1
|
Jin M, He B, Cai X, Lei Z, Sun T. Research progress of nanoparticle targeting delivery systems in bacterial infections. Colloids Surf B Biointerfaces 2023; 229:113444. [PMID: 37453264 DOI: 10.1016/j.colsurfb.2023.113444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Bacterial infection is a huge threat to the health of human beings and animals. The abuse of antibiotics have led to the occurrence of bacterial multidrug resistance, which have become a difficult problem in the treatment of clinical infections. Given the outstanding advantages of nanodrug delivery systems in cancer treatment, many scholars have begun to pay attention to their application in bacterial infections. However, due to the similarity of the microenvironment between bacterial infection lesions and cancer sites, the targeting and accuracy of traditional microenvironment-responsive nanocarriers are questionable. Therefore, finding new specific targets has become a new development direction of nanocarriers in bacterial prevention and treatment. This article reviews the infectious microenvironment induced by bacteria and a series of virulence factors of common pathogenic bacteria and their physiological functions, which may be used as potential targets to improve the targeting accuracy of nanocarriers in lesions.
Collapse
Affiliation(s)
- Ming Jin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Bin He
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, China
| | - Xiaoli Cai
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| |
Collapse
|
2
|
Baharin A, Ting TY, Goh HH. Post-Proline Cleaving Enzymes (PPCEs): Classification, Structure, Molecular Properties, and Applications. PLANTS (BASEL, SWITZERLAND) 2022; 11:1330. [PMID: 35631755 PMCID: PMC9147577 DOI: 10.3390/plants11101330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Proteases or peptidases are hydrolases that catalyze the breakdown of polypeptide chains into smaller peptide subunits. Proteases exist in all life forms, including archaea, bacteria, protozoa, insects, animals, and plants due to their vital functions in cellular processing and regulation. There are several classes of proteases in the MEROPS database based on their catalytic mechanisms. This review focuses on post-proline cleaving enzymes (PPCEs) from different peptidase families, as well as prolyl endoprotease/oligopeptidase (PEP/POP) from the serine peptidase family. To date, most PPCEs studied are of microbial and animal origins. Recently, there have been reports of plant PPCEs. The most common PEP/POP are members of the S9 family that comprise two conserved domains. The substrate-limiting β-propeller domain prevents unwanted digestion, while the α/β hydrolase catalyzes the reaction at the carboxyl-terminal of proline residues. PPCEs display preferences towards the Pro-X bonds for hydrolysis. This level of selectivity is substantial and has benefited the brewing industry, therapeutics for celiac disease by targeting proline-rich substrates, drug targets for human diseases, and proteomics analysis. Protein engineering via mutagenesis has been performed to improve heat resistance, pepsin-resistant capability, specificity, and protein turnover of PPCEs for pharmacological applications. This review aims to synthesize recent structure-function studies of PPCEs from different families of peptidases to provide insights into the molecular mechanism of prolyl cleaving activity. Despite the non-exhaustive list of PPCEs, this is the first comprehensive review to cover the biochemical properties, biological functions, and biotechnological applications of PPCEs from the diverse taxa.
Collapse
|
3
|
Menfaatli E, Zihnioğlu F. Egg white protein polymer: an affinity matrix for protease enrichment and isolation. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2021.1887235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Esra Menfaatli
- Department of Biochemistry, Faculty of Science, Ege University, İzmir, TURKEY
| | - Figen Zihnioğlu
- Department of Biochemistry, Faculty of Science, Ege University, İzmir, TURKEY
| |
Collapse
|
4
|
Tram G, Jennings MP, Blackall PJ, Atack JM. Streptococcus suis pathogenesis-A diverse array of virulence factors for a zoonotic lifestyle. Adv Microb Physiol 2021; 78:217-257. [PMID: 34147186 DOI: 10.1016/bs.ampbs.2020.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Streptococcus suis is a major cause of respiratory tract and invasive infections in pigs and is responsible for a substantial disease burden in the pig industry. S. suis is also a significant cause of bacterial meningitis in humans, particularly in South East Asia. S. suis expresses a wide array of virulence factors, and although many are described as being required for disease, no single factor has been demonstrated to be absolutely required. The lack of uniform distribution of known virulence factors among individual strains and lack of evidence that any particular virulence factor is essential for disease makes the development of vaccines and treatments challenging. Here we review the current understanding of S. suis virulence factors and their role in the pathogenesis of this important zoonotic pathogen.
Collapse
Affiliation(s)
- Greg Tram
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Patrick J Blackall
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - John M Atack
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia.
| |
Collapse
|
5
|
Oscarsson J, Claesson R, Bao K, Brundin M, Belibasakis GN. Phylogenetic Analysis of Filifactor alocis Strains Isolated from Several Oral Infections Identified a Novel RTX Toxin, FtxA. Toxins (Basel) 2020; 12:toxins12110687. [PMID: 33143036 PMCID: PMC7692872 DOI: 10.3390/toxins12110687] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 12/16/2022] Open
Abstract
Filifactor alocis is a Gram-positive asaccharolytic, obligate anaerobic rod of the phylum Firmicutes, and is considered an emerging pathogen in various oral infections, including periodontitis. We here aimed to perform phylogenetic analysis of a genome-sequenced F. alocis type strain (ATCC 35896; CCUG 47790), as well as nine clinical oral strains that we have independently isolated and sequenced, for identification and deeper characterization of novel genomic elements of virulence in this species. We identified that 60% of the strains carried a gene encoding a hitherto unrecognized member of the large repeats-in-toxins (RTX) family, which we have designated as FtxA. The clinical infection origin of the ftxA-positive isolates largely varied. However, according to MLST, a clear monophylogeny was reveled for all ftxA-positive strains, along with a high co-occurrence of lactate dehydrogenase (ldh)-positivity. Cloning and expression of ftxA in E. coli, and purification of soluble FtxA yielded a protein of the predicted molecular size of approximately 250 kDa. Additional functional and proteomics analyses using both the recombinant protein and the ftxA-positive, and -negative isolates may reveal a possible role and mechanism(s) of FtxA in the virulence properties of F.alocis, and whether the gene might be a candidate diagnostic marker for more virulent strains.
Collapse
Affiliation(s)
- Jan Oscarsson
- Division of Oral Microbiology, Department of Odontology, Umeå University, 90187 Umeå, Sweden;
- Correspondence:
| | - Rolf Claesson
- Division of Oral Microbiology, Department of Odontology, Umeå University, 90187 Umeå, Sweden;
| | - Kai Bao
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, 14104 Huddinge, Sweden; (K.B.); (G.N.B.)
| | - Malin Brundin
- Division of Endodontics, Department of Odontology, Umeå University, 90187 Umeå, Sweden;
| | - Georgios N. Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, 14104 Huddinge, Sweden; (K.B.); (G.N.B.)
| |
Collapse
|
6
|
Dumesnil A, Martelet L, Grenier D, Auger JP, Harel J, Nadeau E, Gottschalk M. Enolase and dipeptidyl peptidase IV protein sub-unit vaccines are not protective against a lethal Streptococcus suis serotype 2 challenge in a mouse model of infection. BMC Vet Res 2019; 15:448. [PMID: 31823789 PMCID: PMC6905021 DOI: 10.1186/s12917-019-2196-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 11/26/2019] [Indexed: 02/02/2023] Open
Abstract
Background Streptococcus suis is a major swine pathogen causing arthritis, meningitis and sudden death in post-weaning piglets and is also a zoonotic agent. S. suis comprises 35 different serotypes of which the serotype 2 is the most prevalent in both pigs and humans. In the absence of commercial vaccines, bacterins (mostly autogenous), are used in the field, with controversial results. In the past years, the focus has turned towards the development of sub-unit vaccine candidates. However, published results are sometimes contradictory regarding the protective effect of a same candidate. Moreover, the adjuvant used may significantly influence the protective capacity of a given antigen. This study focused on two protective candidates, the dipeptidyl peptidase IV (DPPIV) and the enolase (SsEno). Both proteins are involved in S. suis pathogenesis, and while contradictory protection results have been obtained with SsEno in the past, no data on the protective capacity of DPPIV was available. Results Results showed that among all the field strains tested, 86 and 88% were positive for the expression of the SsEno and DPPIV proteins, respectively, suggesting that they are widely expressed by strains of different serotypes. However, no protection was obtained after two vaccine doses in a CD-1 mouse model of infection, regardless of the use of four different adjuvants. Even though no protection was obtained, significant amounts of antibodies were produced against both antigens, and this regardless of the adjuvant used. Conclusions Taken together, these results demonstrate that S. suis DPPIV and SsEno are probably not good vaccine candidates, at least not in the conditions evaluated in this study. Further studies in the natural host (pig) should still be carried out. Moreover, this work highlights the importance of confirming results obtained by different research groups.
Collapse
Affiliation(s)
- Audrey Dumesnil
- Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St.,, Saint-Hyacinthe, QC, J2S 2M2, Canada.,Swine and Poultry Infectious Diseases Research Center (CRIPA), Montreal, Quebec, Canada
| | - Léa Martelet
- Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St.,, Saint-Hyacinthe, QC, J2S 2M2, Canada.,Swine and Poultry Infectious Diseases Research Center (CRIPA), Montreal, Quebec, Canada
| | - Daniel Grenier
- Swine and Poultry Infectious Diseases Research Center (CRIPA), Montreal, Quebec, Canada.,Oral Ecology Research Group (GREB), Faculty of Dentistry, Laval University, Quebec City, Quebec, Canada
| | - Jean-Philippe Auger
- Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St.,, Saint-Hyacinthe, QC, J2S 2M2, Canada.,Swine and Poultry Infectious Diseases Research Center (CRIPA), Montreal, Quebec, Canada
| | - Josée Harel
- Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St.,, Saint-Hyacinthe, QC, J2S 2M2, Canada.,Swine and Poultry Infectious Diseases Research Center (CRIPA), Montreal, Quebec, Canada
| | - Eric Nadeau
- Prevtec Microbia Inc. 3395 Casavant W. Blvd, Saint-Hyacinthe, QC, J2S 0B8, Canada
| | - Marcelo Gottschalk
- Groupe de recherche sur les maladies infectieuses en production animale (GREMIP), Faculty of Veterinary Medicine, University of Montreal, 3200 Sicotte St.,, Saint-Hyacinthe, QC, J2S 2M2, Canada. .,Swine and Poultry Infectious Diseases Research Center (CRIPA), Montreal, Quebec, Canada.
| |
Collapse
|
7
|
Tereshchenkova VF, Klyachko EV, Benevolensky SV, Belozersky MA, Dunaevsky YE, Filippova IY, Elpidina EN. Preparation and Purification of Recombinant Dipeptidyl Peptidase 4 from Tenebrio molitor. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683819030141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Dipeptidylpeptidase IV of Streptococcus suis degrades the porcine antimicrobial peptide PR-39 and neutralizes its biological properties. Microb Pathog 2018; 122:200-206. [DOI: 10.1016/j.micpath.2018.06.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 11/20/2022]
|
9
|
Tereshchenkova VF, Goptar IA, Kulemzina IA, Zhuzhikov DP, Serebryakova MV, Belozersky MA, Dunaevsky YE, Oppert B, Filippova IY, Elpidina EN. Dipeptidyl peptidase 4 - An important digestive peptidase in Tenebrio molitor larvae. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 76:38-48. [PMID: 27395781 DOI: 10.1016/j.ibmb.2016.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 06/28/2016] [Accepted: 07/05/2016] [Indexed: 06/06/2023]
Abstract
Dipeptidyl peptidase 4 (DPP 4) is a proline specific serine peptidase that plays an important role in different regulatory processes in mammals. In this report, we isolated and characterized a unique secreted digestive DPP 4 from the anterior midgut of a stored product pest, Tenebrio molitor larvae (TmDPP 4), with a biological function different than that of the well-studied mammalian DPP 4. The sequence of the purified enzyme was confirmed by mass-spectrometry, and was identical to the translated RNA sequence found in a gut EST database. The purified peptidase was characterized according to its localization in the midgut, and substrate specificity and inhibitor sensitivity were compared with those of human recombinant DPP 4 (rhDPP 4). The T. molitor enzyme was localized mainly in the anterior midgut of the larvae, and 81% of the activity was found in the fraction of soluble gut contents, while human DPP 4 is a membrane enzyme. TmDPP 4 was stable in the pH range 5.0-9.0, with an optimum activity at pH 7.9, similar to human DPP 4. Only specific inhibitors of serine peptidases, diisopropyl fluorophosphate and phenylmethylsulfonyl fluoride, suppressed TmDPP 4 activity, and the specific dipeptidyl peptidase inhibitor vildagliptin was most potent. The highest rate of TmDPP 4 hydrolysis was found for the synthetic substrate Arg-Pro-pNA, while Ala-Pro-pNA was a better substrate for rhDPP 4. Related to its function in the insect midgut, TmDPP 4 efficiently hydrolyzed the wheat storage proteins gliadins, which are major dietary proteins of T. molitor.
Collapse
Affiliation(s)
| | - Irina A Goptar
- Chemical Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Irina A Kulemzina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Dmitry P Zhuzhikov
- Biological Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Marina V Serebryakova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Mikhail A Belozersky
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Yakov E Dunaevsky
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Brenda Oppert
- USDA Agricultural Research Service, Center for Grain and Animal Health Research, 1515 College Ave., Manhattan, KS 66502, USA.
| | - Irina Yu Filippova
- Chemical Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Elena N Elpidina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
10
|
De A, Lupidi G, Petrelli D, Vitali LA. Molecular cloning and biochemical characterization of Xaa-Pro dipeptidyl-peptidase from Streptococcus mutans and its inhibition by anti-human DPP IV drugs. FEMS Microbiol Lett 2016; 363:fnw066. [PMID: 27010012 DOI: 10.1093/femsle/fnw066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2016] [Indexed: 11/13/2022] Open
Abstract
Streptococcus mutans harbours an intracellular, human DPP IV-analogous enzyme Xaa-Pro dipeptidyl-peptidase (EC 3.4.14.11). According to previous reports, an extracellular isozyme in S. gordonii and S. suis has been associated with virulence. Speculating that even an intracellular form may aid in virulence of S. mutans, we have tried to purify, characterize and evaluate enzyme inhibition by specific inhibitors. The native enzyme was partially purified by ion-exchange and gel filtration chromatography. Owing to low yield, the enzyme was overexpressed in Lactococcus lactis and purified by affinity chromatography. The recombinant enzyme (rSm-XPDAP) had a specific activity of 1070 U mg(-1), while the Vmax and Km were 7 μM min(-1) and 89 ± 7 μM (n = 3), respectively. The serine protease inhibitor phenylmethylsulphonyl fluoride and a DPP IV-specific inhibitor diprotin A proved to be active against rSm-XPDAP. As a novel approach, the evaluation of the effect of anti-human DPP IV (AHD) drugs on rSm-XPDAP activity found saxagliptin to be effective to some extent (Ki = 129 ± 16 μM), which may lead to the synthesis and development of a new class of antimicrobial agents.
Collapse
Affiliation(s)
- Arpan De
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Giulio Lupidi
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Dezemona Petrelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Luca A Vitali
- School of Pharmacy, University of Camerino, Camerino, Italy
| |
Collapse
|
11
|
Huang K, Yuan Z, Li J, Zhang Q, Xu Z, Yan S, Zhang A, Jin M. Identification and characterisation a surface-associated arginine peptidase in Streptococcus suis serotype 2. Microbiol Res 2015; 170:168-76. [DOI: 10.1016/j.micres.2014.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 07/27/2014] [Accepted: 08/09/2014] [Indexed: 11/26/2022]
|
12
|
Fittipaldi N, Segura M, Grenier D, Gottschalk M. Virulence factors involved in the pathogenesis of the infection caused by the swine pathogen and zoonotic agent Streptococcus suis. Future Microbiol 2012; 7:259-79. [PMID: 22324994 DOI: 10.2217/fmb.11.149] [Citation(s) in RCA: 322] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Streptococcus suis is a major swine pathogen responsible for important economic losses to the swine industry worldwide. It is also an emerging zoonotic agent of meningitis and streptococcal toxic shock-like syndrome. Since the recent recognition of the high prevalence of S. suis human disease in southeast and east Asia, the interest of the scientific community in this pathogen has significantly increased. In the last few years, as a direct consequence of these intensified research efforts, large amounts of data on putative virulence factors have appeared in the literature. Although the presence of some proposed virulence factors does not necessarily define a S. suis strain as being virulent, several cell-associated or secreted factors are clearly important for the pathogenesis of the S. suis infection. In order to cause disease, S. suis must colonize the host, breach epithelial barriers, reach and survive in the bloodstream, invade different organs, and cause exaggerated inflammation. In this review, we discuss the potential contribution of different described S. suis virulence factors at each step of the pathogenesis of the infection. Finally, we briefly discuss other described virulence factors, virulence factor candidates and virulence markers for which a precise role at specific steps of the pathogenesis of the S. suis infection has not yet been clearly established.
Collapse
Affiliation(s)
- Nahuel Fittipaldi
- Groupe de Recherche sur les Maladies Infectieuses du Porc & Centre de Recherche en Infectiologie Porcine, Faculté de médecine vétérinaire, Université de Montréal, 3200 rue Sicotte, CP5000, St-Hyacinthe, Quebec, J2S 7C6, Canada
| | | | | | | |
Collapse
|
13
|
Bonifait L, Grenier D. The SspA subtilisin-like protease of Streptococcus suis triggers a pro-inflammatory response in macrophages through a non-proteolytic mechanism. BMC Microbiol 2011; 11:47. [PMID: 21362190 PMCID: PMC3058005 DOI: 10.1186/1471-2180-11-47] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 03/01/2011] [Indexed: 02/05/2023] Open
Abstract
Background Streptococcus suis is a major swine pathogen worldwide that causes meningitis, septicemia, arthritis, and endocarditis. Using animal models, a surface-associated subtilisin-like protease (SspA) has recently been shown to be an important virulence factor for S. suis. In this study, we hypothesized that the S. suis SspA subtilisin-like protease may modulate cytokine secretion by macrophages thus contributing to the pathogenic process of meningitis. Results Phorbol 12-myristate 13-acetate-differentiated U937 macrophages were stimulated with recombinant SspA prior to monitor cytokine secretion by ELISA. Our results indicated that the recombinant SspA was able to dose-dependently induce IL-1β, IL-6, TNF-α, CXCL8 and CCL5 secretion in macrophages. The heat-inactivated protease was still able to induce cytokine secretion suggesting a non-proteolytic mechanism of macrophage activation. Using specific kinase inhibitors, evidence were bought that cytokine secretion by macrophages stimulated with the recombinant SspA involves the mitogen-activated protein kinase signal transduction pathway. While stimulation of macrophages with low concentrations of recombinant SspA was associated to secretion of high amounts of CCL5, the use of recombinant SspA at a high concentration resulted in low amounts of CCL5 detected in the conditioned medium. This was found to be associated with a proteolytic degradation of CCL5 by SspA. The ability of SspA to induce cytokine secretion in macrophages was confirmed using a mutant of S. suis deficient in SspA expression. Conclusion In conclusion, this study identified a new mechanism by which the S. suis SspA may promote central nervous system inflammation associated with meningitis.
Collapse
Affiliation(s)
- Laetitia Bonifait
- Groupe de Recherche en Écologie Buccale, Faculté de médecine dentaire, Université Laval, Quebec City, Quebec, Canada
| | | |
Collapse
|
14
|
Ge J, Feng Y, Ji H, Zhang H, Zheng F, Wang C, Yin Z, Pan X, Tang J. Inactivation of dipeptidyl peptidase IV attenuates the virulence of Streptococcus suis serotype 2 that causes streptococcal toxic shock syndrome. Curr Microbiol 2009; 59:248-55. [PMID: 19484301 DOI: 10.1007/s00284-009-9425-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 04/23/2009] [Accepted: 04/27/2009] [Indexed: 11/30/2022]
Abstract
Di-peptidyl peptidase IV (DPP IV), originally recognized as CD26 in eukaryotic cells, is distributed widely in microbial pathogens, including Streptococcus suis (S. suis), an emerging zoonotic agent. However, the role of DPP IV in S. suis virulence remains unclear. Here, we identified a dpp IV homologue from highly invasive isolate of S. suis 2 (SS2) causing streptococcal toxic shock syndrome (STSS). Enzymatic assays reproduced its enzymatic activity of dpp IV protein product as a functional DPP IV, and ELISA analysis demonstrated that SS2 DPP IV can interact with human fibronectin. An isogenic SS2 mutant of dpp IV, Delta dpp IV, was obtained by homologous recombination. Experimental animal infection suggested that an inactivation of dpp IV attenuates greatly its high virulence of Chinese virulent strains of SS2. Functional complementation can restore this defect in SS2 pathogenicity. To our knowledge, it may confirm, for the first time, that DPP IV contributes to SS2 virulence.
Collapse
Affiliation(s)
- Junchao Ge
- The College of Life Science, Nanjing Normal University, 210046, Nanjing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Surface-associated and secreted factors ofStreptococcus suisin epidemiology, pathogenesis and vaccine development. Anim Health Res Rev 2009; 10:65-83. [DOI: 10.1017/s146625230999003x] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AbstractStreptococcus suisis an invasive porcine pathogen associated with meningitis, arthritis, bronchopneumonia and other diseases. The pathogen constitutes a major health problem in the swine industry worldwide. Furthermore,S. suisis an important zoonotic agent causing meningitis and other diseases in humans exposed to pigs or pork. Current knowledge on pathogenesis is limited, despite the enormous amount of data generated by ‘omics’ research. Accordingly, immunprophylaxis (in pigs) is hampered by lack of a cross-protective vaccine against virulent strains of this diverse species. This review focuses on bacterial factors, both surface-associated and secreted ones, which are considered to contribute toS. suisinteraction(s) with host factors and cells. Factors are presented with respect to (i) their identification and features, (ii) their distribution amongS. suisand (iii) their significance for virulence, immune response and vaccination. This review also shows the enormous progress made in research onS. suisover the last few years, and it emphasizes the numerous challenging questions remaining to be answered in the future.
Collapse
|
16
|
Ye C, Zheng H, Zhang J, Jing H, Wang L, Xiong Y, Wang W, Zhou Z, Sun Q, Luo X, Du H, Gottschalk M, Xu J. Clinical, Experimental, and Genomic Differences between Intermediately Pathogenic, Highly Pathogenic, and EpidemicStreptococcus suis. J Infect Dis 2009; 199:97-107. [DOI: 10.1086/594370] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
17
|
Streptococcus suis serotype 2 caused streptococcal toxic shock syndrome(STSS) in a patient. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s1007-4376(08)60087-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Gottschalk M, Segura M, Xu J. Streptococcus suis infections in humans: the Chinese experience and the situation in North America. Anim Health Res Rev 2007; 8:29-45. [PMID: 17692141 DOI: 10.1017/s1466252307001247] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Infections caused by Streptococcus suis are considered a global problem in the swine industry. In this animal species, S. suis is associated with septicemia, meningitis, endocarditis, arthritis and, occasionally, other infections. Moreover, it is an agent of zoonosis that afflicts people in close contact with infected pigs or pork-derived products. Although sporadic cases of S. suis infection in humans have been reported, a large outbreak due to S. suis serotype 2 emerged in the summer of 2005 in Sichuan, China. A similar outbreak was observed in another Chinese province in 1998. Symptoms reported in these two outbreaks include high fever, malaise, nausea and vomiting, followed by nervous symptoms, subcutaneous hemorrhage, septic shock and coma in severe cases. The increased severity of S. suis infections in humans, such as a shorter incubation time, more rapid disease progression and higher rate of mortality, underscores the critical need to better understand the factors associated with pathogenesis of S. suis infection. From the 35 capsular serotypes currently known, serotype 2 is considered the most virulent and frequently isolated in both swine and humans. Here, we review the epidemiological, clinical and immunopathological features of S. suis infection in humans.
Collapse
Affiliation(s)
- Marcelo Gottschalk
- Centre de Recherche en Infectiologie Porcine (CRIP), Faculté de Médecine Vétérinaire, Université de Montréal, 3200 rue Sicotte, St-Hyacinthe, Québec, J2S 2M2, Canada.
| | | | | |
Collapse
|