1
|
Baxter JC, Waples WG, Funnell BE. Nonspecific DNA binding by P1 ParA determines the distribution of plasmid partition and repressor activities. J Biol Chem 2020; 295:17298-17309. [PMID: 33055234 PMCID: PMC7863886 DOI: 10.1074/jbc.ra120.015642] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/10/2020] [Indexed: 12/13/2022] Open
Abstract
The faithful segregation, or "partition," of many low-copy number bacterial plasmids is driven by plasmid-encoded ATPases that are represented by the P1 plasmid ParA protein. ParA binds to the bacterial nucleoid via an ATP-dependent nonspecific DNA (nsDNA)-binding activity, which is essential for partition. ParA also has a site-specific DNA-binding activity to the par operator (parOP), which requires either ATP or ADP, and which is essential for it to act as a transcriptional repressor but is dispensable for partition. Here we examine how DNA binding by ParA contributes to the relative distribution of its plasmid partition and repressor activities, using a ParA with an alanine substitution at Arg351, a residue previously predicted to participate in site-specific DNA binding. In vivo, the parAR351A allele is compromised for partition, but its repressor activity is dramatically improved so that it behaves as a "super-repressor." In vitro, ParAR351A binds and hydrolyzes ATP, and undergoes a specific conformational change required for nsDNA binding, but its nsDNA-binding activity is significantly damaged. This defect in turn significantly reduces the assembly and stability of partition complexes formed by the interaction of ParA with ParB, the centromere-binding protein, and DNA. In contrast, the R351A change shows only a mild defect in site-specific DNA binding. We conclude that the partition defect is due to altered nsDNA binding kinetics and affinity for the bacterial chromosome. Furthermore, the super-repressor phenotype is explained by an increased pool of non-nucleoid bound ParA that is competent to bind parOP and repress transcription.
Collapse
Affiliation(s)
- Jamie C Baxter
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario Canada
| | - William G Waples
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario Canada
| | - Barbara E Funnell
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario Canada.
| |
Collapse
|
2
|
Żebracki K, Koper P, Marczak M, Skorupska A, Mazur A. Plasmid-Encoded RepA Proteins Specifically Autorepress Individual repABC Operons in the Multipartite Rhizobium leguminosarum bv. trifolii Genome. PLoS One 2015; 10:e0131907. [PMID: 26147968 PMCID: PMC4492784 DOI: 10.1371/journal.pone.0131907] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/08/2015] [Indexed: 12/05/2022] Open
Abstract
Rhizobia commonly have very complex genomes with a chromosome and several large plasmids that possess genes belonging to the repABC family. RepA and RepB are members of the ParA and ParB families of partitioning proteins, respectively, whereas RepC is crucial for plasmid replication. In the repABC replicons, partitioning and replication functions are transcriptionally linked resulting in complex regulation of rep gene expression. The genome of R. leguminosarum bv. trifolii TA1 (RtTA1) consists of a chromosome and four plasmids (pRleTA1a-d), equipped with functional repABC genes. In this work, the regulation of transcription of the individual repABC cassettes of the four RtTA1 plasmids was studied. The involvement of the RepA and RepB as well as parS-like centromere sites in this process was depicted, demonstrating some dissimilarity in expression of respective rep regions. RtTA1 repABC genes of individual plasmids formed operons, which were negatively regulated by RepA and RepB. Individual RepA were able to bind to DNA without added nucleotides, but in the presence of ADP, bound specifically to their own operator sequences containing imperfect palindromes, and caused operon autorepression, whereas the addition of ATP stimulated non-specific binding of RepA to DNA. The RepA proteins were able to dimerize/oligomerize: in general dimers formed independently of ATP or ADP, although ATP diminished the concentration of oligomers that were produced. By the comprehensive approach focusing on a set of plasmids instead of individual replicons, the work highlighted subtle differences between the organization and regulation of particular rep operons as well as the structures and specificity of RepA proteins, which contribute to the fine-tuned coexistence of several replicons with similar repABC cassettes in the complex bacterial genome.
Collapse
Affiliation(s)
- Kamil Żebracki
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Piotr Koper
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Małgorzata Marczak
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Anna Skorupska
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Andrzej Mazur
- Department of Genetics and Microbiology, Institute of Microbiology and Biotechnology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
- * E-mail:
| |
Collapse
|
3
|
Construction and application of an expression vector from the new plasmid pLAtc1 of Acidithiobacillus caldus. Appl Microbiol Biotechnol 2014; 98:4083-94. [DOI: 10.1007/s00253-014-5507-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 12/27/2013] [Accepted: 12/28/2013] [Indexed: 11/26/2022]
|
4
|
Vecchiarelli AG, Havey JC, Ing LL, Wong EOY, Waples WG, Funnell BE. Dissection of the ATPase active site of P1 ParA reveals multiple active forms essential for plasmid partition. J Biol Chem 2013; 288:17823-31. [PMID: 23632076 DOI: 10.1074/jbc.m113.469981] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The segregation, or partition, of bacterial plasmids is driven by the action of plasmid-encoded partition ATPases, which work to position plasmids inside the cell. The most common type of partition ATPase, generally called ParA, is represented by the P1 plasmid ParA protein. ParA interacts with P1 ParB (the site-specific DNA binding protein that recognizes the parS partition site), and interacts with the bacterial chromosome via an ATP-dependent nonspecific DNA binding activity. ParA also regulates expression of the par genes by acting as a transcriptional repressor. ParA requires ATP for multiple steps and in different ways during the partition process. Here, we analyze the properties of mutations in P1 ParA that are altered in a key lysine in the Walker A motif of the ATP binding site. Four different residues at this position (Lys, Glu, Gln, Arg) result in four different phenotypes in vivo. We focus particularly on the arginine substitution (K122R) because it results in a worse-than-null and dominant-negative phenotype called ParPD. We show that ParAK122R binds and hydrolyzes ATP, although the latter activity is reduced compared with wild-type. ParAK122R interacts with ParB, but the consequences of the interaction are damaged. The ability of ParB to stimulate the ATPase activity of ParA in vitro and its repressor activity in vivo is defective. The K122R mutation specifically damages the disassembly of ParA-ParB-DNA partition complexes, which we believe explains the ParPD phenotype in vivo.
Collapse
Affiliation(s)
- Anthony G Vecchiarelli
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | |
Collapse
|
5
|
Vecchiarelli AG, Funnell BE. Probing the N-terminus of ParB using cysteine-scanning mutagenesis and thiol modification. Plasmid 2013; 70:86-93. [PMID: 23428603 DOI: 10.1016/j.plasmid.2013.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 02/07/2013] [Accepted: 02/10/2013] [Indexed: 11/18/2022]
Abstract
Plasmid partition systems require site-specific DNA binding proteins to recognize the plasmid partition site, or centromere. When bound to the centromere, these proteins, typically called ParB, interact with the ParA ATPases, which in turn promote the proper positioning of plasmids prior to cell division. P1 ParB is a typical member of a major class of ParB-like proteins that are dimeric helix-turn-helix DNA binding proteins. The N-terminus of ParB contains the region that interacts with ParA and with itself, but it has been difficult to study because this region of the protein is flexible in solution. Here we describe the use of cysteine-scanning mutagenesis and thiol modification of the N-terminus of ParB to create tools to probe the interactions of ParB with itself, with ParA and with DNA. We introduce twelve single-cysteine substitutions across the N-terminus of ParB and show that most do not compromise the function of ParB and that none completely inactivate the protein in vivo. We test three of these ParB variants in vitro and show that they do not alter ParB function, measured by its ability to stimulate ParA ATPase activity and its site-specific DNA binding activity. We discuss that this approach will be generally applicable to the ParB-like proteins in this class of partition systems because of their natural low content of cysteines, and because our evidence suggests that many residues in the N-terminus are amenable to substitution by cysteine.
Collapse
Affiliation(s)
- Anthony G Vecchiarelli
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | |
Collapse
|
6
|
ParAB-mediated intermolecular association of plasmid P1 parS sites. Virology 2011; 421:192-201. [PMID: 22018490 DOI: 10.1016/j.virol.2011.09.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/05/2011] [Accepted: 09/28/2011] [Indexed: 11/20/2022]
Abstract
The P1 plasmid partition system depends on ParA-ParB proteins acting on centromere-like parS sites for a faithful plasmid segregation during the Escherichia coli cell cycle. In vivo we placed parS into host E. coli chromosome and on a Sop(+) F plasmid and found that the stability of a P1 plasmid deleted for parA-parB could be partially restored when parB was expressed in trans. In vitro, parS, conjugated to magnetic beads could capture free parS DNA fragment in presence of ParB. In vitro, ParA stimulated ParB-mediated association of intermolecular parS sites in an ATP-dependent manner. However, in the presence of ADP, ParA reduced ParB-mediated pairing to levels below that seen by ParB alone. ParB of P1 pairs the parS sites of plasmids in vivo and fragments in vitro. Our findings support a model whereby ParB complexes P1 plasmids, ParA-ATP stimulates this interaction and ParA-ADP inhibits ParB pairing activity in a parS-independent manner.
Collapse
|
7
|
Abstract
Non-essential extra-chromosomal DNA elements such as plasmids are responsible for their own propagation in dividing host cells, and one means to ensure this is to carry a miniature active segregation system reminiscent of the mitotic spindle. Plasmids that are maintained at low numbers in prokaryotic cells have developed a range of such active partitioning systems, which are characterized by an impressive simplicity and efficiency and which are united by the use of dynamic, nucleotide-driven filaments to separate and position DNA molecules. A comparison of different plasmid segregation systems reveals (i) how unrelated filament-forming and DNA-binding proteins have been adopted and modified to create a range of simple DNA segregating complexes and (ii) how subtle changes in the few components of these DNA segregation machines has led to a remarkable diversity in the molecular mechanisms of closely related segregation systems. Here, our current understanding of plasmid segregation systems is reviewed and compared with other DNA segregation systems, and this is extended by a discussion of basic principles of plasmid segregation systems, evolutionary implications and the relationship between an autonomous DNA element and its host cell.
Collapse
Affiliation(s)
- Jeanne Salje
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
8
|
Ebersbach G, Ringgaard S, Møller-Jensen J, Wang Q, Sherratt DJ, Gerdes K. Regular cellular distribution of plasmids by oscillating and filament-forming ParA ATPase of plasmid pB171. Mol Microbiol 2006; 61:1428-42. [PMID: 16899080 DOI: 10.1111/j.1365-2958.2006.05322.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Centromere-like loci from bacteria segregate plasmids to progeny cells before cell division. The ParA ATPase (a MinD homologue) of the par2 locus from plasmid pB171 forms oscillating helical structures over the nucleoid. Here we show that par2 distributes plasmid foci regularly along the length of the cell even in cells with many plasmids. In vitro, ParA binds ATP and ADP and has a cooperative ATPase activity. Moreover, ParA forms ATP-dependent filaments and cables, suggesting that ParA can provide the mechanical force for the observed regular distribution of plasmids. ParA and ParB interact with each other in a bacterial two-hybrid assay but do not interact with FtsZ, eight other essential cell division proteins or MreB actin. Based on these observations, we propose a simple model for how oscillating ParA filaments can mediate regular cellular distribution of plasmids. The model functions without the involvement of partition-specific host cell receptors and is thus consistent with the striking observation that partition loci can function in heterologous host organisms.
Collapse
Affiliation(s)
- Gitte Ebersbach
- Department of Biochemistry and Molecular Biology, Campusvej 55, DK-5230 Odense M, University of Southern Denmark, Denmark
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Bacterial plasmids encode partitioning (par) loci that ensure ordered plasmid segregation prior to cell division. par loci come in two types: those that encode actin-like ATPases and those that encode deviant Walker-type ATPases. ParM, the actin-like ATPase of plasmid R1, forms dynamic filaments that segregate plasmids paired at mid-cell to daughter cells. Like microtubules, ParM filaments exhibit dynamic instability (i.e., catastrophic decay) whose regulation is an important component of the DNA segregation process. The Walker box ParA ATPases are related to MinD and form highly dynamic, oscillating filaments that are required for the subcellular movement and positioning of plasmids. The role of the observed ATPase oscillation is not yet understood. However, we propose a simple model that couples plasmid segregation to ParA oscillation. The model is consistent with the observed movement and localization patterns of plasmid foci and does not require the involvement of plasmid-specific host-encoded factors.
Collapse
Affiliation(s)
- Gitte Ebersbach
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | |
Collapse
|