatory power than MLST and was comparable to the WGS and PFGE. In the phenotypic comparison study, we observed that the clustering results of probiotic physiological attributes (e.g., sensitivity to acid and bile salts, hydrophobicity of the cell surface, and resistance to antibiotics) were consistent with the typing results of IRBT. Our results indicated that IRBT is a robust tool for L. plantarum strain typing that could improve the efficiency of probiotic identification and preliminary screening, and can potentially be applied in probiotic traceability and quality control.
Collapse
Affiliation(s)
- Xiaoqiong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Liying Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jinjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Jinjun Li,
| | - Biao Tang
- Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Biao Tang,
| |
Collapse
|
19
|
Yu Y, Zong M, Lao L, Wen J, Pan D, Wu Z. Adhesion properties of the cell surface proteins in Lactobacillus strains under the GIT environment. Food Funct 2022; 13:3098-3109. [DOI: 10.1039/d1fo04328e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lactic acid bacteria (LAB) play an essential role in the epithelial barrier and the gut immune system. It can antagonize pathogens by producing antimicrobial substances like bacteriocins, and compete with...
Collapse
|
20
|
Wada M, Nomura T. Direct measurement of adhesion force between a yeast cell and a lactic acid bacterium cell with atomic force microscopy. J Biosci Bioeng 2021; 133:155-160. [PMID: 34863625 DOI: 10.1016/j.jbiosc.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 11/28/2022]
Abstract
Lactic acid bacteria (LAB) and yeast coexist by providing nutrients as substrates for each other. LAB and yeast cells aggregate via specific interactions between mannose on the yeast surface and the mannose-binding protein (MBP) on the LAB surface. In addition to specific interactions via cell surface proteins, there are also nonspecific interactions related to microbial coaggregation; the extent of their contributions is not clear. Here, microbial coaggregation of yeast and LAB cells was investigated from the view point of particle technology. DLVO theory and thermodynamic approaches predicted that thermodynamically stable coaggregates are not formed because no hydrophobic interaction acts between yeast and LAB. In contrast, optical microscopy revealed that yeast with mannose and LAB with MBP were formed submillimeter-sized coaggregates, whereas deficient strains of yeast and/or LAB were dispersed. Single-cell force spectroscopy revealed that the median adhesion forces were less than 100 pN for all combinations of yeast and LAB. However, some of the adhesion forces between yeast with mannose and LAB with MBP were greater than 400 pN. Furthermore, in the presence of a microbial coaggregation inhibitor, coaggregation of yeast with mannose and LAB with MBP was suppressed, and the adhesion forces were less than 300 pN. These results indicate that the specific interaction rather than the nonspecific interactions acted between mannose on the yeast and the MBP on the LAB formed submillimeter-sized small aggregates. Understanding the contribution of predominant cell-cell interactions may help control microbial behavior in biotechnology.
Collapse
Affiliation(s)
- Masayuki Wada
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Toshiyuki Nomura
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
21
|
Isenring J, Geirnaert A, Lacroix C, Stevens MJA. Bistable auto-aggregation phenotype in Lactiplantibacillus plantarum emerges after cultivation in in vitro colonic microbiota. BMC Microbiol 2021; 21:268. [PMID: 34610822 PMCID: PMC8493755 DOI: 10.1186/s12866-021-02331-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/24/2021] [Indexed: 11/28/2022] Open
Abstract
Background Auto-aggregation is a desired property for probiotic strains because it is suggested to promote colonization of the human intestine, to prevent pathogen infections and to modulate the colonic mucosa. We recently reported the generation of adapted mutants of Lactiplantibacillus plantarum NZ3400, a derivative of the model strain WCFS1, for colonization under adult colonic conditions of PolyFermS continuous intestinal fermentation models. Here we describe and characterize the emerge of an auto-aggregating phenotype in L. plantarum NZ3400 derivatives recovered from the modelled gut microbiota. Results L. plantarum isolates were recovered from reactor effluent of four different adult microbiota and from spontaneously formed reactor biofilms. Auto-aggregation was observed in L. plantarum recovered from all microbiota and at higher percentage when recovered from biofilm than from effluent. Further, auto-aggregation percentage increased over time of cultivation in the microbiota. Starvation of the gut microbiota by interrupting the inflow of nutritive medium enhanced auto-aggregation, suggesting a link to nutrient availability. Auto-aggregation was lost under standard cultivation conditions for lactobacilli in MRS medium. However, it was reestablished during growth on sucrose and maltose and in a medium that simulates the abiotic gut environment. Remarkably, none of these conditions resulted in an auto-aggregation phenotype in the wild type strain NZ3400 nor other non-aggregating L. plantarum, indicating that auto-aggregation depends on the strain history. Whole genome sequencing analysis did not reveal any mutation responsible for the auto-aggregation phenotype. Transcriptome analysis showed highly significant upregulation of LP_RS05225 (msa) at 4.1–4.4 log2-fold-change and LP_RS05230 (marR) at 4.5–5.4 log2-fold-change in all auto-aggregating strains compared to non-aggregating. These co-expressed genes encode a mannose-specific adhesin protein and transcriptional regulator, respectively. Mapping of the RNA-sequence reads to the promoter region of the msa-marR operon reveled a DNA inversion in this region that is predominant in auto-aggregating but not in non-aggregating strains. This strongly suggests a role of this inversion in the auto-aggregation phenotype. Conclusions L. plantarum NZ3400 adapts to the in vitro colonic environment by developing an auto-aggregation phenotype. Similar aggregation phenotypes may promote gut colonization and efficacy of other probiotics and should be further investigated by using validated continuous models of gut fermentation such as PolyFermS. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02331-x.
Collapse
Affiliation(s)
- Julia Isenring
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092, Zürich, Switzerland
| | - Annelies Geirnaert
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092, Zürich, Switzerland
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092, Zürich, Switzerland.
| | - Marc J A Stevens
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 7, 8092, Zürich, Switzerland.,Institute for Food Hygiene and Safety, University of Zürich, Zurich, Switzerland
| |
Collapse
|
22
|
Jeong CH, Sohn H, Hwang H, Lee HJ, Kim TW, Kim DS, Kim CS, Han SG, Hong SW. Comparison of the Probiotic Potential between Lactiplantibacillus plantarum Isolated from Kimchi and Standard Probiotic Strains Isolated from Different Sources. Foods 2021; 10:foods10092125. [PMID: 34574235 PMCID: PMC8470237 DOI: 10.3390/foods10092125] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
In the present study, the properties of the Lactiplantibacillus (Lpb.) plantarum WiKim0112 isolated from kimchi were evaluated by comparing its probiotic properties to those of Lpb. plantarum WCFS1 and KACC 11451 isolated from different sources. In both pH 2 and 3, media containing pepsin, Wikim0112, and WCFS1 showed higher cell viability than KACC11451. Viability of all Lpb. plantarum strains in a medium containing pancreatin and bile salt oxgall was significantly decreased compared to the control. WCFS1 showed the highest thermotolerance, followed by Wikim0112 and KACC11451. Wikim0112 showed a similar level of antibacterial activity to WCFS1 and exhibited an overall higher antibacterial activity than KACC11451 against six pathogens. All Lpb. plantatum strains showed high antioxidant activities in SOD, DPPH, and ABTS assays, especially Wikim0112 and WCFS1 exhibited a higher antioxidant activity than KACC11451. All Lpb. plantarum strains showed approximately 60–62% adhesion rates to Caco-2 cells. Moreover, in LPS-stimulated Caco-2 cells, all Lpb. plantarum strains significantly decreased the mRNA expression of pro-inflammatory cytokines (i.e., IL-1β, IL-6, and TNF-α); Wikim0112 significantly increased the mRNA expression of IL-4 and IFN-γ. Wikim0112 was resistant to streptomycin and vancomycin, whereas WCFS1 and KACC11451 were resistant to four (clindamycin, ciprofloxacin, tetracycline, and vancomycin) and three (ciprofloxacin, tetracycline, and vancomycin) antibiotics, respectively. These results, taken together, indicated that compared to Lpb. plantarum strains isolated from different sources, Wikim0112 showed desirable probiotic properties, suggesting its potential applications in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Chang-Hee Jeong
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju 61755, Korea; (C.-H.J.); (H.H.); (H.-J.L.); (T.-W.K.)
| | - Hyejin Sohn
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea; (H.S.); (S.-G.H.)
| | - Hyelyeon Hwang
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju 61755, Korea; (C.-H.J.); (H.H.); (H.-J.L.); (T.-W.K.)
| | - Ho-Jae Lee
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju 61755, Korea; (C.-H.J.); (H.H.); (H.-J.L.); (T.-W.K.)
| | - Tae-Woon Kim
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju 61755, Korea; (C.-H.J.); (H.H.); (H.-J.L.); (T.-W.K.)
| | - Dong-Sub Kim
- Research Institute, Korea Prime Pharm. Co., Ltd., Gwangju 61473, Korea;
| | - Chun-Sung Kim
- Department of Oral Biochemistry, College of Dentistry, Chosun University, Gwangju 61452, Korea;
| | - Sung-Gu Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea; (H.S.); (S.-G.H.)
| | - Sung-Wook Hong
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju 61755, Korea; (C.-H.J.); (H.H.); (H.-J.L.); (T.-W.K.)
- Correspondence:
| |
Collapse
|
23
|
Sauvaitre T, Etienne-Mesmin L, Sivignon A, Mosoni P, Courtin CM, Van de Wiele T, Blanquet-Diot S. Tripartite relationship between gut microbiota, intestinal mucus and dietary fibers: towards preventive strategies against enteric infections. FEMS Microbiol Rev 2021; 45:5918835. [PMID: 33026073 DOI: 10.1093/femsre/fuaa052] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
The human gut is inhabited by a large variety of microorganims involved in many physiological processes and collectively referred as to gut microbiota. Disrupted microbiome has been associated with negative health outcomes and especially could promote the onset of enteric infections. To sustain their growth and persistence within the human digestive tract, gut microbes and enteric pathogens rely on two main polysaccharide compartments, namely dietary fibers and mucus carbohydrates. Several evidences suggest that the three-way relationship between gut microbiota, dietary fibers and mucus layer could unravel the capacity of enteric pathogens to colonise the human digestive tract and ultimately lead to infection. The review starts by shedding light on similarities and differences between dietary fibers and mucus carbohydrates structures and functions. Next, we provide an overview of the interactions of these two components with the third partner, namely, the gut microbiota, under health and disease situations. The review will then provide insights into the relevance of using dietary fibers interventions to prevent enteric infections with a focus on gut microbial imbalance and impaired-mucus integrity. Facing the numerous challenges in studying microbiota-pathogen-dietary fiber-mucus interactions, we lastly describe the characteristics and potentialities of currently available in vitro models of the human gut.
Collapse
Affiliation(s)
- Thomas Sauvaitre
- Université Clermont Auvergne, UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Clermont-Ferrand, France.,Ghent University, Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Lucie Etienne-Mesmin
- Université Clermont Auvergne, UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Clermont-Ferrand, France
| | - Adeline Sivignon
- Université Clermont Auvergne, UMR 1071 Inserm, USC-INRAe 2018, Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte (M2iSH), Clermont-Ferrand, France
| | - Pascale Mosoni
- Université Clermont Auvergne, UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Clermont-Ferrand, France
| | - Christophe M Courtin
- KU Leuven, Faculty of Bioscience Engineering, Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), Leuven, Belgium
| | - Tom Van de Wiele
- Ghent University, Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology (CMET), Ghent, Belgium
| | - Stéphanie Blanquet-Diot
- Université Clermont Auvergne, UMR 454 INRAe, Microbiology, Digestive Environment and Health (MEDIS), Clermont-Ferrand, France
| |
Collapse
|
24
|
Nordström EA, Teixeira C, Montelius C, Jeppsson B, Larsson N. Lactiplantibacillus plantarum 299v (LP299V ®): three decades of research. Benef Microbes 2021; 12:441-465. [PMID: 34365915 DOI: 10.3920/bm2020.0191] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review aims to provide a comprehensive overview of the in vitro, animal, and clinical studies with the bacterial strain Lactiplantibacillus plantarum 299v (L. plantarum 299v; formerly named Lactobacillus plantarum 299v) published up until June 30, 2020. L. plantarum 299v is the most documented L. plantarum strain in the world, described in over 170 scientific publications out of which more than 60 are human clinical studies. The genome sequence of L. plantarum 299v has been determined and is available in the public domain (GenBank Accession number: NZ_LEAV01000004). The probiotic strain L. plantarum 299v was isolated from healthy human intestinal mucosa three decades ago by scientists at Lund University, Sweden. Thirty years later, a wealth of data coming from in vitro, animal, and clinical studies exist, showing benefits primarily for gastrointestinal health, such as reduced flatulence and abdominal pain in patients with irritable bowel syndrome (IBS). Moreover, several clinical studies have shown positive effects of L. plantarum 299v on iron absorption and more recently also on iron status. L. plantarum 299v is safe for human consumption and does not confer antibiotic resistance. It survives the harsh conditions of the human gastrointestinal tract, adheres to mannose residues on the intestinal epithelial cells and has in some cases been re-isolated more than ten days after administration ceased. Besides studying health benefits, research groups around the globe have investigated L. plantarum 299v in a range of applications and processes. L. plantarum 299v is used in many different food applications as well as in various dietary supplements. In a freeze-dried format, L. plantarum 299v is robust and stable at room temperature, enabling long shelf-lives of consumer healthcare products such as capsules, tablets, or powder sachets. The strain is patent protected for a wide range of indications and applications worldwide as well as trademarked as LP299V®.
Collapse
Affiliation(s)
| | - C Teixeira
- Probi AB, Ideongatan 1A, 22370 Lund, Sweden
| | | | - B Jeppsson
- Department of Surgery, Lund University, Universitetssjukhuset, 22184 Lund, Sweden
| | - N Larsson
- Probi AB, Ideongatan 1A, 22370 Lund, Sweden
| |
Collapse
|
25
|
Dell’Anno M, Giromini C, Reggi S, Cavalleri M, Moscatelli A, Onelli E, Rebucci R, Sundaram TS, Coranelli S, Spalletta A, Baldi A, Rossi L. Evaluation of Adhesive Characteristics of L. plantarum and L. reuteri Isolated from Weaned Piglets. Microorganisms 2021; 9:1587. [PMID: 34442665 PMCID: PMC8400209 DOI: 10.3390/microorganisms9081587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/08/2021] [Accepted: 07/22/2021] [Indexed: 11/24/2022] Open
Abstract
Limosilactobacillus reuteri and Lactiplantibacillus plantarum strains, previously isolated from weaned piglets, were considered for the evaluation of their adhesive characteristics. Lactobacilli were treated with LiCl in order to remove the surface protein layer, and probiotic activity was compared with those of untreated strains. The autoaggregation, co-aggregation to E. coli F18+, and adhesive abilities of LiCl-treated Limosilactobacillus reuteri and Lactiplantibacillus plantarum were significantly inhibited (p < 0.05) compared with the respective untreated strain. The hydrophobic and basic phenotypes were observed due to the strong affinity to chloroform and low adherence to ethyl acetate. In particular, L. plantarum showed higher hydrophobicity compared to L. reuteri, which may reflect their different colonizing ability. After treatment with LiCl to remove surface proteins, the adherence capabilities of L. reuteri and L. casei on IPEC-J2 cells decreased significantly (p < 0.001) and L. reuteri adhered more frequently. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that both L. reuteri and L. plantarum had several bands ranging from 20 to 100 kDa. Two-dimensional gel electrophoresis showed an acidic profile of the surface-layer polypeptides for both bacterial strains, and more studies are needed to characterize their profile and functions. The results confirm the pivotal role of surface proteins in the probiotic potential of L. reuteri and L. plantarum.
Collapse
Affiliation(s)
- Matteo Dell’Anno
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (M.D.); (S.R.); (M.C.); (R.R.); (T.S.S.); (A.B.); (L.R.)
| | - Carlotta Giromini
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (M.D.); (S.R.); (M.C.); (R.R.); (T.S.S.); (A.B.); (L.R.)
| | - Serena Reggi
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (M.D.); (S.R.); (M.C.); (R.R.); (T.S.S.); (A.B.); (L.R.)
| | - Mariagrazia Cavalleri
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (M.D.); (S.R.); (M.C.); (R.R.); (T.S.S.); (A.B.); (L.R.)
| | - Alessandra Moscatelli
- Department of Biosciences, Università Degli Studi di Milano, 20133 Milan, Italy; (A.M.); (E.O.)
| | - Elisabetta Onelli
- Department of Biosciences, Università Degli Studi di Milano, 20133 Milan, Italy; (A.M.); (E.O.)
| | - Raffaella Rebucci
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (M.D.); (S.R.); (M.C.); (R.R.); (T.S.S.); (A.B.); (L.R.)
| | - Tamil Selvi Sundaram
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (M.D.); (S.R.); (M.C.); (R.R.); (T.S.S.); (A.B.); (L.R.)
| | - Simona Coranelli
- Biotecnologie B.T. Srl, Todi, 06059 Perugia, Italy; (S.C.); (A.S.)
| | - Ambra Spalletta
- Biotecnologie B.T. Srl, Todi, 06059 Perugia, Italy; (S.C.); (A.S.)
| | - Antonella Baldi
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (M.D.); (S.R.); (M.C.); (R.R.); (T.S.S.); (A.B.); (L.R.)
| | - Luciana Rossi
- Department of Health, Animal Science and Food Safety “Carlo Cantoni” (VESPA), Università Degli Studi di Milano, 26900 Lodi, Italy; (M.D.); (S.R.); (M.C.); (R.R.); (T.S.S.); (A.B.); (L.R.)
| |
Collapse
|
26
|
Arellano K, Vazquez J, Park H, Lim J, Ji Y, Kang HJ, Cho D, Jeong HW, Holzapfel WH. Safety Evaluation and Whole-Genome Annotation of Lactobacillus plantarum Strains from Different Sources with Special Focus on Isolates from Green Tea. Probiotics Antimicrob Proteins 2021; 12:1057-1070. [PMID: 31786735 DOI: 10.1007/s12602-019-09620-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lactobacillus plantarum shows high intraspecies diversity species, and has one of the largest genome sizes among the lactobacilli. It is adapted to diverse environments and provides a promising potential for various applications. The aim of the study was to investigate the safety and probiotic properties of 18 L. plantarum strains isolated from fermented food products, green tea, and insects. For preliminary safety evaluation the L. plantarum strains were tested for their ability to produce hemolysin and biogenic amines and for their antibiotic resistance. Based on preliminary safety screening, four strains isolated from green tea showed antibiotic resistance below the cut-off MIC values suggested by EFSA, and were selected out of the 18 strains for more detailed studies. Initial selection of strains with putative probiotic potential was determined by their capacity to survive in the human GIT using an in vitro simulation model, and for their adhesion to human Caco-2/TC-7 cell line. Under simulated GIT conditions, all four L. plantarum strains isolated from green tea showed higher survival rates than the control (L. plantarum subsp. plantarum ATCC 14917). All studied strains were genetically identified by 16S rRNA gene sequencing and confirmed to be L. plantarum. In addition, whole-genome sequence analysis of L. plantarum strains APsulloc 331261 and APsulloc 331263 from green tea was performed, and the outcome was compared with the genome of L. plantarum strain WCFS1. The genome was also annotated, and genes related to virulence factors were searched for. The results suggest that L. plantarum strains APsulloc 331261 and APsulloc 331263 can be considered as potential beneficial strains for human and animal applications.
Collapse
Affiliation(s)
- Karina Arellano
- Advanced Green Energy and Environment Institute (AGEE), Handong Global University, Handong-ro 558, Pohang-si, Gyungbuk, 37554, South Korea
| | - Jorge Vazquez
- Advanced Green Energy and Environment Institute (AGEE), Handong Global University, Handong-ro 558, Pohang-si, Gyungbuk, 37554, South Korea
| | - Haryung Park
- Advanced Green Energy and Environment Institute (AGEE), Handong Global University, Handong-ro 558, Pohang-si, Gyungbuk, 37554, South Korea
| | - Juhwan Lim
- Advanced Green Energy and Environment Institute (AGEE), Handong Global University, Handong-ro 558, Pohang-si, Gyungbuk, 37554, South Korea
| | - Yosep Ji
- Advanced Green Energy and Environment Institute (AGEE), Handong Global University, Handong-ro 558, Pohang-si, Gyungbuk, 37554, South Korea
- Holzapfel Effective Microbes Inc, Iui-dong 1286, Suwon-si, Gyeonggi-do, 31286, South Korea
| | - Hye-Ji Kang
- Advanced Green Energy and Environment Institute (AGEE), Handong Global University, Handong-ro 558, Pohang-si, Gyungbuk, 37554, South Korea
| | - Donghyun Cho
- Vital Beautie Research Division, Amorepacific R&D Center, Yonggin-si, Gyeonggi-do, 17074, South Korea
| | - Hyun Woo Jeong
- Vital Beautie Research Division, Amorepacific R&D Center, Yonggin-si, Gyeonggi-do, 17074, South Korea
| | - Wilhelm Heinrich Holzapfel
- Advanced Green Energy and Environment Institute (AGEE), Handong Global University, Handong-ro 558, Pohang-si, Gyungbuk, 37554, South Korea.
- Holzapfel Effective Microbes Inc, Iui-dong 1286, Suwon-si, Gyeonggi-do, 31286, South Korea.
| |
Collapse
|
27
|
Susmitha A, Bajaj H, Madhavan Nampoothiri K. The divergent roles of sortase in the biology of Gram-positive bacteria. ACTA ACUST UNITED AC 2021; 7:100055. [PMID: 34195501 PMCID: PMC8225981 DOI: 10.1016/j.tcsw.2021.100055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/11/2021] [Accepted: 06/11/2021] [Indexed: 12/16/2022]
Abstract
The bacterial cell wall contains numerous surface-exposed proteins, which are covalently anchored and assembled by a sortase family of transpeptidase enzymes. The sortase are cysteine transpeptidases that catalyzes the covalent attachment of surface protein to the cell wall peptidoglycan. Among the reported six classes of sortases, each distinct class of sortase plays a unique biological role in anchoring a variety of surface proteins to the peptidoglycan of both pathogenic and non-pathogenic Gram-positive bacteria. Sortases not only exhibit virulence and pathogenesis properties to host cells, but also possess a significant role in gut retention and immunomodulation in probiotic microbes. The two main distinct functions are to attach proteins directly to the cell wall or assemble pili on the microbial surface. This review provides a compendium of the distribution of different classes of sortases present in both pathogenic and non-pathogenic Gram-positive bacteria and also the noteworthy role played by them in bacterial cell wall assembly which enables each microbe to effectively interact with its environment.
Collapse
Affiliation(s)
- Aliyath Susmitha
- Microbial Processes and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Harsha Bajaj
- Microbial Processes and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India
| | - Kesavan Madhavan Nampoothiri
- Microbial Processes and Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum 695019, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
28
|
Xu Z, Lu Z, Soteyome T, Ye Y, Huang T, Liu J, Harro JM, Kjellerup BV, Peters BM. Polymicrobial interaction between Lactobacillus and Saccharomyces cerevisiae: coexistence-relevant mechanisms. Crit Rev Microbiol 2021; 47:386-396. [PMID: 33663335 DOI: 10.1080/1040841x.2021.1893265] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The coordination of single or multiple microorganisms are required for the manufacture of traditional fermented foods, improving the flavour and nutrition of the food materials. However, both the additional economic benefits and safety concerns have been raised by microbiotas in fermented products. Among the fermented products, Lactobacillus and Saccharomyces cerevisiae are one of the stable microbiotas, suggesting their interaction is mediated by coexistence-relevant mechanisms and prevent to be excluded by other microbial species. Thus, aiming to guide the manufacture of fermented foods, this review will focus on interactions of coexistence-relevant mechanisms between Lactobacillus and S. cerevisiae, including metabolites communications, aggregation, and polymicrobial biofilm. Also, the molecular regulatory network of the coexistence-relevant mechanisms is discussed according to omics researches.
Collapse
Affiliation(s)
- Zhenbo Xu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
- Research Institute for Food Nutrition and Human Health, Guangzhou, China
- Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
| | - Zerong Lu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou, China
| | - Thanapop Soteyome
- Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
| | - Yanrui Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Tengyi Huang
- Department of Laboratory Medicine, the Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Junyan Liu
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA
| | - Janette M Harro
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Birthe V Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA
| | - Brian M Peters
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
29
|
Ding Y, Niu Y, Chen Z, Dong S, Li H. Discovery of novel Lactobacillus plantarum co-existence-associated influencing factor(s) on Saccharomyces cerevisiae fermentation performance. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
30
|
Fuhren J, Schwalbe M, Peralta-Marzal L, Rösch C, Schols HA, Kleerebezem M. Phenotypic and genetic characterization of differential galacto-oligosaccharide utilization in Lactobacillus plantarum. Sci Rep 2020; 10:21657. [PMID: 33303847 PMCID: PMC7728778 DOI: 10.1038/s41598-020-78721-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/27/2020] [Indexed: 11/24/2022] Open
Abstract
Several Lactobacillus plantarum strains are marketed as probiotics for their potential health benefits. Prebiotics, e.g., galacto-oligosaccharides (GOS), have the potential to selectively stimulate the growth of L. plantarum probiotic strains based on their phenotypic diversity in carbohydrate utilization, and thereby enhance their health promoting effects in the host in a strain-specific manner. Previously, we have shown that GOS variably promotes the strain-specific growth of L. plantarum. In this study we investigated this variation by molecular analysis of GOS utilization by L. plantarum. HPAEC-PAD analysis revealed two distinct GOS utilization phenotypes in L. plantarum. Linking these phenotypes to the strain-specific genotypes led to the identification of a lac operon encoding a β-galactosidase (lacA), a permease (lacS), and a divergently oriented regulator (lacR), that are predicted to be involved in the utilization of higher degree of polymerization (DP) constituents present in GOS (specifically DP of 3-4). Mutation of lacA and lacS in L. plantarum NC8 resulted in reduced growth on GOS, and HPAEC analysis confirmed the role of these genes in the import and utilization of higher-DP GOS constituents. Overall, the results enable the design of highly-selective synbiotic combinations of L. plantarum strain-specific probiotics and specific GOS-prebiotic fractions.
Collapse
Affiliation(s)
- Jori Fuhren
- Host Microbe Interactomics Group, Wageningen University and Research, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - Markus Schwalbe
- Host Microbe Interactomics Group, Wageningen University and Research, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - Lucía Peralta-Marzal
- Host Microbe Interactomics Group, Wageningen University and Research, De Elst 1, 6708 WD, Wageningen, The Netherlands
| | - Christiane Rösch
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | - Michiel Kleerebezem
- Host Microbe Interactomics Group, Wageningen University and Research, De Elst 1, 6708 WD, Wageningen, The Netherlands.
| |
Collapse
|
31
|
Probiotic Properties of Lactiplantibacillus plantarum LB5 Isolated from Kimchi Based on Nitrate Reducing Capability. Foods 2020; 9:foods9121777. [PMID: 33266127 PMCID: PMC7760155 DOI: 10.3390/foods9121777] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 01/01/2023] Open
Abstract
The purpose of this study was to investigate the probiotic properties of lactic acid bacteria isolated from Korean radish water kimchi (dongchimi). A total of 800 isolates of lactic acid bacteria were isolated from kimchi, and the strain having reduction and tolerance capability for nitrate and nitrite was selected and identified as Lactiplantibacillus plantarum LB5 (LPLB5) by 16S rRNA sequencing. LPLB5 showed higher tolerance to acidic pH values (pH 2.5), 0.3% bile salts, and heat treatment (40, 50, and 60 °C). Antibacterial activity showed strong inhibition against four food-borne pathogenic bacteria (E. coli O157:H7 ATCC 35150, Pseudomonas aeruginosa KCCM 12539, Listeria monocytogenes KCCM 40307, and Staphylococcus aureus ATCC 25923). The strain did not show any antibiotic resistance, β-hemolytic activity, or ability to produce β-glucuronidase. LPLB5 also exhibited a 30% auto-aggregation ability and 33–60% co-aggregation ability with four pathogenic bacteria (E. coli O157: H7 ATCC 35150, E. coli KCTC 2571, L. monocytogenes ATCC 51776, and S. aureus ATCC 25923). Moreover, the strain showed approximately 40% 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical- and 10% 2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical-scavenging activity. In cell culture studies, human colon epithelial cells (Caco-2) were treated with LPLB5 (106 and 107 CFU/mL); the bacteria showed more than 70% adherence onto and a 32% invasion rate into the Caco-2 cells. LPLB5 significantly decreased the mRNA expression levels of pro-inflammatory cytokines (interleukin-1 beta (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor-alpha (TNF-α)) and increased the mRNA expression levels of anti-inflammatory cytokines (interleukin-4 (IL-4), interleukin-10 (IL-10), and interferon-gamma (IFN-γ)) in lipopolysaccharide-stimulated Caco-2 cells. Our data suggest that LPLB5 is safe and possesses probiotic, antioxidant, and anti-inflammatory activities.
Collapse
|
32
|
van Zyl WF, Deane SM, Dicks LM. Molecular insights into probiotic mechanisms of action employed against intestinal pathogenic bacteria. Gut Microbes 2020; 12:1831339. [PMID: 33112695 PMCID: PMC7595611 DOI: 10.1080/19490976.2020.1831339] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal (GI) diseases, and in particular those caused by bacterial infections, are a major cause of morbidity and mortality worldwide. Treatment is becoming increasingly difficult due to the increase in number of species that have developed resistance to antibiotics. Probiotic lactic acid bacteria (LAB) have considerable potential as alternatives to antibiotics, both in prophylactic and therapeutic applications. Several studies have documented a reduction, or prevention, of GI diseases by probiotic bacteria. Since the activities of probiotic bacteria are closely linked with conditions in the host's GI-tract (GIT) and changes in the population of enteric microorganisms, a deeper understanding of gut-microbial interactions is required in the selection of the most suitable probiotic. This necessitates a deeper understanding of the molecular capabilities of probiotic bacteria. In this review, we explore how probiotic microorganisms interact with enteric pathogens in the GIT. The significance of probiotic colonization and persistence in the GIT is also addressed.
Collapse
Affiliation(s)
- Winschau F. van Zyl
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Shelly M. Deane
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Leon M.T. Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa,CONTACT Leon M.T. Dicks; Department of Microbiology; Stellenbosch University, Stellenbosch7602, South Africa
| |
Collapse
|
33
|
Elichiry-Ortiz P, Maes P, Weidmann S, Champion D, Coelho C. Analytical combinations to evaluate the macromolecular composition of extracellular substances (ECS) from Lactobacillus plantarum cell culture media. Anal Bioanal Chem 2020; 413:519-531. [PMID: 33155130 DOI: 10.1007/s00216-020-03022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/06/2020] [Accepted: 10/21/2020] [Indexed: 11/28/2022]
Abstract
Sugar-enriched media are used to produce extracellular substances (ECS) by Lactobacillus plantarum WCSF1, with a focus on growing stages and carbon source substrates. Combination of size exclusion chromatography and ATR-FTIR spectroscopy provides physicochemical patterns of bulk ECS produced along culture growing time. Secreted biopolymers present polydisperse and high molecular weight distributions, with significant amounts of carbohydrates and proteins. Results, supported by a multivariate statistical analysis, enable to differentiate the macromolecular content of bacterial ECS along the growing stages regardless of the growing media, highlighting a higher production of proteinaceous materials compared to polysaccharides. At the end of the exponential phase, common exoproteins were present in all the tested sugar-enriched media such as transglycosylases between 20 and 35 kDa, a muropeptidase at 36.9 kDa and a cell wall hydrolase. Additionally, L. plantarum WCFS1 secretes ECS with a greater diversity of proteins, when growing in the sucrose-enriched media. Graphical abstract.
Collapse
Affiliation(s)
- Peio Elichiry-Ortiz
- University of Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000, Dijon, France
| | - Pauline Maes
- Clinical Innovation Proteomic Platform - CLIPP, 15, Bd Maréchal de Lattre de Tassigny, Bat. Medecine B3, BP37013, 21070, Dijon, France
| | - Stéphanie Weidmann
- University of Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000, Dijon, France
| | - Dominique Champion
- University of Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000, Dijon, France
| | - Christian Coelho
- University of Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000, Dijon, France.
| |
Collapse
|
34
|
Lactobacillus Cell Surface Proteins Involved in Interaction with Mucus and Extracellular Matrix Components. Curr Microbiol 2020; 77:3831-3841. [PMID: 33079206 PMCID: PMC7677277 DOI: 10.1007/s00284-020-02243-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/03/2020] [Indexed: 12/18/2022]
Abstract
The gut microbiota is a complex microbial ecosystem where bacteria, through mutual interactions, cooperate in maintaining of wellbeing and health. Lactobacilli are among the most important constituents of human and animal intestinal microbiota and include many probiotic strains. Their presence ensures protection from invasion of pathogens, as well as stimulation of the immune system and protection of the intestinal flora, often exerted through the ability to interact with mucus and extracellular matrix components. The main factors responsible for mediating adhesion of pathogens and commensals to the gut are cell surface proteins that recognize host targets, as mucus layer and extracellular matrix proteins. In the last years, several adhesins have been reported to be involved in lactobacilli–host interaction often miming the same mechanism used by pathogens.
Collapse
|
35
|
A strategy to control colonization of pathogens: embedding of lactic acid bacteria on the surface of urinary catheter. Appl Microbiol Biotechnol 2020; 104:9053-9066. [PMID: 32949279 DOI: 10.1007/s00253-020-10903-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 01/13/2023]
Abstract
Indwelling urinary catheterization is one of the major causes of urinary tract infection (UTI) in hospitalized patients worldwide. A catheter serves as a surface for the colonization and formation of biofilm by UTI-related pathogenic bacteria. To combat the biofilm formation on its surface, several strategies have already been employed such as coating it with antibiofilm and antimicrobial compounds. For instance, the application of lactic acid bacteria (LAB) offers a potential strategy for the treatment of biofilm formation on the surface of the urinary catheter due to its ability to kill the pathogenic bacteria. The killing of pathogenic bacteria by LAB occurs via the production of antimicrobial compounds such as lactic acid, bacteriocin, and hydrogen peroxide. LAB also displays a competitive exclusion mechanism to prevent the adhesion of pathogens on the surfaces. Hence, LAB has been extensively applied as a bacteriotherapy to combat infectious diseases. Several strategies have been employed to attach LAB to a surface, but its easy detachment during long time exposure becomes one of the drawbacks in its application. Here, we have proposed a novel strategy for its adhesion on the surface of the urinary catheter with the utilization of mannose-specific adhesin (Msa) protein in a way similar as uropathogenic bacteria interacts between Msa present on the tip of the type I fimbriae/pilus and the mannose moieties on the host epithelial cell surfaces. KEY POINTS: • Urinary tract infection (UTI) is one of the common hospital-acquired infections, which is associated with the application of an indwelling urinary catheter. • Based on the competitive exclusions properties of LAB, attachment of the LAB on the catheter surface would be a promising approach to control the formation of pathogenic biofilm. • The strategy employed for the adhesion of LAB is via a covalent interaction of its mannose-specific adhesin (Msa) protein to the mannose residues grafted on the catheter surface.
Collapse
|
36
|
Synbiotic Matchmaking in Lactobacillus plantarum: Substrate Screening and Gene-Trait Matching To Characterize Strain-Specific Carbohydrate Utilization. Appl Environ Microbiol 2020; 86:AEM.01081-20. [PMID: 32680865 DOI: 10.1128/aem.01081-20] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Synbiotics are food supplements that combine probiotics and prebiotics to synergistically elicit a health effect in humans. Lactobacillus plantarum exhibits remarkable genetic and phenotypic diversity, in particular in strain-specific carbohydrate utilization capacities, and several strains are marketed as probiotics. We have screened 77 L. plantarum strains for their abilities to utilize specific prebiotic fibers, revealing variable and strain-specific growth efficiencies on isomalto- and galactooligosaccharides. We identified a single strain within the screening panel that was able to effectively utilize inulin and fructooligosaccharides (FOS), which did not support efficient growth of the rest of the strains. In the panel we tested, we did not find strains that could utilize arabinoxylooligosaccharides or sulfated fucoidan. The strain-specific growth phenotype on isomaltooligosaccharides was further analyzed using high-performance anion-exchange chromatography, which revealed distinct substrate utilization phenotypes within the strain panel. The strain-specific phenotypes could be linked to the strains' genotypes by identifying gene clusters coding for carbohydrate membrane transport systems that are predicted to be involved in the utilization of isomaltose and other (unidentified) oligosaccharides in the isomaltooligosaccharide substrate.IMPORTANCE Synbiotics combine prebiotics and probiotics to synergistically enhance the health benefits associated with these ingredients. Lactobacillus plantarum is encountered as a natural inhabitant of the gastrointestinal tract, and specific strains are marketed as probiotics based on their strain-specific health-promoting activities. Strain-specific stimulation of growth through prebiotic substrates could enhance the persistence and/or activity of L. plantarum in situ Our study establishes a high-throughput screening model for prebiotic substrate utilization by individual strains of bacteria, which can be readily employed for synbiotic matchmaking approaches that aim to enhance the intestinal delivery of probiotics through strain-specific, selective growth stimulation.
Collapse
|
37
|
Yue B, Yu ZL, Lv C, Geng XL, Wang ZT, Dou W. Regulation of the intestinal microbiota: An emerging therapeutic strategy for inflammatory bowel disease. World J Gastroenterol 2020; 26:4378-4393. [PMID: 32874052 PMCID: PMC7438192 DOI: 10.3748/wjg.v26.i30.4378] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 02/06/2023] Open
Abstract
The rapid development of metagenomics, metabolomics, and metatranscriptomics provides novel insights into the intestinal microbiota factors linked to inflammatory bowel disease (IBD). Multiple microorganisms play a role in intestinal health; these include bacteria, fungi, and viruses that exist in a dynamic balance to maintain mucosal homeostasis. Perturbations in the intestinal microbiota disrupt mucosal homeostasis and are closely related to IBD in humans and colitis in mice. Therefore, preventing or correcting the imbalance of microbiota may serve as a novel prevention or treatment strategy for IBD. We review the most recent evidence for direct or indirect interventions targeting intestinal microbiota for treatment of IBD in order to overcome the current limitations of IBD therapies and shed light on personalized treatment options.
Collapse
Affiliation(s)
- Bei Yue
- The MOE key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhi-Lun Yu
- The MOE key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Cheng Lv
- The MOE key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiao-Long Geng
- The MOE key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zheng-Tao Wang
- The MOE key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wei Dou
- The MOE key Laboratory of Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines, and the SATCM key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
38
|
Liu Y, Liu B, Li D, Hu Y, Zhao L, Zhang M, Ge S, Pang J, Li Y, Wang R, Wang P, Huang Y, Huang J, Bai J, Ren F, Li Y. Improved Gastric Acid Resistance and Adhesive Colonization of Probiotics by Mucoadhesive and Intestinal Targeted Konjac Glucomannan Microspheres. ADVANCED FUNCTIONAL MATERIALS 2020; 30. [DOI: 10.1002/adfm.202001157] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Indexed: 08/22/2024]
Abstract
AbstractThe low survival rate in harsh stomach conditions and short retention in intestine of probiotics greatly limit their health benefits. To solve this problem, thiolated oxidized konjac glucomannan (sOKGM) microspheres is designed with pH responsive and mucoadhesive properties. First, an increased survival rate of probiotics by sOKGM microspheres encapsulation in simulated gastric fluid (SGF) is discovered in contrast to the zero‐survival rate of naked probiotics. sOKGM/probiotics even show a higher survival rate in SGF compared with commercial Bb12 formulation. Further, an enhanced mucoadhesion of probiotics to intestinal mucus by mediated interactions with sOKGM is confirmed by isotherm titration calorimetry, rheology, and tensile measurements. The in vivo intestinal transition experiment indicates a prolonged retention of probiotics at intestine by sOKGM encapsulation. Moreover, in vivo evaluation of enhanced colonization and proliferation by sOKGM/probiotics is demonstrated by the fecal and intestinal bacteria copy number via quantitative polymerase chain reaction (qPCR) detection. Further investigation of the alleviation of constipation by sOKGM containing Bifidobacterium animalis subsp. lactis A6 suggests that sOKGM increases the abundance of Bifidobacterium, balanced intestinal flora, and alleviated constipation in mice compared with other formulations. sOKGM with both enhanced gastric acid resistance and adhesion colonization at intestine can effectively improve the function of probiotics.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Precision Nutrition and Food Quality Key Laboratory of Functional Dairy The Ministry of Education College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 P. R. China
| | - Bin Liu
- Key Laboratory of Precision Nutrition and Food Quality Key Laboratory of Functional Dairy The Ministry of Education College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 P. R. China
| | - Dan Li
- Key Laboratory of Precision Nutrition and Food Quality Key Laboratory of Functional Dairy The Ministry of Education College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 P. R. China
| | - Yulin Hu
- Key Laboratory of Precision Nutrition and Food Quality Key Laboratory of Functional Dairy The Ministry of Education College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 P. R. China
| | - Liang Zhao
- Key Laboratory of Precision Nutrition and Food Quality Key Laboratory of Functional Dairy The Ministry of Education College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 P. R. China
| | - Ming Zhang
- School of Food and Health Beijing Technology and Business University Beijing 100048 P. R. China
| | - Shaoyang Ge
- The Research Center for Probiotics China Agricultural University Hebei 065201 P. R. China
| | - Jie Pang
- College of Food Science Fujian Agriculture and Forestry University Fuzhou 350002 P. R. China
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality Key Laboratory of Functional Dairy The Ministry of Education College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 P. R. China
| | - Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality Key Laboratory of Functional Dairy The Ministry of Education College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 P. R. China
- The Research Center for Probiotics China Agricultural University Hebei 065201 P. R. China
| | - Pengjie Wang
- Key Laboratory of Precision Nutrition and Food Quality Key Laboratory of Functional Dairy The Ministry of Education College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 P. R. China
| | - Yutao Huang
- Key Laboratory of Precision Nutrition and Food Quality Key Laboratory of Functional Dairy The Ministry of Education College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 P. R. China
| | - Jing Huang
- Key Laboratory of Precision Nutrition and Food Quality Key Laboratory of Functional Dairy The Ministry of Education College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 P. R. China
| | - Jie Bai
- Key Laboratory of Precision Nutrition and Food Quality Key Laboratory of Functional Dairy The Ministry of Education College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 P. R. China
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality Key Laboratory of Functional Dairy The Ministry of Education College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 P. R. China
| | - Yuan Li
- Key Laboratory of Precision Nutrition and Food Quality Key Laboratory of Functional Dairy The Ministry of Education College of Food Science and Nutritional Engineering China Agricultural University Beijing 100083 P. R. China
| |
Collapse
|
39
|
Gutierrez-Merino J, Isla B, Combes T, Martinez-Estrada F, Maluquer De Motes C. Beneficial bacteria activate type-I interferon production via the intracellular cytosolic sensors STING and MAVS. Gut Microbes 2020; 11:771-788. [PMID: 31941397 PMCID: PMC7524384 DOI: 10.1080/19490976.2019.1707015] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023] Open
Abstract
Type-I interferon (IFN-I) cytokines are produced by immune cells in response to microbial infections, cancer and autoimmune diseases, and subsequently, trigger cytoprotective and antiviral responses through the activation of IFN-I stimulated genes (ISGs). The ability of intestinal microbiota to modulate innate immune responses is well known, but the mechanisms underlying such responses remain elusive. Here we report that the intracellular sensors stimulator of IFN genes (STING) and mitochondrial antiviral signaling (MAVS) are essential for the production of IFN-I in response to lactic acid bacteria (LAB), common gut commensal bacteria with beneficial properties. Using human macrophage cells we show that LAB strains that potently activate the inflammatory transcription factor NF-κB are poor inducers of IFN-I and conversely, those triggering significant amounts of IFN-I fail to activate NF-κB. This IFN-I response is also observed in human primary macrophages, which modulate CD64 and CD40 upon challenge with IFN-I-inducing LAB. Mechanistically, IFN-I inducers interact more intimately with phagocytes as compared to NF-κB-inducers, and fail to activate IFN-I in the presence of phagocytosis inhibitors. These bacteria are then sensed intracellularly by the cytoplasmic sensors STING and, to a lesser extent, MAVS. Accordingly, macrophages deficient for STING showed dramatically reduced phosphorylation of TANK-binding kinase (TBK)-1 and IFN-I activation, which resulted in lower expression of ISGs. Our findings demonstrate a major role for intracellular sensing and STING in the production of IFN-I by beneficial bacteria and the existence of bacteria-specific immune signatures, which can be exploited to promote cytoprotective responses and prevent overreactive NF-κB-dependent inflammation in the gut.
Collapse
Affiliation(s)
| | - Beatriz Isla
- School of Biosciences and Medicine, University of Surrey, GU2 7XH Guildford, UK
| | - Theo Combes
- School of Biosciences and Medicine, University of Surrey, GU2 7XH Guildford, UK
| | | | | |
Collapse
|
40
|
Cell Wall Anchoring of a Bacterial Chitosanase in Lactobacillus plantarum Using a Food-Grade Expression System and Two Versions of an LP TG Anchor. Int J Mol Sci 2020; 21:ijms21113773. [PMID: 32471049 PMCID: PMC7312796 DOI: 10.3390/ijms21113773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 01/16/2023] Open
Abstract
Lactic acid bacteria (LAB) have attracted increasing interest recently as cell factories for the production of proteins as well as a carrier of proteins that are of interest for food and therapeutic applications. In this present study, we exploit a lactobacillal food-grade expression system derived from the pSIP expression vectors using the alr (alanine racemase) gene as the selection marker for the expression and cell-surface display of a chitosanase in Lactobacillus plantarum using two truncated forms of a LP × TG anchor. CsnA, a chitosanase from Bacillus subtilis 168 (ATCC23857), was fused to two different truncated forms (short-S and long-L anchors) of an LP × TG anchor derived from Lp_1229, a key-protein for mannose-specific adhesion in L. plantarum WCFS1. The expression and cell-surface display efficiency driven by the food-grade alr-based system were compared with those obtained from the erm-based pSIP system in terms of enzyme activities and their localisation on L. plantarum cells. The localization of the protein on the bacterial cell surface was confirmed by flow cytometry and immunofluorescence microscopy. The highest enzymatic activity of CsnA-displaying cells was obtained from the strain carrying the alr-based expression plasmid with short cell wall anchor S. However, the attachment of chitosanase on L. plantarum cells via the long anchor L was shown to be more stable compared with the short anchor after several repeated reaction cycles. CsnA displayed on L. plantarum cells is catalytically active and can convert chitosan into chito-oligosaccharides, of which chitobiose and chitotriose are the main products.
Collapse
|
41
|
Yuan T, Wang J, Chen L, Shan J, Di L. Lactobacillus murinus Improved the Bioavailability of Orally Administered Glycyrrhizic Acid in Rats. Front Microbiol 2020; 11:597. [PMID: 32390962 PMCID: PMC7193032 DOI: 10.3389/fmicb.2020.00597] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 03/18/2020] [Indexed: 12/22/2022] Open
Abstract
Intestinal microbiota has been extensively studied in the context of host health benefit, and it has recently become clear that the gut microbiota influences drug pharmacokinetics and correspondingly efficacy. Intestinal microbiota dysbiosis is closely related with liver cirrhosis, especially the depletion of Lactobacillus. Therefore, the bioavailability of orally administered glycyrrhizic acid (GL) was speculated to be influenced under a pathological state. In the present study, L. murinus was isolated and screened for GL bioconversion capacity in vitro. Compared with Lactobacillus rhamnosus and Lactobacillus acidophilus, L. murinus was chosen for further investigation because it has the highest biotransformation rate. Our results showed that L. murinus could significantly improve the translocation of GL on Caco-2 cell models. Meanwhile, L. murinus was observed to have the ability to bind with the surface of Caco-2 cells and prominently downregulate the transporter gene expression level of multidrug resistance gene 1 (MDR1) and multidrug resistance protein 2 (MRP2), which were involved in the efflux of drugs. Furthermore, L. murinus was selected to be orally administred into rats in healthy and liver cirrhosis groups by a daily gavage protocol. Our data highlighted that supplements of L. murinus significantly improved the bioavailability of orally administered GL in rats, especially under a pathological condition, which may provide a novel strategy for improving the clinical therapeutic effect of liver protective drugs.
Collapse
Affiliation(s)
- Tianjie Yuan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Engineering Research Centre for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Letian Chen
- Jiangsu Engineering Research Centre for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liuqing Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Engineering Research Centre for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
42
|
Interactions between Lactobacillus plantarum NCU116 and its environments based on extracellular proteins and polysaccharides prediction by comparative analysis. Genomics 2020; 112:3579-3587. [PMID: 32320822 DOI: 10.1016/j.ygeno.2020.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 01/27/2020] [Accepted: 04/14/2020] [Indexed: 12/23/2022]
Abstract
Lactic acid bacteria (LAB) play a significant role in food industry and artisan fermented-food. Most of the applicable LABs were commonly obtained from natural fermented food or human gut. And Lactobacillus plantarum NCU116 was screened from a LAB-dominated traditional Chinese sauerkraut (TCS). In order to comprehend the interaction between NCU116 and its environments, comparative genomics were performed to identify genes involved in extracellular protein biosynthesis and secretion. Four secretory pathways were identified, including Sec and FPE pathways, holins and efflux ABC transporter system. Then 348 potential secretory proteins were identified, including 11 alpha-amylases responsible for degradation of macromolecules, and 8 mucus binding proteins which attribute to adherence to intestine epithelium. Besides, EPS clusters of NCU116 (EPS116) were identified and analyzed by comparing to other strains, which suggested a novel genotype of EPS clusters. These findings could be critical to extend the application of NCU116 in food and pharmaceuticals industries.
Collapse
|
43
|
Houeix B, Synowsky S, Cairns MT, Kane M, Kilcoyne M, Joshi L. Identification of putative adhesins and carbohydrate ligands of Lactobacillus paracasei using a combinatorial in silico and glycomics microarray profiling approach. Integr Biol (Camb) 2020; 11:315-329. [PMID: 31712825 DOI: 10.1093/intbio/zyz026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/28/2019] [Accepted: 09/02/2019] [Indexed: 01/07/2023]
Abstract
Commensal bacteria must colonize host mucosal surfaces to exert health-promoting properties, and bind to gastrointestinal tract (GIT) mucins via their cell surface adhesins. Considerable effort has been directed towards discovery of pathogen adhesins and their ligands to develop anti-infective strategies; however, little is known about the lectin-like adhesins and associated carbohydrate ligands in commensals. In this study, an in silico approach was used to detect surface exposed adhesins in the human commensal Lactobacillus paracasei subsp. paracasei, a promising probiotic commonly used in dairy product fermentation that presents anti-microbial activity. Of the 13 adhesin candidates, 3 sortase-dependent pili clusters were identified in this strain and expression of the adhesin candidate genes was confirmed in vitro. Mass spectrometry analysis confirmed the presence of surface adhesin elongation factor Tu and the chaperonin GroEL, but not pili expression. Whole cells were subsequently incubated on microarrays featuring a panel of GIT mucins from nine different mammalian species and two human-derived cell lines and a library of carbohydrate structures. Binding profiles were compared to those of two known pili-producing lactobacilli, L. johnsonii and L. rhamnosus and all Lactobacillus species displayed overlapping but distinct signatures, which may indicate different abilities for regiospecific GIT colonization. In addition, L. paracasei whole cells favoured binding to α-(2 → 3)-linked sialic acid and α-(1 → 2)-linked fucose-containing carbohydrate structures including blood groups A, B and O and Lewis antigens x, y and b. This study furthers our understanding of host-commensal cross-talk by identifying potential adhesins and specific GIT mucin and carbohydrate ligands and provides insight into the selection of colonization sites by commensals in the GIT.
Collapse
Affiliation(s)
- Benoit Houeix
- Glycoscience Group, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland.,Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science, National University of Ireland Galway, Galway, Ireland
| | - Silvia Synowsky
- Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, KY16 9ST, UK
| | - Michael T Cairns
- Glycoscience Group, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland.,Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science, National University of Ireland Galway, Galway, Ireland
| | - Marian Kane
- Glycoscience Group, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland.,Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science, National University of Ireland Galway, Galway, Ireland
| | - Michelle Kilcoyne
- Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science, National University of Ireland Galway, Galway, Ireland.,Carbohydrate Signalling Group, Discipline of Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Lokesh Joshi
- Glycoscience Group, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland.,Advanced Glycoscience Research Cluster, National Centre for Biomedical Engineering Science, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
44
|
Senatore G, Mastroleo F, Leys N, Mauriello G. Growth of Lactobacillus reuteri DSM17938 Under Two Simulated Microgravity Systems: Changes in Reuterin Production, Gastrointestinal Passage Resistance, and Stress Genes Expression Response. ASTROBIOLOGY 2020; 20:1-14. [PMID: 31977256 DOI: 10.1089/ast.2019.2082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Extreme factors such as space microgravity, radiation, and magnetic field differ from those that occur on Earth. Microgravity may induce and select some microorganisms for physiological, metabolic, and/or genetic variations. This study was conducted to determine the effects of simulated microgravity conditions on the metabolism and gene expression of the probiotic bacterium Lactobacillus reuteri DSM17938. To investigate microbial response to simulated microgravity, two devices-the rotating wall vessel (RWV) and the random positioning machine (RPM)-were used. Microbial growth, reuterin production, and resistance to gastrointestinal passage were assessed, and morphological characteristics were analyzed by scanning electron microscopy. The expression of some selected genes that are responsive to stress conditions and to bile salts stress was evaluated through real-time quantitative polymerase chain reaction assay. Monitoring of bacterial growth, cell size, and shape under simulated microgravity did not reveal differences compared with 1 × g controls. On the contrary, an enhanced production of reuterin and a greater tolerance to the gastrointestinal passage were observed. Moreover, some stress genes were upregulated under RWV conditions, especially after 24 h of treatment, whereas RPM conditions seemed to determine a downregulation over time of the same stress genes. These results show that simulated microgravity could alter some physiological characteristics of L. reuteri DSM17938 with regard to tolerance toward stress conditions encountered on space missions and could be useful to elucidate the adaptation mechanisms of microbes to the space environment.
Collapse
Affiliation(s)
- Giuliana Senatore
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Felice Mastroleo
- Microbiology Unit, Belgian Nuclear Research Centre (SCK●CEN), Mol, Belgium
| | - Natalie Leys
- Microbiology Unit, Belgian Nuclear Research Centre (SCK●CEN), Mol, Belgium
| | - Gianluigi Mauriello
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
45
|
Zuo F, Appaswamy A, Gebremariam HG, Jonsson AB. Role of Sortase A in Lactobacillus gasseri Kx110A1 Adhesion to Gastric Epithelial Cells and Competitive Exclusion of Helicobacter pylori. Front Microbiol 2019; 10:2770. [PMID: 31849907 PMCID: PMC6902081 DOI: 10.3389/fmicb.2019.02770] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/13/2019] [Indexed: 12/24/2022] Open
Abstract
We have previously shown that Lactobacillus gasseri Kx110A1, a human stomach isolate, can colonize mouse stomach and reduce the initial colonization of Helicobacter pylori. Here, we investigated the role of sortase-dependent proteins (SDPs) involved in these functions by the construction of a mutant for srtA, the gene encoding the housekeeping sortase that covalently anchors SDPs to the cell surface. The srtA mutant showed a decrease in hydrophobicity and autoaggregation under acidic conditions, indicating the effect of SDPs on cell surface properties. Correspondingly, the srtA mutant lost the capacity to adhere to gastric epithelial cells, thus resulting in an inability to provide a physical barrier to prevent H. pylori adherence. These results indicate that sortase A is a key determinant of the cell surface properties of L. gasseri Kx110A1 and contributes to Lactobacillus-mediated exclusion of H. pylori. Understanding the molecular mechanisms by which lactobacilli antagonize H. pylori might contribute to the development of novel therapeutic strategies that take advantage of health-promoting bacteria and reduce the burden of antibiotic resistance.
Collapse
Affiliation(s)
- Fanglei Zuo
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Amulya Appaswamy
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Hanna G Gebremariam
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Ann-Beth Jonsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
46
|
Deo D, Davray D, Kulkarni R. A Diverse Repertoire of Exopolysaccharide Biosynthesis Gene Clusters in Lactobacillus Revealed by Comparative Analysis in 106 Sequenced Genomes. Microorganisms 2019; 7:E444. [PMID: 31614693 PMCID: PMC6843789 DOI: 10.3390/microorganisms7100444] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022] Open
Abstract
Production of exopolysaccharides (EPS) is one of the unique features of Lactobacillus genus. EPS not only have many physiological roles such as in stress tolerance, quorum sensing and biofilm formation, but also have numerous applications in the food and pharmaceutical industries. In this study, we identified and compared EPS biosynthesis gene clusters in 106 sequenced Lactobacillus genomes representing 27 species. Of the 146 identified clusters, only 41 showed the typical generic organization of genes as reported earlier. Hierarchical clustering showed highly varied nature of the clusters in terms of the gene composition; nonetheless, habitat-wise grouping was observed for the gene clusters from host-adapted and nomadic strains. Of the core genes required for EPS biosynthesis, epsA, B, C, D and E showed higher conservation, whereas gt, wzx and wzy showed high variability in terms of the number and composition of the protein families. Analysis of the distribution pattern of the protein families indicated a higher proportion of mutually exclusive families in clusters from host-adapted and nomadic strains, whereas those from the free-living group had very few unique families. Taken together, this analysis highlights high variability in the EPS gene clusters amongst Lactobacillus with some of their properties correlated to the habitats.
Collapse
Affiliation(s)
- Dipti Deo
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune 412 115, India.
| | - Dimple Davray
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune 412 115, India.
| | - Ram Kulkarni
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune 412 115, India.
| |
Collapse
|
47
|
A novel method for rapid estimation of lactic acid bacterial concentration in fermented milk based on superhydrophobic surface wettability. Int J Food Microbiol 2019; 304:39-48. [PMID: 31154110 DOI: 10.1016/j.ijfoodmicro.2019.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 05/14/2019] [Accepted: 05/20/2019] [Indexed: 11/21/2022]
Abstract
A novel and facile method is developed for rapid estimation of lactic acid bacterial concentration in fermented milk. Growth of bacteria in a liquid changes physicochemical property of the medium and its behavior at solid-liquid interface. Wettability determines characteristic of solid-liquid interface. Nano-rod, helical tetragonal and L-shaped morphologies were designed and fabricated. Hydrophobicity and zeta potential were measured for dried surfaces of 5 dairy bacterial strains. Relationship between microbial population and changes in solid-liquid interface was studied by wettability and surface free energy measurements. Due to hydrophobic surface property of conventional dairy strains, they strongly affect solid-liquid and liquid-vapor surface tensions when dispersed in a liquid, which are dependent on the bacterial concentration. Response surface methodology results showed that type and concentration of bacteria, droplet volume and solid-surface morphology affect wettability significantly. Higher hydrophobicity resulted in higher ∆θ (absolute value of the difference between the pure physiological saline and the bacterial suspension contact angles) dependence on the bacterial concentration. Probiotic bacteria concentration in fermented milk was estimated using the proposed method. A direct relationship was obtained between milk contact angle and bacterial concentration. Results show that this physical method can be applied for rapid estimation of bacterial concentration.
Collapse
|
48
|
Comparative genomics and functional analysis of a highly adhesive dairy Lactobacillus paracasei subsp. paracasei IBB3423 strain. Appl Microbiol Biotechnol 2019; 103:7617-7634. [PMID: 31359102 PMCID: PMC6717177 DOI: 10.1007/s00253-019-10010-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 01/04/2023]
Abstract
Various Lactobacillus paracasei strains are found in diverse environments, including dairy and plant materials and the intestinal tract of humans and animals, and are also used in the food industry or as probiotics. In this study, we have isolated a new strain L. paracasei subsp. paracasei IBB3423 from samples of raw cow milk collected in a citizen science project. IBB3423 showed some desired probiotic features such as high adhesion capacity and ability to metabolize inulin. Its complete genome sequence comprising the chromosome of 3,183,386 bp and two plasmids of 5986 bp and 51,211 bp was determined. In silico analysis revealed numerous genes encoding proteins involved in carbohydrate metabolism and of extracellular localization likely supporting interaction with host tissues. In vitro tests confirmed the high adhesion capacity of IBB3423 and showed that it even exceeds that of the highly adhesive L. rhamnosus GG. Curing of the larger plasmid indicated that the adhesive properties depend on the plasmid and thus could be determined by its pilus-encoding spaCBA genes.
Collapse
|
49
|
Etienne-Mesmin L, Chassaing B, Desvaux M, De Paepe K, Gresse R, Sauvaitre T, Forano E, de Wiele TV, Schüller S, Juge N, Blanquet-Diot S. Experimental models to study intestinal microbes–mucus interactions in health and disease. FEMS Microbiol Rev 2019; 43:457-489. [DOI: 10.1093/femsre/fuz013] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023] Open
Abstract
ABSTRACT
A close symbiotic relationship exists between the intestinal microbiota and its host. A critical component of gut homeostasis is the presence of a mucus layer covering the gastrointestinal tract. Mucus is a viscoelastic gel at the interface between the luminal content and the host tissue that provides a habitat to the gut microbiota and protects the intestinal epithelium. The review starts by setting up the biological context underpinning the need for experimental models to study gut bacteria-mucus interactions in the digestive environment. We provide an overview of the structure and function of intestinal mucus and mucins, their interactions with intestinal bacteria (including commensal, probiotics and pathogenic microorganisms) and their role in modulating health and disease states. We then describe the characteristics and potentials of experimental models currently available to study the mechanisms underpinning the interaction of mucus with gut microbes, including in vitro, ex vivo and in vivo models. We then discuss the limitations and challenges facing this field of research.
Collapse
Affiliation(s)
- Lucie Etienne-Mesmin
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Benoit Chassaing
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303 , USA
- Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Ave, Atlanta, GA 30303 , USA
| | - Mickaël Desvaux
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Kim De Paepe
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Raphaële Gresse
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Thomas Sauvaitre
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Evelyne Forano
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Stephanie Schüller
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR7UQ, United Kingdom
| | - Nathalie Juge
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR7UQ, United Kingdom
| | - Stéphanie Blanquet-Diot
- Université Clermont Auvergne, INRA, MEDIS, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| |
Collapse
|
50
|
Molecular Switch Controlling Expression of the Mannose-Specific Adhesin, Msa, in Lactobacillus plantarum. Appl Environ Microbiol 2019; 85:AEM.02954-18. [PMID: 30877113 DOI: 10.1128/aem.02954-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/05/2019] [Indexed: 11/20/2022] Open
Abstract
Some lactic acid bacteria, especially Lactobacillus spp., possess adhesive properties enabling colonization of the human gastrointestinal tract. Two probiotic Lactobacillus plantarum strains, WCSF1 and 299v, display highly different mannose-specific adhesion, with L. plantarum 299v being superior to L. plantarum WCFS1 based on a yeast agglutination assay. A straightforward correlation between the mannose adhesion capacity and domain composition of the mannose-specific adhesin (Msa) in the two strains has not been demonstrated previously. In this study, we analyzed the promoter regions upstream of the msa gene encoding a mannose-specific adhesin in these two strains. The promoter region was mapped by primer extension and DNA sequence analysis, and only a single nucleotide change was identified between the two strains. However, Northern blot analysis showed a stronger msa transcript band in 299v than in WCFS1 correlating with the different adhesion capacities. During the establishment of a high-throughput yeast agglutination assay, we isolated variants of WCFS1 that displayed a very strong mannose-specific adhesion phenotype. The region upstream of the msa gene in these variants showed an inversion of a 104-bp fragment located between two perfectly inverted repeats present in the untranslated leader region. The inversion disrupts a strong hairpin structure that otherwise most likely would terminate the msa transcript. In addition, the ribosome binding site upstream of the msa gene, which is also masked within this hairpin structure, becomes accessible upon inversion, thereby increasing the frequency of translation initiation in the variant strains. Furthermore, Northern blot analysis showed a higher abundance of the msa transcript in the variants than in the wild type, correlating with a strong-Msa phenotype.IMPORTANCE Probiotic strains possess adhesive properties enabling colonization of the human intestinal tract through interactions between molecules present on the probiotic bacteria and components of the epithelial surface. In Lactobacillus plantarum, interaction is mediated through bacterial surface proteins like Msa, which binds to mannose residues present on the intestinal cells. Such interactions are believed to be important for the health-promoting effects of probiotics, including displacement of pathogens, immunomodulation, and protective effects on the intestinal barrier function. In this study, we have identified a new molecular switch controlling expression of the msa gene in L. plantarum strain WCFS1. Strains with increased msa expression could be valuable in the development and manufacture of improved probiotic products.
Collapse
|