1
|
Francis VI, Porter SL. Multikinase Networks: Two-Component Signaling Networks Integrating Multiple Stimuli. Annu Rev Microbiol 2019; 73:199-223. [PMID: 31112439 DOI: 10.1146/annurev-micro-020518-115846] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria depend on two-component systems to detect and respond to threats. Simple pathways comprise a single sensor kinase (SK) that detects a signal and activates a response regulator protein to mediate an appropriate output. These simple pathways with only a single SK are not well suited to making complex decisions where multiple different stimuli need to be evaluated. A recently emerging theme is the existence of multikinase networks (MKNs) where multiple SKs collaborate to detect and integrate numerous different signals to regulate a major lifestyle switch, e.g., between virulence, sporulation, biofilm formation, and cell division. In this review, the role of MKNs and the phosphosignaling mechanisms underpinning their signal integration and decision making are explored.
Collapse
Affiliation(s)
- Vanessa I Francis
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom; ,
| | - Steven L Porter
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom; ,
| |
Collapse
|
2
|
Francis VI, Waters EM, Finton-James SE, Gori A, Kadioglu A, Brown AR, Porter SL. Multiple communication mechanisms between sensor kinases are crucial for virulence in Pseudomonas aeruginosa. Nat Commun 2018; 9:2219. [PMID: 29880803 PMCID: PMC5992135 DOI: 10.1038/s41467-018-04640-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/14/2018] [Indexed: 12/16/2022] Open
Abstract
Bacteria and many non-metazoan Eukaryotes respond to stresses and threats using two-component systems (TCSs) comprising sensor kinases (SKs) and response regulators (RRs). Multikinase networks, where multiple SKs work together, detect and integrate different signals to control important lifestyle decisions such as sporulation and virulence. Here, we study interactions between two SKs from Pseudomonas aeruginosa, GacS and RetS, which control the switch between acute and chronic virulence. We demonstrate three mechanisms by which RetS attenuates GacS signalling: RetS takes phosphoryl groups from GacS-P; RetS has transmitter phosphatase activity against the receiver domain of GacS-P; and RetS inhibits GacS autophosphorylation. These mechanisms play important roles in vivo and during infection, and exemplify an unprecedented degree of signal processing by SKs that may be exploited in other multikinase networks.
Collapse
Affiliation(s)
- Vanessa I Francis
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Elaine M Waters
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
| | - Sutharsan E Finton-James
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Andrea Gori
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Aras Kadioglu
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
| | - Alan R Brown
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Steven L Porter
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK.
| |
Collapse
|
3
|
Molecular Mechanisms of Signaling in Myxococcus xanthus Development. J Mol Biol 2016; 428:3805-30. [DOI: 10.1016/j.jmb.2016.07.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/30/2016] [Accepted: 07/08/2016] [Indexed: 11/19/2022]
|
4
|
Chemosensory regulation of a HEAT-repeat protein couples aggregation and sporulation in Myxococcus xanthus. J Bacteriol 2014; 196:3160-8. [PMID: 24957622 DOI: 10.1128/jb.01866-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Chemosensory systems are complex, highly modified two-component systems (TCS) used by bacteria to control various biological functions ranging from motility to sporulation. Chemosensory systems and TCS both modulate phosphorelays comprised of histidine kinases and response regulators, some of which are single-domain response regulators (SD-RRs) such as CheY. In this study, we have identified and characterized the Che7 chemosensory system of Myxococcus xanthus, a common soil bacterium which displays multicellular development in response to stress. Both genetic and biochemical analyses indicate that the Che7 system regulates development via a direct interaction between the SD-RR CheY7 and a HEAT repeat domain-containing protein, Cpc7. Phosphorylation of the SD-RR affects the interaction with its target, and residues within the α4-β5-α5 fold of the REC domain govern this interaction. The identification of the Cpc7 interaction with CheY7 extends the diversity of known targets for SD-RRs in biological systems.
Collapse
|
5
|
Starruß J, Peruani F, Jakovljevic V, Søgaard-Andersen L, Deutsch A, Bär M. Pattern-formation mechanisms in motility mutants of Myxococcus xanthus. Interface Focus 2012; 2:774-85. [PMID: 24312730 DOI: 10.1098/rsfs.2012.0034] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 09/10/2012] [Indexed: 11/12/2022] Open
Abstract
Formation of spatial patterns of cells is a recurring theme in biology and often depends on regulated cell motility. Motility of the rod-shaped cells of the bacterium Myxococcus xanthus depends on two motility machineries, type IV pili (giving rise to S-motility) and the gliding motility apparatus (giving rise to A-motility). Cell motility is regulated by occasional reversals. Moving M. xanthus cells can organize into spreading colonies or spore-filled fruiting bodies, depending on their nutritional status. To ultimately understand these two pattern-formation processes and the contributions by the two motility machineries, as well as the cell reversal machinery, we analyse spatial self-organization in three M. xanthus strains: (i) a mutant that moves unidirectionally without reversing by the A-motility system only, (ii) a unidirectional mutant that is also equipped with the S-motility system, and (iii) the wild-type that, in addition to the two motility systems, occasionally reverses its direction of movement. The mutant moving by means of the A-engine illustrates that collective motion in the form of large moving clusters can arise in gliding bacteria owing to steric interactions of the rod-shaped cells, without the need of invoking any biochemical signal regulation. The two-engine strain mutant reveals that the same phenomenon emerges when both motility systems are present, and as long as cells exhibit unidirectional motion only. From the study of these two strains, we conclude that unidirectional cell motion induces the formation of large moving clusters at low and intermediate densities, while it results in vortex formation at very high densities. These findings are consistent with what is known from self-propelled rod models, which strongly suggests that the combined effect of self-propulsion and volume exclusion interactions is the pattern-formation mechanism leading to the observed phenomena. On the other hand, we learn that when cells occasionally reverse their moving direction, as observed in the wild-type, cells form small but strongly elongated clusters and self-organize into a mesh-like structure at high enough densities. These results have been obtained from a careful analysis of the cluster statistics of ensembles of cells, and analysed in the light of a coagulation Smoluchowski equation with fragmentation.
Collapse
Affiliation(s)
- Jörn Starruß
- Center for Information Services and High Performance Computing (ZIH), Technische Universität Dresden, Zellescher Weg 12, 01069 Dresden, Germany
| | | | | | | | | | | |
Collapse
|
6
|
Din N, Shoemaker CJ, Akin KL, Frederick C, Bird TH. Two putative histidine kinases are required for cyst formation in Rhodospirillum Centenum. Arch Microbiol 2010; 193:209-22. [PMID: 21184217 DOI: 10.1007/s00203-010-0664-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 11/17/2010] [Accepted: 11/22/2010] [Indexed: 10/18/2022]
Abstract
The photosynthetic bacterium, Rhodospirillum centenum, has a flexible life cycle that permits it to survive starvation as dormant cyst cells. Previous studies have identified some of the key regulators for encystment and demonstrated that the control of development is intricate. This complexity may arise from the need to integrate several environmental signals to mediate a switch from one mode of energy metabolism to another and to ensure that a transition to dormancy is initiated only when necessary. We searched for additional regulators of development by screening for encystment deficient strains after subjecting wild type R. centenum to mini-Tn5 mutagenesis. Analysis of "hypo-cyst" strains led to the identification of two genes that encode putative hybrid histidine kinases (cyd1 and cyd2). Cells with deletions of either gene fail to form cysts under conditions that normally induce development. Furthermore, the deletion strains exhibit altered swarming behavior suggesting that Cyd1 and Cyd2 affect behaviors utilized when the organism is attached to a substrate.
Collapse
Affiliation(s)
- Neena Din
- Biology Department, University of San Diego, 5998 Alcalá Park, San Diego, CA 92110, USA
| | | | | | | | | |
Collapse
|
7
|
The genetic organisation of prokaryotic two-component system signalling pathways. BMC Genomics 2010; 11:720. [PMID: 21172000 PMCID: PMC3018481 DOI: 10.1186/1471-2164-11-720] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 12/20/2010] [Indexed: 11/16/2022] Open
Abstract
Background Two-component systems (TCSs) are modular and diverse signalling pathways, involving a stimulus-responsive transfer of phosphoryl groups from transmitter to partner receiver domains. TCS gene and domain organisation are both potentially informative regarding biological function, interaction partnerships and molecular mechanisms. However, there is currently little understanding of the relationships between domain architecture, gene organisation and TCS pathway structure. Results Here we classify the gene and domain organisation of TCS gene loci from 1405 prokaryotic replicons (>40,000 TCS proteins). We find that 200 bp is the most appropriate distance cut-off for defining whether two TCS genes are functionally linked. More than 90% of all TCS gene loci encode just one or two transmitter and/or receiver domains, however numerous other geometries exist, often with large numbers of encoded TCS domains. Such information provides insights into the distribution of TCS domains between genes, and within genes. As expected, the organisation of TCS genes and domains is affected by phylogeny, and plasmid-encoded TCS exhibit differences in organisation from their chromosomally-encoded counterparts. Conclusions We provide here an overview of the genomic and genetic organisation of TCS domains, as a resource for further research. We also propose novel metrics that build upon TCS gene/domain organisation data and allow comparisons between genomic complements of TCSs. In particular, 'percentage orphaned TCS genes' (or 'Dissemination') and 'percentage of complex loci' (or 'Sophistication') appear to be useful discriminators, and to reflect mechanistic aspects of TCS organisation not captured by existing metrics.
Collapse
|
8
|
Evans AR, Whitworth DE. Correlations between the role, sequence conservation, genomic location and severity of phenotype in myxobacterial developmental genes. FEMS Microbiol Lett 2010; 312:40-5. [DOI: 10.1111/j.1574-6968.2010.02092.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
9
|
Lee B, Schramm A, Jagadeesan S, Higgs PI. Two-Component Systems and Regulation of Developmental Progression in Myxococcus xanthus. Methods Enzymol 2010; 471:253-78. [DOI: 10.1016/s0076-6879(10)71014-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Jagadeesan S, Mann P, Schink CW, Higgs PI. A novel "four-component" two-component signal transduction mechanism regulates developmental progression in Myxococcus xanthus. J Biol Chem 2009; 284:21435-45. [PMID: 19535336 PMCID: PMC2755868 DOI: 10.1074/jbc.m109.033415] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Histidine-aspartate phosphorelays are employed by two-component signal transduction family proteins to mediate responses to specific signals or stimuli in microorganisms and plants. The RedCDEF proteins constitute a novel signaling system in which four two-component proteins comprising a histidine kinase, a histidine-kinase like protein, and two response regulators function together to regulate progression through the elaborate developmental program of Myxococcus xanthus. A combination of in vivo phenotypic analyses of in-frame deletions and non-functional point mutations in each gene as well as in vitro autophosphorylation and phosphotransfer analyses of recombinant proteins indicate that the RedC histidine kinase protein autophosphorylates and donates a phosphoryl group to the single domain response regulator, RedF, to repress progression through the developmental program. To relieve this developmental repression, RedC instead phosphorylates RedD, a dual receiver response regulator protein. Surprisingly, RedD transfers the phosphoryl group to the histidine kinase-like protein RedE, which itself appears to be incapable of autophosphorylation. Phosphorylation of RedE may render RedE accessible to RedF, where it removes the phosphoryl group from RedF-P, which is otherwise an unusually stable phosphoprotein. These analyses reveal a novel "four-component" signaling mechanism that has probably arisen to temporally coordinate signals controlling the developmental program in M. xanthus. The RedCDEF signaling system provides an important example of how the inherent plasticity and modularity of the basic two-component signaling domains comprise a highly adaptable framework well suited to expansion into complex signaling mechanisms.
Collapse
Affiliation(s)
- Sakthimala Jagadeesan
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | | | | | | |
Collapse
|
11
|
Scharf BE, Aldridge PD, Kirby JR, Crane BR. Upward mobility and alternative lifestyles: a report from the 10th biennial meeting on Bacterial Locomotion and Signal Transduction. Mol Microbiol 2009; 73:5-19. [PMID: 19496930 DOI: 10.1111/j.1365-2958.2009.06742.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This past January, in Cuernavaca Mexico, a conglomerate of scientists met to discuss the contemporary view of Bacterial Locomotion and Signal Transduction (BLAST). The BLAST meetings represent a field that has its roots in chemotaxis and the flagellum-based motility but now encompass all types of cellular movement and signalling. The topics varied from the interactions between molecules to the interactions between species. We heard about 3D reconstructions of transmembrane chemoreceptors within cells, new biophysical methods for understanding cellular engines, intricate phosphorelays, elaborate gene networks, new messenger molecules and emerging behaviours within complex populations of cells. At BLAST X we gained an appreciation for the lifestyle choices bacteria make, how they get to where they are going and the molecular mechanisms that underlie their decisions. Herein we review the highlights of the meeting.
Collapse
Affiliation(s)
- Birgit E Scharf
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|
12
|
Whitworth DE, Cock PJA. Evolution of prokaryotic two-component systems: insights from comparative genomics. Amino Acids 2009; 37:459-66. [DOI: 10.1007/s00726-009-0259-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 02/02/2009] [Indexed: 01/22/2023]
|
13
|
The atypical hybrid histidine protein kinase RodK in Myxococcus xanthus: spatial proximity supersedes kinetic preference in phosphotransfer reactions. J Bacteriol 2009; 191:1765-76. [PMID: 19136593 DOI: 10.1128/jb.01405-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many proteins of two-component signal transduction systems (TCS) have domain structures that do not comply with a phosphate flow as observed in linear TCS, phosphorelays, or simple branched pathways. An example is RodK, which is essential for fruiting body formation in Myxococcus xanthus and, in addition to a sensor domain, consists of a kinase domain and three receiver domains (RodK-R1, -R2, and -R3), all of which are functionally important. We identified the RokA response regulator as part of the RodK pathway. In vitro the isolated RodK kinase domain engages in phosphotransfer to RodK-R3 and RokA, with a kinetic preference for RokA. However, in the context of the full-length protein, the RodK kinase domain has a preference for phosphotransfer to RodK-R3 over RokA. We suggest that in full-length RodK, the spatial proximity of the RodK kinase domain and RodK-R3 compensate for the kinetic preference of the isolated kinase domain for RokA. Thus, the kinetic preference observed using an isolated kinase domain of a hybrid kinase does not necessarily reflect the phosphotransfer preference of the full-length protein. We speculate that the phosphorylation status of RodK-R1 and RodK-R2 determines whether RodK engages in phosphotransfer to RodK-R3 or RokA in vivo.
Collapse
|
14
|
Whitworth DE, Millard A, Hodgson DA, Hawkins PF. Protein-protein interactions between two-component system transmitter and receiver domains of Myxococcus xanthus. Proteomics 2008; 8:1839-42. [PMID: 18442170 DOI: 10.1002/pmic.200700544] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We present a novel dataset assessing the specificity of protein-protein interactions between 69 transmitter and receiver domains from two-component system (TCS)-signalling pathways. TCS require a conserved protein-protein interaction between partner transmitter and receiver domains for signal transduction. The complex prokaryote Myxococcus xanthus possesses an unusually large number of TCS genes, many of which have no obvious interaction partners. Interactions between TCS domains of M. xanthus were assessed using a yeast two-hybrid assay, in which domains were expressed as both bait and prey translational fusions. LacZ production was monitored as an indicator of protein-protein interaction, and the strength of interactions classified as weak, medium or strong. Two-hundred and fifty-five transmitter-receiver domain interactions were observed (46 strong), allowing identification of potential signalling partners for individual M. xanthus TCS proteins. In addition, the dataset provides interesting 'meta' information. For instance, many strong interactions were identified between different transmitter domain pairs (34) and receiver domain pairs (23), suggesting a surprisingly large degree of heterodimerisation of these domains. Proteins in our dataset that exhibited similar 'profiles' of interactions, often shared a similar biological function, suggesting that interaction profiles can provide information on biological function, even considering sets of homologous domains.
Collapse
Affiliation(s)
- David E Whitworth
- Department of Biological Sciences, University of Warwick, Coventry, UK.
| | | | | | | |
Collapse
|
15
|
|
16
|
EspA, an orphan hybrid histidine protein kinase, regulates the timing of expression of key developmental proteins of Myxococcus xanthus. J Bacteriol 2008; 190:4416-26. [PMID: 18390653 DOI: 10.1128/jb.00265-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myxococcus xanthus undergoes a complex starvation-induced developmental program that results in cells forming multicellular fruiting bodies by aggregating into mounds and then differentiating into spores. This developmental program requires at least 72 h and is mediated by a temporal cascade of gene regulators in response to intra- and extracellular signals. espA mutants, encoding an orphan hybrid histidine kinase, alter the timing of this developmental program, greatly accelerating developmental progression. Here, we characterized EspA and demonstrated that it autophosphorylates in vitro on the conserved histidine residue and then transfers the phosphoryl group to the conserved aspartate residue in the associated receiver domain. The conserved histidine and aspartate residues were both required for EspA function in vivo. Analysis of developmental gene expression and protein accumulation in espA mutants indicated that the expression of the A-signal-dependent spi gene was not affected but that the MrpC transcriptional regulator accumulated earlier, resulting in earlier expression of its target, the FruA transcriptional regulator. Early expression of FruA correlated with acceleration of both the aggregation and sporulation branches of the developmental program, as monitored by early methylation of the FrzCD chemosensory receptor and early expression of the sporulation-specific dev and Mxan_3227 (Omega7536) genes. These results show that EspA plays a key role in the timing of expression of genes necessary for progression of cells through the developmental program.
Collapse
|
17
|
Whitworth DE, Cock PJA. Two-component systems of the myxobacteria: structure, diversity and evolutionary relationships. Microbiology (Reading) 2008; 154:360-372. [DOI: 10.1099/mic.0.2007/013672-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- David E. Whitworth
- Institute of Biological Sciences, Cledwyn Building, Aberystwyth University,Ceredigion SY23 3DD, UK
- Department of Biological Sciences, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Peter J. A. Cock
- MOAC Doctoral Training Centre, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| |
Collapse
|
18
|
Affiliation(s)
- Lee Kroos
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824;
| |
Collapse
|
19
|
Bioinformatics and experimental analysis of proteins of two-component systems in Myxococcus xanthus. J Bacteriol 2007; 190:613-24. [PMID: 17993514 DOI: 10.1128/jb.01502-07] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Proteins of two-component systems (TCS) have essential functions in the sensing of external and self-generated signals in bacteria and in the generation of appropriate output responses. Accordingly, in Myxococcus xanthus, TCS are important for normal motility and fruiting body formation and sporulation. Here we analyzed the M. xanthus genome for the presence and genetic organization of genes encoding TCS. Two hundred seventy-two TCS genes were identified, 251 of which are not part of che gene clusters. We report that the TCS genes are unusually organized, with 55% being orphan and 16% in complex gene clusters whereas only 29% display the standard paired gene organization. Hybrid histidine protein kinases and histidine protein kinases predicted to be localized to the cytoplasm are overrepresented among proteins encoded by orphan genes or in complex gene clusters. Similarly, response regulators without output domains are overrepresented among proteins encoded by orphan genes or in complex gene clusters. The most frequently occurring output domains in response regulators are involved in DNA binding and cyclic-di-GMP metabolism. Our analyses suggest that TCS encoded by orphan genes and complex gene clusters are functionally distinct from TCS encoded by paired genes and that the connectivity of the pathways made up of TCS encoded by orphan genes and complex gene clusters is different from that of pathways involving TCS encoded by paired genes. Experimentally, we observed that orphan TCS genes are overrepresented among genes that display altered transcription during fruiting body formation. The systematic analysis of the 25 orphan genes encoding histidine protein kinases that are transcriptionally up-regulated during development showed that 2 such genes are likely essential for viability and identified 7 histidine protein kinases, including 4 not previously characterized that have important function in fruiting body formation or spore germination.
Collapse
|
20
|
Stein EA, Cho K, Higgs PI, Zusman DR. Two Ser/Thr protein kinases essential for efficient aggregation and spore morphogenesis in Myxococcus xanthus. Mol Microbiol 2006; 60:1414-31. [PMID: 16796678 DOI: 10.1111/j.1365-2958.2006.05195.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Myxococcus xanthus has a complex life cycle that involves vegetative growth and development. Previously, we described the espAB locus that is involved in timing events during the initial stages of fruiting body formation. Deletion of espA caused early aggregation and sporulation, whereas deletion of espB caused delayed aggregation and sporulation resulting in reduced spore yields. In this study, we describe two genes, pktA5 and pktB8, that flank the espAB locus and encode Ser/Thr protein kinase (STPK) homologues. Cells deficient in pktA5 or pktB8 formed translucent mounds and produced low spore yields, similar in many respects to espB mutants. Double mutant analysis revealed that espA was epistatic to pktA5 and pktB8 with respect to aggregation and fruiting body morphology, but that pktA5 and pktB8 were epistatic to espA with respect to sporulation efficiency. Expression profiles of pktA5-lacZ and pktB8-lacZ fusions and Western blot analysis showed that the STPKs are expressed under vegetative and developmental conditions. In vitro kinase assays demonstrated that the RD kinase, PktA5, autophosphorylated on threonine residue(s) and phosphorylated the artificial substrate, myelin basic protein. In contrast, autophosphorylation of the non-RD kinase, PktB8, was not observed in vitro; however, the phenotype of a pktB8 kinase-dead point mutant resembled the pktB8 deletion mutant, indicating that this residue was important for function and that it likely functions as a kinase in vivo. Immunoprecipitation of Tap-tagged PktA5 and PktB8 revealed an interaction with EspA during development in M. xanthus. These results, taken together, suggest that PktA5 and PktB8 are STPKs that function during development by interacting with EspA and EspB to regulate M. xanthus development.
Collapse
Affiliation(s)
- Emily A Stein
- Graduate Group in Microbial Biology, University of California, Berkeley, CA, USA
| | | | | | | |
Collapse
|
21
|
Pham VD, Shebelut CW, Jose IR, Hodgson DA, Whitworth DE, Singer M. The response regulator PhoP4 is required for late developmental events in Myxococcus xanthus. Microbiology (Reading) 2006; 152:1609-1620. [PMID: 16735725 DOI: 10.1099/mic.0.28820-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phosphate regulation is complex in the developmental prokaryote Myxococcus xanthus, and requires at least four two-component systems (TCSs). Here, the identification and characterization of a member of one TCS, designated PhoP4, is reported. phoP4 insertion and in-frame deletion strains caused spore viability to be decreased by nearly two orders of magnitude, and reduced all three development-specific phosphatase activities by 80–90 % under phosphate-limiting conditions. Microarray and quantitative PCR analyses demonstrated that PhoP4 is also required for appropriate expression of the predicted pstSCAB–phoU operon of inorganic phosphate assimilation genes. Unlike the case for the other three M. xanthus Pho TCSs, the chromosomal region around phoP4 does not contain a partner histidine kinase gene. Yeast two-hybrid analyses reveal that PhoP4 interacts reciprocally with PhoR2, the histidine kinase of the Pho2 TCS; however, the existence of certain phenotypic differences between phoP4 and phoR2 mutants suggests that PhoP4 interacts with another, as-yet unidentified, histidine kinase.
Collapse
Affiliation(s)
- Vinh D Pham
- Section of Microbiology and Center for Genetics and Development, 268 Briggs Hall, University of California, Davis, CA 95616, USA
| | - Conrad W Shebelut
- Section of Microbiology and Center for Genetics and Development, 268 Briggs Hall, University of California, Davis, CA 95616, USA
| | - Ivy R Jose
- Section of Microbiology and Center for Genetics and Development, 268 Briggs Hall, University of California, Davis, CA 95616, USA
| | - David A Hodgson
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - David E Whitworth
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Mitchell Singer
- Section of Microbiology and Center for Genetics and Development, 268 Briggs Hall, University of California, Davis, CA 95616, USA
| |
Collapse
|