1
|
He X, Wang D, Liu J, Shi T, Wang W, Chen B, Li D, Zhang L, Tan GY. Engineering the Methylerythritol Phosphate Pathway and Using a Temporal Promoter for Enhanced Lycopene Production in Rhodobacter sphaeroides HY01. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:28040-28047. [PMID: 39626274 DOI: 10.1021/acs.jafc.4c07848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Rhodobacter sphaeroides HY01 is a high-yield strain for industrial production of coenzyme Q10 (Q10), indicating its potential for producing other terpenoids. However, the production of Q10 substantially depletes isoprene precursors, nearly eliminating other terpenoids like spheroidene and spheroidenone commonly found in wild-type R. sphaeroides. Lycopene was used as an example to demonstrate its potential for terpenoid biosynthesis. By refactoring the methylerythritol phosphate (MEP) pathway, such as overexpressing crtE and introducing crtI4, lycopene production reached 126.1 mg/L in HY01. However, further overexpression of the deoxy-d-xylulose-5-phosphate synthase, 1-deoxy-d-xylulose 5-phosphate reductoisomerase, and isopentenyl-diphosphate isomerase genes led to strain degradation, significantly reducing lycopene production. Fine-tuning the engineered PrrAB two-component system, which upregulated the MEP pathway, increased lycopene production to 154.9 mg/L. Inspired by this result, a series of native promoters with varying strengths were identified and characterized through transcriptomic analysis during the late fermentation stage. Using these temporal promoters to control genes in the MEP pathway ultimately increased lycopene production to 283.1 mg/L, the highest reported in R. sphaeroides. These results underscore the potential of HY01 as a chassis for terpenoid biosynthesis.
Collapse
Affiliation(s)
- Xinwei He
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Dan Wang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Jing Liu
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Tong Shi
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Biqin Chen
- Inner Mongolia Kingdomway Pharmaceutical Company Limited, Hohhot 010206, China
| | - Dan Li
- Inner Mongolia Kingdomway Pharmaceutical Company Limited, Hohhot 010206, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCIBT), Shanghai 200237, China
| | - Gao-Yi Tan
- State Key Laboratory of Bioreactor Engineering and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
2
|
Ma ZX, Feng CX, Song YZ, Sun J, Shao Y, Song SZ, Wan B, Zhang C, Fan H, Bao K, Yang S. Engineering photo-methylotrophic Methylobacterium for enhanced 3-hydroxypropionic acid production during non-growth stage fermentation. BIORESOURCE TECHNOLOGY 2024; 393:130104. [PMID: 38008225 DOI: 10.1016/j.biortech.2023.130104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 11/28/2023]
Abstract
This study explored the potential of methanol as a sustainable feedstock for biomanufacturing, focusing on Methylobacterium extorquens, a well-established representative of methylotrophic cell factories. Despite this bacterium's long history, its untapped photosynthetic capabilities for production enhancement have remained unreported. Using genome-scale flux balance analysis, it was hypothesized that introducing photon fluxes could boost the yield of 3-hydroxypropionic acid (3-HP), an energy- and reducing equivalent-consuming chemicals. To realize this, M. extorquens was genetically modified by eliminating the negative regulator of photosynthesis, leading to improved ATP levels and metabolic activity in non-growth cells during a two-stage fermentation process. This modification resulted in a remarkable 3.0-fold increase in 3-HP titer and a 2.1-fold increase in its yield during stage (II). Transcriptomics revealed that enhanced light-driven methanol oxidation, NADH transhydrogenation, ATP generation, and fatty acid degradation were key factors. This development of photo-methylotrophy as a platform technology introduced novel opportunities for future production enhancements.
Collapse
Affiliation(s)
- Zeng-Xin Ma
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Chen-Xi Feng
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Ya-Zhen Song
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Jing Sun
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Yi Shao
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Shu-Zhen Song
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Bin Wan
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Cong Zhang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China
| | - Huan Fan
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin 300381, People's Republic of China
| | - Kai Bao
- School of Life Sciences, Hubei University, Wuhan 430062, Hubei, People's Republic of China
| | - Song Yang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao 266109, Shandong, People's Republic of China; Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, People's Republic of China.
| |
Collapse
|
3
|
Kapetanaki SM, Fekete Z, Dorlet P, Vos MH, Liebl U, Lukacs A. Molecular insights into the role of heme in the transcriptional regulatory system AppA/PpsR. Biophys J 2022; 121:2135-2151. [PMID: 35488435 DOI: 10.1016/j.bpj.2022.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/07/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
Heme has been shown to have a crucial role in the signal transduction mechanism of the facultative photoheterotrophic bacterium Rhodobacter sphaeroides. It interacts with the transcriptional regulatory complex AppA/PpsR in which AppA and PpsR function as the antirepressor and repressor, respectively of photosynthesis gene expression. The mechanism, however of this interaction remains incompletely understood. In this study, we combined EPR spectroscopy and FRET to demonstrate the ligation of heme in PpsR with a proposed cysteine residue. We show that heme binding in AppA affects the fluorescent properties of the dark-adapted state of the protein, suggesting a less constrained flavin environment compared to the absence of heme and the light-adapted state. We performed ultrafast transient absorption measurements in order to reveal potential differences in the dynamic processes in the full-length AppA and its heme-binding domain alone. Comparison of the CO-binding dynamics demonstrates a more open heme pocket in the holo-protein, qualitatively similar to what has been observed in the CO sensor RcoM-2, and suggests a communication path between the BLUF and SCHIC domains of AppA. We have also examined quantitatively, the affinity of PpsR to bind to individual DNA fragments of the puc promoter using fluorescence anisotropy assays. We conclude that oligomerization of PpsR is initially triggered by binding of one of the two DNA fragments and observe a ∼10-fold increase in the dissociation constant Kd for DNA binding upon heme binding to PpsR. Our study provides significant new insight at the molecular level on the regulatory role of heme that modulates the complex transcriptional regulation in R. sphaeroides and supports the two levels of heme signaling, via its binding to AppA and PpsR and via the sensing of gases like oxygen.
Collapse
Affiliation(s)
- Sofia M Kapetanaki
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; Szentagothai Research Center, University of Pecs, 7624 Pécs, Hungary.
| | - Zsuzsanna Fekete
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Pierre Dorlet
- Aix Marseille Univ, CNRS, BIP, IMM, Marseille, France
| | - Marten H Vos
- LOB, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| | - Ursula Liebl
- LOB, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| | - Andras Lukacs
- Department of Biophysics, Medical School, University of Pécs, 7624 Pécs, Hungary; Szentagothai Research Center, University of Pecs, 7624 Pécs, Hungary.
| |
Collapse
|
4
|
Reconstruction and analysis of transcriptome regulatory network of Methanobrevibacter ruminantium M1. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Cho SH, Jeong Y, Lee E, Ko SR, Ahn CY, Oh HM, Cho BK, Cho S. Assessment of Erythrobacter Species Diversity through Pan-Genome Analysis with Newly Isolated Erythrobacter sp. 3-20A1M. J Microbiol Biotechnol 2021; 31:601-609. [PMID: 33526758 PMCID: PMC9723273 DOI: 10.4014/jmb.2012.12054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/15/2022]
Abstract
Erythrobacter species are extensively studied marine bacteria that produce various carotenoids. Due to their photoheterotrophic ability, it has been suggested that they play a crucial role in marine ecosystems. It is essential to identify the genome sequence and the genes of the species to predict their role in the marine ecosystem. In this study, we report the complete genome sequence of the marine bacterium Erythrobacter sp. 3-20A1M. The genome size was 3.1 Mbp and its GC content was 64.8%. In total, 2998 genetic features were annotated, of which 2882 were annotated as functional coding genes. Using the genetic information of Erythrobacter sp. 3-20A1M, we performed pangenome analysis with other Erythrobacter species. This revealed highly conserved secondary metabolite biosynthesis-related COG functions across Erythrobacter species. Through subsequent secondary metabolite biosynthetic gene cluster prediction and KEGG analysis, the carotenoid biosynthetic pathway was proven conserved in all Erythrobacter species, except for the spheroidene and spirilloxanthin pathways, which are only found in photosynthetic Erythrobacter species. The presence of virulence genes, especially the plant-algae cell wall degrading genes, revealed that Erythrobacter sp. 3-20A1M is a potential marine plant-algae scavenger.
Collapse
Affiliation(s)
- Sang-Hyeok Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yujin Jeong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Eunju Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - So-Ra Ko
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Chi-Yong Ahn
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Hee-Mock Oh
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea,KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea,
B.-K. Cho E-mail:
| | - Suhyung Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea,KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea,Corresponding authors S. Cho Phone: +82-42-350-2660 Fax: +82-42-350-5620 E-mail:
| |
Collapse
|
6
|
Qu Y, Su A, Li Y, Meng Y, Chen Z. Manipulation of the Regulatory Genes ppsR and prrA in Rhodobacter sphaeroides Enhances Lycopene Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4134-4143. [PMID: 33813825 DOI: 10.1021/acs.jafc.0c08158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rhodobacter sphaeroides is a non-sulfur purple bacterium with great metabolic versatility, capable of producing a variety of valuable compounds that include carotenoids and CoQ10. In order to enhance lycopene production, we deleted the photosynthetic gene cluster repressor ppsR from a lycopene-producing Rb. sphaeroides strain (RL1) constructed in a previous study to break the control of carotenoid synthesis by the oxygen level. Also, lycopene production was further increased by overexpression of the activator prrA. The superior lycopene producer DppsR/OprrA thus obtained had a high growth rate and a lycopene production of 150.15 mg/L with a yield of 21.45 mg/g dry cell weight (DCW) under high oxygen conditions; these values were ≥6.85-fold higher than those of RL1 (19.13 mg/L; 3.32 mg/g DCW). Our findings indicate that elimination of oxygen repression led to more efficient lycopene production by DppsR/OprrA and that its increased productivity under high oxygen conditions makes it a potentially useful strain for industrial-scale lycopene production.
Collapse
Affiliation(s)
- Yuling Qu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Anping Su
- Shaanxi Engineering Laboratory for Food Green Processing and Security Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Ying Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yonghong Meng
- Shaanxi Engineering Laboratory for Food Green Processing and Security Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China
| | - Zhi Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
7
|
George DM, Vincent AS, Mackey HR. An overview of anoxygenic phototrophic bacteria and their applications in environmental biotechnology for sustainable Resource recovery. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 28:e00563. [PMID: 33304839 PMCID: PMC7714679 DOI: 10.1016/j.btre.2020.e00563] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/12/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022]
Abstract
Anoxygenic phototrophic bacteria (APB) are a phylogenetically diverse group of organisms that can harness solar energy for their growth and metabolism. These bacteria vary broadly in terms of their metabolism as well as the composition of their photosynthetic apparatus. Unlike oxygenic phototrophic bacteria such as algae and cyanobacteria, APB can use both organic and inorganic electron donors for light-dependent fixation of carbon dioxide without generating oxygen. Their versatile metabolism, ability to adapt in extreme conditions, low maintenance cost and high biomass yield make APB ideal for wastewater treatment, resource recovery and in the production of high value substances. This review highlights the advantages of APB over algae and cyanobacteria, and their applications in photo-bioelectrochemical systems, production of poly-β-hydroxyalkanoates, single-cell protein, biofertilizers and pigments. The ecology of ABP, their distinguishing factors, various physiochemical parameters governing the production of high-value substances and future directions of APB utilization are also discussed.
Collapse
Key Words
- ALA, 5-Aminolevulinic acid
- APB, Anoxygenic phototrophic bacteria
- Anoxygenic phototrophic bacteria (APB)
- BChl, Bacteriochlorophyll
- BES, Bioelectrochemical systems
- BPV, Biophotovoltaic
- BPh, Bacteriopheophytin
- Bacteriochlorophyll (BChl)
- Chl, Chlorophyll
- CoQ10, Coenzyme Q10
- DET, Direct electron transfer
- DNA, Deoxyribonucleic acid
- DO, Dissolved oxygen
- DXP, 1 deoxy-d-xylulose 5-phosphate
- FPP, Farnesyl pyrophosphate
- Fe-S, Iron-Sulfur
- GNSB, Green non sulfur bacteria
- GSB, Green sulfur bacteria
- IPP, Isopentenyl pyrophosphate isomerase
- LED, light emitting diode
- LH2, light-harvesting component II
- MFC, Microbial fuel cell
- MVA, Mevalonate
- PH3B, Poly-3-hydroxybutyrate
- PHA, Poly-β-hydroxyalkanoates
- PHB, Poly-β-hydroxybutyrate
- PNSB, Purple non sulfur bacteria
- PPB, Purple phototrophic bacteria
- PSB, Purple sulfur bacteria
- Pheo-Q, Pheophytin-Quinone
- Photo-BES, Photosynthetic bioelectrochemical systems
- Photo-MFC, Photo microbial fuel cell
- Poly-β-hydroxyalkanoates (PHA)
- Purple phototrophic bacteria (PPB)
- Resource recovery
- RuBisCO, Ribulose-1,5-biphosphate carboxylase/oxygenase
- SCP, Single-cell protein
- SOB, Sulfide oxidizing bacteria
- SRB, Sulfate reducing bacteria
- Single-cell proteins (SCP)
Collapse
Affiliation(s)
- Drishya M. George
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Annette S. Vincent
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Biological Sciences Program, Carnegie Mellon University in Qatar, Qatar
| | - Hamish R. Mackey
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| |
Collapse
|
8
|
Orsi E, Beekwilder J, Eggink G, Kengen SWM, Weusthuis RA. The transition of Rhodobacter sphaeroides into a microbial cell factory. Biotechnol Bioeng 2020; 118:531-541. [PMID: 33038009 PMCID: PMC7894463 DOI: 10.1002/bit.27593] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/29/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022]
Abstract
Microbial cell factories are the workhorses of industrial biotechnology and improving their performances can significantly optimize industrial bioprocesses. Microbial strain engineering is often employed for increasing the competitiveness of bio‐based product synthesis over more classical petroleum‐based synthesis. Recently, efforts for strain optimization have been standardized within the iterative concept of “design‐build‐test‐learn” (DBTL). This approach has been successfully employed for the improvement of traditional cell factories like Escherichia coli and Saccharomyces cerevisiae. Within the past decade, several new‐to‐industry microorganisms have been investigated as novel cell factories, including the versatile α‐proteobacterium Rhodobacter sphaeroides. Despite its history as a laboratory strain for fundamental studies, there is a growing interest in this bacterium for its ability to synthesize relevant compounds for the bioeconomy, such as isoprenoids, poly‐β‐hydroxybutyrate, and hydrogen. In this study, we reflect on the reasons for establishing R. sphaeroides as a cell factory from the perspective of the DBTL concept. Moreover, we discuss current and future opportunities for extending the use of this microorganism for the bio‐based economy. We believe that applying the DBTL pipeline for R. sphaeroides will further strengthen its relevance as a microbial cell factory. Moreover, the proposed use of strain engineering via the DBTL approach may be extended to other microorganisms that have not been critically investigated yet for industrial applications.
Collapse
Affiliation(s)
- Enrico Orsi
- Bioprocess Engineering, Wageningen University, Wageningen, The Netherlands.,Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | | | - Gerrit Eggink
- Bioprocess Engineering, Wageningen University, Wageningen, The Netherlands.,Wageningen Food and Biobased Research, Wageningen, The Netherlands
| | - Servé W M Kengen
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Ruud A Weusthuis
- Bioprocess Engineering, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
9
|
Orsi E, Folch PL, Monje-López VT, Fernhout BM, Turcato A, Kengen SWM, Eggink G, Weusthuis RA. Characterization of heterotrophic growth and sesquiterpene production by Rhodobacter sphaeroides on a defined medium. J Ind Microbiol Biotechnol 2019; 46:1179-1190. [PMID: 31187318 PMCID: PMC6697705 DOI: 10.1007/s10295-019-02201-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/29/2019] [Indexed: 11/30/2022]
Abstract
Rhodobacter sphaeroides is a metabolically versatile bacterium capable of producing terpenes natively. Surprisingly, terpene biosynthesis in this species has always been investigated in complex media, with unknown compounds possibly acting as carbon and nitrogen sources. Here, a defined medium was adapted for R. sphaeroides dark heterotrophic growth, and was used to investigate the conversion of different organic substrates into the reporter terpene amorphadiene. The amorphadiene synthase was cloned in R. sphaeroides, allowing its biosynthesis via the native 2-methyl-d-erythritol-4-phosphate (MEP) pathway and, additionally, via a heterologous mevalonate one. The latter condition increased titers up to eightfold. Consequently, better yields and productivities to previously reported complex media cultivations were achieved. Productivity was further investigated under different cultivation conditions, including nitrogen and oxygen availability. This novel cultivation setup provided useful insight into the understanding of terpene biosynthesis in R. sphaeroides, allowing to better comprehend its dynamics and regulation during chemoheterotrophic cultivation.
Collapse
Affiliation(s)
- Enrico Orsi
- Bioprocess Engineering, Department of Agrotechnology and Food, Wageningen University and Research, Wageningen, The Netherlands
| | - Pauline L Folch
- Bioprocess Engineering, Department of Agrotechnology and Food, Wageningen University and Research, Wageningen, The Netherlands
| | - Vicente T Monje-López
- Bioprocess Engineering, Department of Agrotechnology and Food, Wageningen University and Research, Wageningen, The Netherlands
| | - Bas M Fernhout
- Bioprocess Engineering, Department of Agrotechnology and Food, Wageningen University and Research, Wageningen, The Netherlands
| | - Alessandro Turcato
- Bioprocess Engineering, Department of Agrotechnology and Food, Wageningen University and Research, Wageningen, The Netherlands
| | - Servé W M Kengen
- Laboratory of Microbiology, Department of Agrotechnology and Food, Wageningen University and Research, Wageningen, The Netherlands
| | - Gerrit Eggink
- Bioprocess Engineering, Department of Agrotechnology and Food, Wageningen University and Research, Wageningen, The Netherlands.,Biobased Products Food and Biobased Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Ruud A Weusthuis
- Bioprocess Engineering, Department of Agrotechnology and Food, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
10
|
Sevilla E, Bes MT, González A, Peleato ML, Fillat MF. Redox-Based Transcriptional Regulation in Prokaryotes: Revisiting Model Mechanisms. Antioxid Redox Signal 2019; 30:1651-1696. [PMID: 30073850 DOI: 10.1089/ars.2017.7442] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SIGNIFICANCE The successful adaptation of microorganisms to ever-changing environments depends, to a great extent, on their ability to maintain redox homeostasis. To effectively maintain the redox balance, cells have developed a variety of strategies mainly coordinated by a battery of transcriptional regulators through diverse mechanisms. Recent Advances: This comprehensive review focuses on the main mechanisms used by major redox-responsive regulators in prokaryotes and their relationship with the different redox signals received by the cell. An overview of the corresponding regulons is also provided. CRITICAL ISSUES Some regulators are difficult to classify since they may contain several sensing domains and respond to more than one signal. We propose a classification of redox-sensing regulators into three major groups. The first group contains one-component or direct regulators, whose sensing and regulatory domains are in the same protein. The second group comprises the classical two-component systems involving a sensor kinase that transduces the redox signal to its DNA-binding partner. The third group encompasses a heterogeneous group of flavin-based photosensors whose mechanisms are not always fully understood and are often involved in more complex regulatory networks. FUTURE DIRECTIONS Redox-responsive transcriptional regulation is an intricate process as identical signals may be sensed and transduced by different transcription factors, which often interplay with other DNA-binding proteins with or without regulatory activity. Although there is much information about some key regulators, many others remain to be fully characterized due to the instability of their clusters under oxygen. Understanding the mechanisms and the regulatory networks operated by these regulators is essential for the development of future applications in biotechnology and medicine.
Collapse
Affiliation(s)
- Emma Sevilla
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - María Teresa Bes
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - Andrés González
- 2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain.,4 Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - María Luisa Peleato
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| | - María F Fillat
- 1 Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain.,2 Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain.,3 Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, Zaragoza, Spain
| |
Collapse
|
11
|
Pandey R, Armitage JP, Wadhams GH. Use of transcriptomic data for extending a model of the AppA/PpsR system in Rhodobacter sphaeroides. BMC SYSTEMS BIOLOGY 2017; 11:146. [PMID: 29284486 PMCID: PMC5747161 DOI: 10.1186/s12918-017-0489-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 11/10/2017] [Indexed: 12/22/2022]
Abstract
Background Photosynthetic (PS) gene expression in Rhodobacter sphaeroides is regulated in response to changes in light and redox conditions mainly by PrrB/A, FnrL and AppA/PpsR systems. The PrrB/A and FnrL systems activate the expression of them under anaerobic conditions while the AppA/PpsR system represses them under aerobic conditions. Recently, two mathematical models have been developed for the AppA/PpsR system and demonstrated how the interaction between AppA and PpsR could lead to a phenotype in which PS genes are repressed under semi-aerobic conditions. These models have also predicted that the transition from aerobic to anaerobic growth mode could occur via a bistable regime. However, they lack experimentally quantifiable inputs and outputs. Here, we extend one of them to include such quantities and combine all relevant micro-array data publically available for a PS gene of this bacterium and use that to parameterise the model. In addition, we hypothesise that the AppA/PpsR system alone might account for the observed trend of PS gene expression under semi-aerobic conditions. Results Our extended model of the AppA/PpsR system includes the biological input of atmospheric oxygen concentration and an output of photosynthetic gene expression. Following our hypothesis that the AppA/PpsR system alone is sufficient to describe the overall trend of PS gene expression we parameterise the model and suggest that the rate of AppA reduction in vivo should be faster than its oxidation. Also, we show that despite both the reduced and oxidised forms of PpsR binding to the PS gene promoters in vitro, binding of the oxidised form as a repressor alone is sufficient to reproduce the observed PS gene expression pattern. Finally, the combination of model parameters which fit the biological data well are broadly consistent with those which were previously determined to be required for the system to show (i) the repression of PS genes under semi-aerobic conditions, and (ii) bistability. Conclusion We found that despite at least three pathways being involved in the regulation of photosynthetic genes, the AppA/PpsR system alone is capable of accounting for the observed trends in photosynthetic gene expression seen at different oxygen levels. Electronic supplementary material The online version of this article (10.1186/s12918-017-0489-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rakesh Pandey
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK. .,Present Address: National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India.
| | - Judith P Armitage
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
| | - George H Wadhams
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK.
| |
Collapse
|
12
|
Dailey HA, Dailey TA, Gerdes S, Jahn D, Jahn M, O'Brian MR, Warren MJ. Prokaryotic Heme Biosynthesis: Multiple Pathways to a Common Essential Product. Microbiol Mol Biol Rev 2017; 81:e00048-16. [PMID: 28123057 PMCID: PMC5312243 DOI: 10.1128/mmbr.00048-16] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The advent of heme during evolution allowed organisms possessing this compound to safely and efficiently carry out a variety of chemical reactions that otherwise were difficult or impossible. While it was long assumed that a single heme biosynthetic pathway existed in nature, over the past decade, it has become clear that there are three distinct pathways among prokaryotes, although all three pathways utilize a common initial core of three enzymes to produce the intermediate uroporphyrinogen III. The most ancient pathway and the only one found in the Archaea converts siroheme to protoheme via an oxygen-independent four-enzyme-step process. Bacteria utilize the initial core pathway but then add one additional common step to produce coproporphyrinogen III. Following this step, Gram-positive organisms oxidize coproporphyrinogen III to coproporphyrin III, insert iron to make coproheme, and finally decarboxylate coproheme to protoheme, whereas Gram-negative bacteria first decarboxylate coproporphyrinogen III to protoporphyrinogen IX and then oxidize this to protoporphyrin IX prior to metal insertion to make protoheme. In order to adapt to oxygen-deficient conditions, two steps in the bacterial pathways have multiple forms to accommodate oxidative reactions in an anaerobic environment. The regulation of these pathways reflects the diversity of bacterial metabolism. This diversity, along with the late recognition that three pathways exist, has significantly slowed advances in this field such that no single organism's heme synthesis pathway regulation is currently completely characterized.
Collapse
Affiliation(s)
- Harry A Dailey
- Department of Microbiology, Department of Biochemistry and Molecular Biology, and Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia, USA
| | - Tamara A Dailey
- Department of Microbiology, Department of Biochemistry and Molecular Biology, and Biomedical and Health Sciences Institute, University of Georgia, Athens, Georgia, USA
| | - Svetlana Gerdes
- Fellowship for Interpretation of Genomes, Burr Ridge, Illinois, USA
| | - Dieter Jahn
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universitaet Braunschweig, Braunschweig, Germany
| | - Martina Jahn
- Institute of Microbiology, Technische Universitaet Braunschweig, Braunschweig, Germany
| | - Mark R O'Brian
- Department of Biochemistry, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Martin J Warren
- Department of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| |
Collapse
|
13
|
Brewitz HH, Hagelueken G, Imhof D. Structural and functional diversity of transient heme binding to bacterial proteins. Biochim Biophys Acta Gen Subj 2017; 1861:683-697. [DOI: 10.1016/j.bbagen.2016.12.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/15/2016] [Accepted: 12/20/2016] [Indexed: 11/27/2022]
|
14
|
Members of the PpaA/AerR Antirepressor Family Bind Cobalamin. J Bacteriol 2015; 197:2694-703. [PMID: 26055116 DOI: 10.1128/jb.00374-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/03/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED PpaA from Rhodobacter sphaeroides is a member of a family of proteins that are thought to function as antirepressors of PpsR, a widely disseminated repressor of photosystem genes in purple photosynthetic bacteria. PpaA family members exhibit sequence similarity to a previously defined SCHIC (sensor containing heme instead of cobalamin) domain; however, the tetrapyrrole-binding specificity of PpaA family members has been unclear, as R. sphaeroides PpaA has been reported to bind heme while the Rhodobacter capsulatus homolog has been reported to bind cobalamin. In this study, we reinvestigated tetrapyrrole binding of PpaA from R. sphaeroides and show that it is not a heme-binding protein but is instead a cobalamin-binding protein. We also use bacterial two-hybrid analysis to show that PpaA is able to interact with PpsR and activate the expression of photosynthesis genes in vivo. Mutations in PpaA that cause loss of cobalamin binding also disrupt PpaA antirepressor activity in vivo. We also tested a number of PpaA homologs from other purple bacterial species and found that cobalamin binding is a conserved feature among members of this family of proteins. IMPORTANCE Cobalamin (vitamin B12) has only recently been recognized as a cofactor that affects gene expression by interacting in a light-dependent manner with transcription factors. A group of related antirepressors known as the AppA/PpaA/AerR family are known to control the expression of photosynthesis genes in part by interacting with either heme or cobalamin. The specificity of which tetrapyrroles that members of this family interact with has, however, remained cloudy. In this study, we address the tetrapyrrole-binding specificity of the PpaA/AerR subgroup and establish that it preferentially binds cobalamin over heme.
Collapse
|
15
|
Peña-Castillo L, Mercer RG, Gurinovich A, Callister SJ, Wright AT, Westbye AB, Beatty JT, Lang AS. Gene co-expression network analysis in Rhodobacter capsulatus and application to comparative expression analysis of Rhodobacter sphaeroides. BMC Genomics 2014; 15:730. [PMID: 25164283 PMCID: PMC4158056 DOI: 10.1186/1471-2164-15-730] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 08/21/2014] [Indexed: 01/05/2023] Open
Abstract
Background The genus Rhodobacter contains purple nonsulfur bacteria found mostly in freshwater environments. Representative strains of two Rhodobacter species, R. capsulatus and R. sphaeroides, have had their genomes fully sequenced and both have been the subject of transcriptional profiling studies. Gene co-expression networks can be used to identify modules of genes with similar expression profiles. Functional analysis of gene modules can then associate co-expressed genes with biological pathways, and network statistics can determine the degree of module preservation in related networks. In this paper, we constructed an R. capsulatus gene co-expression network, performed functional analysis of identified gene modules, and investigated preservation of these modules in R. capsulatus proteomics data and in R. sphaeroides transcriptomics data. Results The analysis identified 40 gene co-expression modules in R. capsulatus. Investigation of the module gene contents and expression profiles revealed patterns that were validated based on previous studies supporting the biological relevance of these modules. We identified two R. capsulatus gene modules preserved in the protein abundance data. We also identified several gene modules preserved between both Rhodobacter species, which indicate that these cellular processes are conserved between the species and are candidates for functional information transfer between species. Many gene modules were non-preserved, providing insight into processes that differentiate the two species. In addition, using Local Network Similarity (LNS), a recently proposed metric for expression divergence, we assessed the expression conservation of between-species pairs of orthologs, and within-species gene-protein expression profiles. Conclusions Our analyses provide new sources of information for functional annotation in R. capsulatus because uncharacterized genes in modules are now connected with groups of genes that constitute a joint functional annotation. We identified R. capsulatus modules enriched with genes for ribosomal proteins, porphyrin and bacteriochlorophyll anabolism, and biosynthesis of secondary metabolites to be preserved in R. sphaeroides whereas modules related to RcGTA production and signalling showed lack of preservation in R. sphaeroides. In addition, we demonstrated that network statistics may also be applied within-species to identify congruence between mRNA expression and protein abundance data for which simple correlation measurements have previously had mixed results. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-730) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lourdes Peña-Castillo
- Department of Biology, Memorial University of Newfoundland, St, John's, NL A1B 3X5, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
A Rhodobacter sphaeroides protein mechanistically similar to Escherichia coli DksA regulates photosynthetic growth. mBio 2014; 5:e01105-14. [PMID: 24781745 PMCID: PMC4010833 DOI: 10.1128/mbio.01105-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
ABSTRACT DksA is a global regulatory protein that, together with the alarmone ppGpp, is required for the "stringent response" to nutrient starvation in the gammaproteobacterium Escherichia coli and for more moderate shifts between growth conditions. DksA modulates the expression of hundreds of genes, directly or indirectly. Mutants lacking a DksA homolog exhibit pleiotropic phenotypes in other gammaproteobacteria as well. Here we analyzed the DksA homolog RSP2654 in the more distantly related Rhodobacter sphaeroides, an alphaproteobacterium. RSP2654 is 42% identical and similar in length to E. coli DksA but lacks the Zn finger motif of the E. coli DksA globular domain. Deletion of the RSP2654 gene results in defects in photosynthetic growth, impaired utilization of amino acids, and an increase in fatty acid content. RSP2654 complements the growth and regulatory defects of an E. coli strain lacking the dksA gene and modulates transcription in vitro with E. coli RNA polymerase (RNAP) similarly to E. coli DksA. RSP2654 reduces RNAP-promoter complex stability in vitro with RNAPs from E. coli or R. sphaeroides, alone and synergistically with ppGpp, suggesting that even though it has limited sequence identity to E. coli DksA (DksAEc), it functions in a mechanistically similar manner. We therefore designate the RSP2654 protein DksARsp. Our work suggests that DksARsp has distinct and important physiological roles in alphaproteobacteria and will be useful for understanding structure-function relationships in DksA and the mechanism of synergy between DksA and ppGpp. IMPORTANCE The role of DksA has been analyzed primarily in the gammaproteobacteria, in which it is best understood for its role in control of the synthesis of the translation apparatus and amino acid biosynthesis. Our work suggests that DksA plays distinct and important physiological roles in alphaproteobacteria, including the control of photosynthesis in Rhodobacter sphaeroides. The study of DksARsp, should be useful for understanding structure-function relationships in the protein, including those that play a role in the little-understood synergy between DksA and ppGpp.
Collapse
|
17
|
Heintz U, Meinhart A, Winkler A. Multi-PAS domain-mediated protein oligomerization of PpsR from Rhodobacter sphaeroides. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:863-76. [PMID: 24598755 PMCID: PMC3949515 DOI: 10.1107/s1399004713033634] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/12/2013] [Indexed: 01/04/2023]
Abstract
Per-ARNT-Sim (PAS) domains are essential modules of many multi-domain signalling proteins that mediate protein interaction and/or sense environmental stimuli. Frequently, multiple PAS domains are present within single polypeptide chains, where their interplay is required for protein function. Although many isolated PAS domain structures have been reported over the last decades, only a few structures of multi-PAS proteins are known. Therefore, the molecular mechanism of multi-PAS domain-mediated protein oligomerization and function is poorly understood. The transcription factor PpsR from Rhodobacter sphaeroides is such a multi-PAS domain protein that, in addition to its three PAS domains, contains a glutamine-rich linker and a C-terminal helix-turn-helix DNA-binding motif. Here, crystal structures of two N-terminally and C-terminally truncated PpsR variants that comprise a single (PpsRQ-PAS1) and two (PpsRN-Q-PAS1) PAS domains, respectively, are presented and the multi-step strategy required for the phasing of a triple PAS domain construct (PpsRΔHTH) is illustrated. While parts of the biologically relevant dimerization interface can already be observed in the two shorter constructs, the PpsRΔHTH structure reveals how three PAS domains enable the formation of multiple oligomeric states (dimer, tetramer and octamer), highlighting that not only the PAS cores but also their α-helical extensions are essential for protein oligomerization. The results demonstrate that the long helical glutamine-rich linker of PpsR results from a direct fusion of the N-cap of the PAS1 domain with the C-terminal extension of the N-domain that plays an important role in signal transduction.
Collapse
Affiliation(s)
- Udo Heintz
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Anton Meinhart
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Andreas Winkler
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| |
Collapse
|
18
|
Fedotova Y, Zeilstra-Ryalls J. Analysis of the role of PrrA, PpsR, and FnrL in intracytoplasmic membrane differentiation of Rhodobacter sphaeroides 2.4.1 using transmission electron microscopy. PHOTOSYNTHESIS RESEARCH 2014; 119:283-290. [PMID: 24146256 PMCID: PMC3923116 DOI: 10.1007/s11120-013-9944-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 10/07/2013] [Indexed: 06/02/2023]
Abstract
Oxygen dictates the catabolic "lifestyle" of Rhodobacter sphaeroides. When it is present, the bacteria are fully equipped for aerobic respiration. When it is absent, the cells outfit themselves to make use of energy-gathering options that do not require oxygen. Thus, while respiring on alternate electron acceptors in the absence of oxygen even in the dark, the cells are fully enabled for phototrophy. PrrA, PpsR, and FnrL are global regulatory proteins mediating oxygen control of gene expression in this organism. For each of these, regulon members include a subset of a cluster of genes known as the photosynthesis genes, which encode the structural proteins and enzymes catalyzing biosynthesis of the pigments of the light-harvesting and reaction center complexes. The complexes are housed in a specialized structure called the intracytoplasmic membrane (ICM). Although details are emerging as to the differentiation process leading to fully formed ICM, little is known of necessary regulatory events beyond changes in photosynthesis gene transcription. This study used transmission electron microscopy toward gaining additional insights into potential roles of PrrA, PpsR, and FnrL in the formation of ICM. The major findings were (1) the absence of either PrrA or FnrL negatively affects ICM formation, (2) the lack of ICM in the absence of PrrA is partially, but not fully reversed by removing PpsR from the cell, (3) unlike R. sphaeroides, ICM formation in Rhodobacter capsulatus does not require FnrL. New avenues these findings provide toward identifying additional genes involved in ICM formation are discussed.
Collapse
Affiliation(s)
- Yana Fedotova
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403 USA
| | - Jill Zeilstra-Ryalls
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403 USA
| |
Collapse
|
19
|
Yin L, Bauer CE. Controlling the delicate balance of tetrapyrrole biosynthesis. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120262. [PMID: 23754814 DOI: 10.1098/rstb.2012.0262] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tetrapyrroles are a family of compounds that contain four pyrrole rings. They are involved in many fundamental biological processes such as photoreception, electron transport, gas transport and also as cofactors for enzymatic reactions. As regulators of protein activity, tetrapyrroles mediate cellular response to light, oxygen and nutrient levels in the surrounding environment. Biosynthesis of haem tetrapyrroles shares, conserved pathways and enzymes among all three domains of life. This is contrasted by chlorophyll biosynthesis that is only present in eubacteria and chloroplasts, or cobalamin biosynthesis that is only present in eubacteria and archaea. This implicates haem as the most ancient, and chlorophyll as the most recent, of the common tetrapyrroles that are currently synthesized by existing organisms. Haem and chlorophyll are both toxic when synthesized in excess over apo-proteins that bind these tetrapyrroles. Accordingly, the synthesis of these tetrapyrroles has to be tightly regulated and coordinated with apo-protein production. The mechanism of regulating haem and chlorophyll synthesis has been studied intensively in Rhodobacter species and will be discussed.
Collapse
Affiliation(s)
- Liang Yin
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
20
|
Winkler A, Heintz U, Lindner R, Reinstein J, Shoeman RL, Schlichting I. A ternary AppA-PpsR-DNA complex mediates light regulation of photosynthesis-related gene expression. Nat Struct Mol Biol 2013; 20:859-67. [PMID: 23728293 PMCID: PMC3702404 DOI: 10.1038/nsmb.2597] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 04/10/2013] [Indexed: 11/09/2022]
Abstract
The anoxygenic phototrophic bacterium Rhodobacter sphaeroides uses different energy sources, depending on environmental conditions including aerobic respiration or, in the absence of oxygen, photosynthesis. Photosynthetic genes are repressed at high oxygen tension, but at intermediate levels their partial expression prepares the bacterium for using light energy. Illumination, however, enhances repression under semiaerobic conditions. Here, we describe molecular details of two proteins mediating oxygen and light control of photosynthesis-gene expression: the light-sensing antirepressor AppA and the transcriptional repressor PpsR. Our crystal structures of both proteins and their complex and hydrogen/deuterium-exchange data show that light activation of AppA-PpsR2 affects the PpsR effector region within the complex. DNA binding studies demonstrate the formation of a light-sensitive ternary AppA-PpsR-DNA complex. We discuss implications of these results for regulation by light and oxygen, highlighting new insights into blue light-mediated signal transduction.
Collapse
Affiliation(s)
- Andreas Winkler
- Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
21
|
Frühwirth S, Teich K, Klug G. Effects of the cryptochrome CryB from Rhodobacter sphaeroides on global gene expression in the dark or blue light or in the presence of singlet oxygen. PLoS One 2012; 7:e33791. [PMID: 22496766 PMCID: PMC3320616 DOI: 10.1371/journal.pone.0033791] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 02/17/2012] [Indexed: 02/03/2023] Open
Abstract
Several regulators are controlling the formation of the photosynthetic apparatus in the facultatively photosynthetic bacterium Rhodobacter sphaeroides. Among the proteins affecting photosynthesis gene expression is the blue light photoreceptor cryptochrome CryB. This study addresses the effect of CryB on global gene expression. The data reveal that CryB does not only influence photosynthesis gene expression but also genes for the non-photosynthetic energy metabolism like citric acid cycle and oxidative phosphorylation. In addition several genes involved in RNA processing and in transcriptional regulation are affected by a cryB deletion. Although CryB was shown to undergo a photocycle it does not only affect gene expression in response to blue light illumination but also in response to singlet oxygen stress conditions. While there is a large overlap in these responses, some CryB-dependent effects are specific for blue-light or photooxidative stress. In addition to protein-coding genes some genes for sRNAs show CryB-dependent expression. These findings give new insight into the function of bacterial cryptochromes and demonstrate for the first time a function in the oxidative stress response.
Collapse
Affiliation(s)
| | | | - Gabriele Klug
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität, Giessen, Germany
- * E-mail:
| |
Collapse
|
22
|
Metz S, Haberzettl K, Frühwirth S, Teich K, Hasewinkel C, Klug G. Interaction of two photoreceptors in the regulation of bacterial photosynthesis genes. Nucleic Acids Res 2012; 40:5901-9. [PMID: 22434878 PMCID: PMC3401432 DOI: 10.1093/nar/gks243] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The expression of photosynthesis genes in the facultatively photosynthetic bacterium Rhodobacter sphaeroides is controlled by the oxygen tension and by light quantity. Two photoreceptor proteins, AppA and CryB, have been identified in the past, which are involved in this regulation. AppA senses light by its N-terminal BLUF domain, its C-terminal part binds heme and is redox-responsive. Through its interaction to the transcriptional repressor PpsR the AppA photoreceptor controls expression of photosynthesis genes. The cryptochrome-like protein CryB was shown to affect regulation of photosynthesis genes, but the underlying signal chain remained unknown. Here we show that CryB interacts with the C-terminal domain of AppA and modulates the binding of AppA to the transcriptional repressor PpsR in a light-dependent manner. Consequently, binding of the transcription factor PpsR to its DNA target is affected by CryB. In agreement with this, all genes of the PpsR regulon showed altered expression levels in a CryB deletion strain after blue-light illumination. These results elucidate for the first time how a bacterial cryptochrome affects gene expression.
Collapse
Affiliation(s)
- Sebastian Metz
- Institut für Mikrobiologie und Molekularbiologie, Universität Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Pandey R, Flockerzi D, Hauser MJB, Straube R. An extended model for the repression of photosynthesis genes by the AppA/PpsR system inRhodobacter sphaeroides. FEBS J 2012; 279:3449-61. [DOI: 10.1111/j.1742-4658.2012.08520.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Yin L, Dragnea V, Bauer CE. PpsR, a regulator of heme and bacteriochlorophyll biosynthesis, is a heme-sensing protein. J Biol Chem 2012; 287:13850-8. [PMID: 22378778 DOI: 10.1074/jbc.m112.346494] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heme-mediated regulation, presented in many biological processes, is achieved in part with proteins containing heme regulatory motif. In this study, we demonstrate that FLAG-tagged PpsR isolated from Rhodobacter sphaeroides cells contains bound heme. In vitro heme binding studies with tagless apo-PpsR show that PpsR binds heme at a near one-to-one ratio with a micromolar binding constant. Mutational and spectral assays suggest that both the second Per-Arnt-Sim (PAS) and DNA binding domains of PpsR are involved in the heme binding. Furthermore, we show that heme changes the DNA binding patterns of PpsR and induces different responses of photosystem genes expression. Thus, PpsR functions as both a redox and heme sensor to coordinate the amount of heme, bacteriochlorophyll, and photosystem apoprotein synthesis thereby providing fine tune control to avoid excess free tetrapyrrole accumulation.
Collapse
Affiliation(s)
- Liang Yin
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, USA
| | | | | |
Collapse
|
25
|
Metz S, Jäger A, Klug G. Role of a short light, oxygen, voltage (LOV) domain protein in blue light- and singlet oxygen-dependent gene regulation in Rhodobacter sphaeroides. Microbiology (Reading) 2012; 158:368-379. [DOI: 10.1099/mic.0.054700-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Sebastian Metz
- Institut für Mikro- und Molekularbiologie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, D-35392 Gießen, Germany
| | - Andreas Jäger
- Institut für Mikro- und Molekularbiologie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, D-35392 Gießen, Germany
| | - Gabriele Klug
- Institut für Mikro- und Molekularbiologie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, D-35392 Gießen, Germany
| |
Collapse
|
26
|
Pandey R, Flockerzi D, Hauser MJB, Straube R. Modeling the light- and redox-dependent interaction of PpsR/AppA in Rhodobacter sphaeroides. Biophys J 2011; 100:2347-55. [PMID: 21575568 DOI: 10.1016/j.bpj.2011.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 03/16/2011] [Accepted: 04/06/2011] [Indexed: 10/18/2022] Open
Abstract
Facultative photosynthetic bacteria switch their energy generation mechanism from respiration to photosynthesis depending on oxygen tension and light. Part of this transition is mediated by the aerobic transcriptional repressor PpsR. In Rhodobacter sphaeroides, the repressive action of PpsR is antagonized by the redox- and blue-light-sensitive flavoprotein AppA which results in a unique phenotype: the repression of photosynthesis genes at intermediate oxygen levels and high light intensity, which is believed to reduce the risk of photooxidative stress. To analyze the underlying mechanism we developed a simple mathematical model based on the AppA-dependent reduction of a disulfide bond in PpsR and the light-sensitive complex formation between the reduced forms of AppA and PpsR. A steady-state analysis shows that high light repression can indeed occur at intermediate oxygen levels if PpsR is reduced on a faster timescale than AppA and if the electron transfer from AppA to PpsR is effectively irreversible. The model further predicts that if AppA copy numbers exceed those of PpsR by at least a factor of two, the transition from aerobic to anaerobic growth mode can occur via a bistable regime. We provide necessary conditions for the emergence of bistability and discuss possible experimental verifications.
Collapse
Affiliation(s)
- Rakesh Pandey
- Systems Biology Group, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | | | | | | |
Collapse
|
27
|
Transcriptional response of the photoheterotrophic marine bacterium Dinoroseobacter shibae to changing light regimes. ISME JOURNAL 2011; 5:1957-68. [PMID: 21654848 DOI: 10.1038/ismej.2011.68] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bacterial aerobic anoxygenic photosynthesis (AAP) is an important mechanism of energy generation in aquatic habitats, accounting for up to 5% of the surface ocean's photosynthetic electron transport. We used Dinoroseobacter shibae, a representative of the globally abundant marine Roseobacter clade, as a model organism to study the transcriptional response of a photoheterotrophic bacterium to changing light regimes. Continuous cultivation of D. shibae in a chemostat in combination with time series microarray analysis was used in order to identify gene-regulatory patterns after switching from dark to light and vice versa. The change from heterotrophic growth in the dark to photoheterotrophic growth in the light was accompanied by a strong but transient activation of a broad stress response to the formation of singlet oxygen, an immediate downregulation of photosynthesis-related genes, fine-tuning of the expression of ETC components, as well as upregulation of the transcriptional and translational apparatus. Furthermore, our data suggest that D. shibae might use the 3-hydroxypropionate cycle for CO(2) fixation. Analysis of the transcriptome dynamics after switching from light to dark showed relatively small changes and a delayed activation of photosynthesis gene expression, indicating that, except for light other signals must be involved in their regulation. Providing the first analysis of AAP on the level of transcriptome dynamics, our data allow the formulation of testable hypotheses on the cellular processes affected by AAP and the mechanisms involved in light- and stress-related gene regulation.
Collapse
|
28
|
Berghoff BA, Glaeser J, Sharma CM, Zobawa M, Lottspeich F, Vogel J, Klug G. Contribution of Hfq to photooxidative stress resistance and global regulation in Rhodobacter sphaeroides. Mol Microbiol 2011; 80:1479-95. [PMID: 21535243 DOI: 10.1111/j.1365-2958.2011.07658.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The photosynthetic alphaproteobacterium Rhodobacter sphaeroides has to cope with photooxidative stress that is caused by the bacteriochlorophyll a-mediated formation of singlet oxygen ((1)O(2)). Exposure to (1)O(2) induces the alternative sigma factors RpoE and RpoH(II) which then promote transcription of photooxidative stress-related genes, including small RNAs (sRNAs). The ubiquitous RNA chaperone Hfq is well established to interact with and facilitate the base-pairing of sRNAs and target mRNAs to influence mRNA stability and/or translation. Here we report on the pleiotropic phenotype of a Δhfq mutant of R. sphaeroides, which is less pigmented, produces minicells and is more sensitive to (1)O(2). The higher (1)O(2) sensitivity of the Δhfq mutant is paralleled by a reduced RpoE activity and a disordered induction of RpoH(II)-dependent genes. We used co-immunoprecipitation of FLAG-tagged Hfq combined with RNA-seq to identify association of at least 25 sRNAs and of mRNAs encoding cell division proteins and ribosomal proteins with Hfq. Remarkably, > 70% of the Hfq-bound sRNAs are (1)O(2)-affected. Proteomics analysis of the Hfq-deficient strain revealed an impact of Hfq on amino acid transport and metabolic functions. Our data demonstrate for the first time an involvement of Hfq in regulation of photosynthesis genes and in the photooxidative stress response.
Collapse
Affiliation(s)
- Bork A Berghoff
- Institut für Mikrobiologie und Molekularbiologie, Justus-Liebig-Universität, Heinrich-Buff-Ring 26, 35392 Gießen, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Moskvin OV, Bolotin D, Wang A, Ivanov PS, Gomelsky M. Rhodobase, a meta-analytical tool for reconstructing gene regulatory networks in a model photosynthetic bacterium. Biosystems 2010; 103:125-31. [PMID: 21070832 DOI: 10.1016/j.biosystems.2010.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 10/29/2010] [Accepted: 10/31/2010] [Indexed: 01/10/2023]
Abstract
We present Rhodobase, a web-based meta-analytical tool for analysis of transcriptional regulation in a model anoxygenic photosynthetic bacterium, Rhodobacter sphaeroides. The gene association meta-analysis is based on the pooled data from 100 of R. sphaeroides whole-genome DNA microarrays. Gene-centric regulatory networks were visualized using the StarNet approach (Jupiter, D.C., VanBuren, V., 2008. A visual data mining tool that facilitates reconstruction of transcription regulatory networks. PLoS ONE 3, e1717) with several modifications. We developed a means to identify and visualize operons and superoperons. We designed a framework for the cross-genome search for transcription factor binding sites that takes into account high GC-content and oligonucleotide usage profile characteristic of the R. sphaeroides genome. To facilitate reconstruction of directional relationships between co-regulated genes, we screened upstream sequences (-400 to +20bp from start codons) of all genes for putative binding sites of bacterial transcription factors using a self-optimizing search method developed here. To test performance of the meta-analysis tools and transcription factor site predictions, we reconstructed selected nodes of the R. sphaeroides transcription factor-centric regulatory matrix. The test revealed regulatory relationships that correlate well with the experimentally derived data. The database of transcriptional profile correlations, the network visualization engine and the optimized search engine for transcription factor binding sites analysis are available at http://rhodobase.org.
Collapse
Affiliation(s)
- Oleg V Moskvin
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| | | | | | | | | |
Collapse
|
30
|
The PpaA/AerR regulators of photosynthesis gene expression from anoxygenic phototrophic proteobacteria contain heme-binding SCHIC domains. J Bacteriol 2010; 192:5253-6. [PMID: 20675482 DOI: 10.1128/jb.00736-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The SCHIC domain of the B12-binding domain family present in the Rhodobacter sphaeroides AppA protein binds heme and senses oxygen. Here we show that the predicted SCHIC domain PpaA/AerR regulators also bind heme and respond to oxygen in vitro, despite their low sequence identity with AppA.
Collapse
|
31
|
Dufour YS, Kiley PJ, Donohue TJ. Reconstruction of the core and extended regulons of global transcription factors. PLoS Genet 2010; 6:e1001027. [PMID: 20661434 PMCID: PMC2908626 DOI: 10.1371/journal.pgen.1001027] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 06/16/2010] [Indexed: 11/25/2022] Open
Abstract
The processes underlying the evolution of regulatory networks are unclear. To address this question, we used a comparative genomics approach that takes advantage of the large number of sequenced bacterial genomes to predict conserved and variable members of transcriptional regulatory networks across phylogenetically related organisms. Specifically, we developed a computational method to predict the conserved regulons of transcription factors across alpha-proteobacteria. We focused on the CRP/FNR super-family of transcription factors because it contains several well-characterized members, such as FNR, FixK, and DNR. While FNR, FixK, and DNR are each proposed to regulate different aspects of anaerobic metabolism, they are predicted to recognize very similar DNA target sequences, and they occur in various combinations among individual alpha-proteobacterial species. In this study, the composition of the respective FNR, FixK, or DNR conserved regulons across 87 alpha-proteobacterial species was predicted by comparing the phylogenetic profiles of the regulators with the profiles of putative target genes. The utility of our predictions was evaluated by experimentally characterizing the FnrL regulon (a FNR-type regulator) in the alpha-proteobacterium Rhodobacter sphaeroides. Our results show that this approach correctly predicted many regulon members, provided new insights into the biological functions of the respective regulons for these regulators, and suggested models for the evolution of the corresponding transcriptional networks. Our findings also predict that, at least for the FNR-type regulators, there is a core set of target genes conserved across many species. In addition, the members of the so-called extended regulons for the FNR-type regulators vary even among closely related species, possibly reflecting species-specific adaptation to environmental and other factors. The comparative genomics approach we developed is readily applicable to other regulatory networks.
Collapse
Affiliation(s)
- Yann S. Dufour
- Department of Bacteriology, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- BACTER Institute, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Patricia J. Kiley
- Department of Biomolecular Chemistry, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Timothy J. Donohue
- Department of Bacteriology, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
32
|
Losurdo L, Italiano F, Trotta M, Gallerani R, Luigi RC, Leo FD. Assessment of an internal reference gene in Rhodobacter sphaeroides grown under cobalt exposure. J Basic Microbiol 2010; 50:302-5. [DOI: 10.1002/jobm.200900340] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Regulation of gene expression by PrrA in Rhodobacter sphaeroides 2.4.1: role of polyamines and DNA topology. J Bacteriol 2009; 191:4341-52. [PMID: 19411327 DOI: 10.1128/jb.00243-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In the present study, we show in vitro binding of PrrA, a global regulator in Rhodobacter sphaeroides 2.4.1, to the PrrA site 2, within the RSP3361 locus. Specific binding, as shown by competition experiments, requires the phosphorylation of PrrA. The binding affinity of PrrA for site 2 was found to increase 4- to 10-fold when spermidine was added to the binding reaction. The presence of extracellular concentrations of spermidine in growing cultures of R. sphaeroides gave rise to a twofold increase in the expression of the photosynthesis genes pucB and pufB, as well as the RSP3361 gene, under aerobic growth conditions, as shown by the use of lacZ transcriptional fusions, and led to the production of light-harvesting spectral complexes. In addition, we show that negative supercoiling positively regulates the expression of the RSP3361 gene, as well as pucB. We show the importance of supercoiling through an evaluation of the regulation of gene expression in situ by supercoiling, in the case of the former gene, as well as using the DNA gyrase inhibitor novobiocin. We propose that polyamines and DNA supercoiling act synergistically to regulate expression of the RSP3361 gene, partly by affecting the affinity of PrrA binding to the PrrA site 2 within the RSP3361 gene.
Collapse
|
34
|
Jaubert M, Hannibal L, Fardoux J, Giraud E, Verméglio A. Identification of novel genes putatively involved in the photosystem synthesis of Bradyrhizobium sp. ORS 278. PHOTOSYNTHESIS RESEARCH 2009; 100:97-105. [PMID: 19452262 DOI: 10.1007/s11120-009-9433-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 05/04/2009] [Indexed: 05/27/2023]
Abstract
In aerobic anoxygenic phototrophs, oxygen is required for both the formation of the photosynthetic apparatus and an efficient cyclic electron transfer. Mutants of Bradyrhizobium sp. ORS278 affected in photosystem synthesis were selected by a bacteriochlorophyll fluorescence-based screening. Out of the 9,600 mutants of a random Tn5 insertion library, 50 clones, corresponding to insertions in 28 different genes, present a difference in fluorescence intensity compared to the WT. Besides enzymes and regulators known to be involved in photosystem synthesis, 14 novel components of the photosynthesis control are identified. Among them, two genes, hsIU and hsIV, encode components of a protein degradation complex, probably linked to the renewal of photosystem, an important issue in Bradyrhizobia which have to deal with harmful reactive oxygen species. The presence of homologs in non-photosynthetic bacteria for most of the regulatory genes identified during study suggests that they could be global regulators, as the RegA-RegB system.
Collapse
Affiliation(s)
- Marianne Jaubert
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, AGRO-M, INRA, UM2. TA A-82/J, Campus de Baillarguet, 34398, Montpellier Cedex 5, France
| | | | | | | | | |
Collapse
|
35
|
In vivo sensitivity of blue-light-dependent signaling mediated by AppA/PpsR or PrrB/PrrA in Rhodobacter sphaeroides. J Bacteriol 2009; 191:4473-7. [PMID: 19395480 DOI: 10.1128/jb.00262-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Formation of photosynthesis complexes in Rhodobacter sphaeroides is regulated in a redox- and light-dependent manner by the AppA/PpsR and PrrB/PrrA systems. While on the one hand, blue light is sensed by the flavin adenine dinucleotide-binding BLUF domain of AppA, on the other, light is absorbed by bacteriochlorophyll signals through PrrB/PrrA. We show that much smaller quantities initiate the AppA-mediated response to blue light than the bacteriochlorophyll-mediated response.
Collapse
|
36
|
Bauer CE, Setterdahl A, Wu J, Robinson BR. Regulation of Gene Expression in Response to Oxygen Tension. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_35] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
|
38
|
Gomelsky L, Moskvin OV, Stenzel RA, Jones DF, Donohue TJ, Gomelsky M. Hierarchical regulation of photosynthesis gene expression by the oxygen-responsive PrrBA and AppA-PpsR systems of Rhodobacter sphaeroides. J Bacteriol 2008; 190:8106-14. [PMID: 18931128 PMCID: PMC2593241 DOI: 10.1128/jb.01094-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 10/03/2008] [Indexed: 11/20/2022] Open
Abstract
In the facultatively phototrophic proteobacterium Rhodobacter sphaeroides, formation of the photosynthetic apparatus is oxygen dependent. When oxygen tension decreases, the response regulator PrrA of the global two-component PrrBA system is believed to directly activate transcription of the puf, puh, and puc operons, encoding structural proteins of the photosynthetic complexes, and to indirectly upregulate the photopigment biosynthesis genes bch and crt. Decreased oxygen also results in inactivation of the photosynthesis-specific repressor PpsR, bringing about derepression of the puc, bch, and crt operons. We uncovered a hierarchical relationship between these two regulatory systems, earlier thought to function independently. We also more accurately assessed the spectrum of gene targets of the PrrBA system. First, expression of the appA gene, encoding the PpsR antirepressor, is PrrA dependent, which establishes one level of hierarchical dominance of the PrrBA system over AppA-PpsR. Second, restoration of the appA transcript to the wild-type level is insufficient for rescuing phototrophic growth impairment of the prrA mutant, whereas inactivation of ppsR is sufficient. This suggests that in addition to controlling appA transcription, PrrA affects the activity of the AppA-PpsR system via an as yet unidentified mechanism(s). Third, PrrA directly activates several bch and crt genes, traditionally considered to be the PpsR targets. Therefore, in R. sphaeroides, the global PrrBA system regulates photosynthesis gene expression (i) by rigorous control over the photosynthesis-specific AppA-PpsR regulatory system and (ii) by extensive direct transcription activation of genes encoding structural proteins of photosynthetic complexes as well as genes encoding photopigment biosynthesis enzymes.
Collapse
Affiliation(s)
- Larissa Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | | | | | | | | | | |
Collapse
|
39
|
Dufour YS, Landick R, Donohue TJ. Organization and evolution of the biological response to singlet oxygen stress. J Mol Biol 2008; 383:713-30. [PMID: 18723027 PMCID: PMC2579311 DOI: 10.1016/j.jmb.2008.08.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2008] [Revised: 08/05/2008] [Accepted: 08/07/2008] [Indexed: 10/21/2022]
Abstract
The appearance of atmospheric oxygen from photosynthetic activity led to the evolution of aerobic respiration and responses to the resulting reactive oxygen species. In Rhodobacter sphaeroides, a photosynthetic alpha-proteobacterium, a transcriptional response to the reactive oxygen species singlet oxygen ((1)O(2)) is controlled by the group IV sigma factor sigma(E) and the anti-sigma factor ChrR. In this study, we integrated various large datasets to identify genes within the (1)O(2) stress response that contain sigma(E)-dependent promoters both within R. sphaeroides and across the bacterial phylogeny. Transcript pattern clustering and a sigma(E)-binding sequence model were used to predict candidate promoters that respond to (1)O(2) stress in R. sphaeroides. These candidate promoters were experimentally validated to nine R. sphaeroides sigma(E)-dependent promoters that control the transcription of 15 (1)O(2)-activated genes. Knowledge of the R. sphaeroides response to (1)O(2) and its regulator sigma(E)-ChrR was combined with large-scale phylogenetic and sequence analyses to predict the existence of a core set of approximately eight conserved sigma(E)-dependent genes in alpha-proteobacteria and gamma-proteobacteria. The bacteria predicted to contain this conserved response to (1)O(2) include photosynthetic species, as well as free-living and symbiotic/pathogenic nonphotosynthetic species. Our analysis also predicts that the response to (1)O(2) evolved within the time frame of the accumulation of atmospheric molecular oxygen on this planet.
Collapse
Affiliation(s)
- Yann S. Dufour
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA
- BACTER Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Robert Landick
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | - Timothy J. Donohue
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
40
|
The use of chromatin immunoprecipitation to define PpsR binding activity in Rhodobacter sphaeroides 2.4.1. J Bacteriol 2008; 190:6817-28. [PMID: 18689484 DOI: 10.1128/jb.00719-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of genes involved in photosystem development in Rhodobacter sphaeroides is dependent upon three major regulatory networks: FnrL, the PrrBA (RegBA) two-component system, and the transcriptional repressor/antirepressor PpsR/AppA. Of the three regulators, PpsR appears to have the narrowest range of physiological effects, which are limited to effects on the structural and pigment biosynthetic activities involved in photosynthetic membrane function. Although a PrrA(-) mutant is unable to grow under photosynthetic conditions, when a ppsR mutation was present, photosynthetic growth occurred. An examination of the double mutant under anaerobic-dark-dimethyl sulfoxide conditions using microarray analysis revealed the existence of an "extended" PpsR regulon and new physiological roles. To characterize the PpsR regulon and to better ascertain the significance of degeneracy within the PpsR binding sequence in vivo, we adapted the chromatin immunoprecipitation technique to R. sphaeroides. We demonstrated that in vivo there was direct and significant binding by PpsR to newly identified genes involved in microaerobic respiration and periplasmic stress resistance, as well as to photosynthesis genes. The new members of the PpsR regulon are located outside the photosynthesis gene cluster and have degenerate PpsR binding sequences. The possible interaction under physiologic conditions with degenerate binding sequences in the presence of other biologically relevant molecules is discussed with respect to its importance in physiological processes and to the existence of complex phenotypes associated with regulatory mutants. This study further defines the DNA structure necessary for PpsR binding in situ.
Collapse
|
41
|
Giraud E, Verméglio A. Bacteriophytochromes in anoxygenic photosynthetic bacteria. PHOTOSYNTHESIS RESEARCH 2008; 97:141-153. [PMID: 18612842 DOI: 10.1007/s11120-008-9323-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 06/16/2008] [Indexed: 05/26/2023]
Abstract
Since the first discovery of a bacteriophytochrome in Rhodospirillum centenum, numerous bacteriophytochromes have been identified and characterized in other anoxygenic photosynthetic bacteria. This review is focused on the biochemical and biophysical properties of bacteriophytochromes with a special emphasis on their roles in the synthesis of the photosynthetic apparatus.
Collapse
Affiliation(s)
- Eric Giraud
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, AGRO-M, INRA, UM2, TA A-82/J, Campus de Baillarguet, 34398, Montpellier Cedex 5, France
| | | |
Collapse
|
42
|
Role of the global transcriptional regulator PrrA in Rhodobacter sphaeroides 2.4.1: combined transcriptome and proteome analysis. J Bacteriol 2008; 190:4831-48. [PMID: 18487335 DOI: 10.1128/jb.00301-08] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The PrrBA two-component regulatory system is a major global regulator in Rhodobacter sphaeroides 2.4.1. Here we have compared the transcriptome and proteome profiles of the wild-type (WT) and mutant PrrA2 cells grown anaerobically in the dark with dimethyl sulfoxide as an electron acceptor. Approximately 25% of the genes present in the PrrA2 genome are regulated by PrrA at the transcriptional level, either directly or indirectly, by twofold or more relative to the WT. The genes affected are widespread throughout all COG (cluster of orthologous group) functional categories, with previously unsuspected "metabolic" genes affected in PrrA2 cells. PrrA was found to act as both an activator and a repressor of transcription, with more genes being repressed in the presence of PrrA (9:5 ratio). An analysis of the genes encoding the 1,536 peptides detected through our chromatographic study, which corresponds to 36% coverage of the genome, revealed that approximately 20% of the genes encoding these proteins were positively regulated, whereas approximately 32% were negatively regulated by PrrA, which is in excellent agreement with the percentages obtained for the whole-genome transcriptome profile. In addition, comparison of the transcriptome and proteome mean parameter values for WT and PrrA2 cells showed good qualitative agreement, indicating that transcript regulation paralleled the corresponding protein abundance, although not one for one. The microarray analysis was validated by direct mRNA measurement of randomly selected genes that were both positively and negatively regulated. lacZ transcriptional and kan translational fusions enabled us to map putative PrrA binding sites and revealed potential gene targets for indirect regulation by PrrA.
Collapse
|
43
|
Kojadinovic M, Laugraud A, Vuillet L, Fardoux J, Hannibal L, Adriano JM, Bouyer P, Giraud E, Verméglio A. Dual role for a bacteriophytochrome in the bioenergetic control of Rhodopsdeudomonas palustris: Enhancement of photosystem synthesis and limitation of respiration. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:163-72. [DOI: 10.1016/j.bbabio.2007.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 08/30/2007] [Accepted: 09/04/2007] [Indexed: 10/22/2022]
|
44
|
Mackenzie C, Eraso JM, Choudhary M, Roh JH, Zeng X, Bruscella P, Puskás A, Kaplan S. Postgenomic adventures with Rhodobacter sphaeroides. Annu Rev Microbiol 2007; 61:283-307. [PMID: 17506668 DOI: 10.1146/annurev.micro.61.080706.093402] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review describes some of the recent highlights taken from the studies of Rhodobacter sphaeroides 2.4.1. The review is not intended to be comprehensive, but to reflect the bias of the authors as to how the availability of a sequenced and annotated genome, a gene-chip, and proteomic profile as well as comparative genomic analyses can direct the progress of future research in this system.
Collapse
Affiliation(s)
- Chris Mackenzie
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Han Y, Meyer MHF, Keusgen M, Klug G. A haem cofactor is required for redox and light signalling by the AppA protein of Rhodobacter sphaeroides. Mol Microbiol 2007; 64:1090-104. [PMID: 17501930 DOI: 10.1111/j.1365-2958.2007.05724.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The AppA protein of Rhodobacter sphaeroides is unique in its ability to sense and transmit redox signals as well as light signals. By functioning as antagonist to the PpsR transcriptional repressor, it regulates the expression of photosynthesis genes in response to these environmental stimuli. Here we show binding of the cofactor haem to a domain in the C-terminal part of AppA and redox activity of bound haem. This is supported by the findings that: (i) the C-terminal domain of AppA (AppADeltaN) binds to haemin agarose, (ii) AppADeltaN isolated from Escherichia coli shows absorbance at 411 nm and absorbances at 424 nm and 556 nm after reduction with dithionite and (iii) AppADeltaN can be reconstituted with haem in vitro. Expression of AppA variants in R. sphaeroides reveals that the haem binding domain is important for normal expression levels of photosynthesis genes and for normal light regulation in the presence of oxygen. The haem cofactor affects the interaction of the C-terminal part of AppA to PpsR but also its interaction to the N-terminal light sensing AppA-BLUF domain. Based on this we present a model for the transmission of light and redox signals by AppA.
Collapse
Affiliation(s)
- Yuchen Han
- Institut für Mikrobiologie und Molekularbiologie, University of Giessen, D-35392 Giessen, Germany
| | | | | | | |
Collapse
|
46
|
Transcriptome dynamics during the transition from anaerobic photosynthesis to aerobic respiration in Rhodobacter sphaeroides 2.4.1. J Bacteriol 2007; 190:286-99. [PMID: 17965166 DOI: 10.1128/jb.01375-07] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhodobacter sphaeroides 2.4.1 is a facultative photosynthetic anaerobe that grows by anoxygenic photosynthesis under anaerobic-light conditions. Changes in energy generation pathways under photosynthetic and aerobic respiratory conditions are primarily controlled by oxygen tensions. In this study, we performed time series microarray analyses to investigate transcriptome dynamics during the transition from anaerobic photosynthesis to aerobic respiration. Major changes in gene expression profiles occurred in the initial 15 min after the shift from anaerobic-light to aerobic-dark conditions, with changes continuing to occur up to 4 hours postshift. Those genes whose expression levels changed significantly during the time series were grouped into three major classes by clustering analysis. Class I contained genes, such as that for the aa3 cytochrome oxidase, whose expression levels increased after the shift. Class II contained genes, such as those for the photosynthetic apparatus and Calvin cycle enzymes, whose expression levels decreased after the shift. Class III contained genes whose expression levels temporarily increased during the time series. Many genes for metabolism and transport of carbohydrates or lipids were significantly induced early during the transition, suggesting that those endogenous compounds were initially utilized as carbon sources. Oxidation of those compounds might also be required for maintenance of redox homeostasis after exposure to oxygen. Genes for the repair of protein and sulfur groups and uptake of ferric iron were temporarily upregulated soon after the shift, suggesting they were involved in a response to oxidative stress. The flagellar-biosynthesis genes were expressed in a hierarchical manner at 15 to 60 min after the shift. Numerous transporters were induced at various time points, suggesting that the cellular composition went through significant changes during the transition from anaerobic photosynthesis to aerobic respiration. Analyses of these data make it clear that numerous regulatory activities come into play during the transition from one homeostatic state to another.
Collapse
|
47
|
Moskvin OV, Kaplan S, Gilles-Gonzalez MA, Gomelsky M. Novel heme-based oxygen sensor with a revealing evolutionary history. J Biol Chem 2007; 282:28740-28748. [PMID: 17660296 DOI: 10.1074/jbc.m703261200] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To monitor fluctuations in oxygen concentration, cells use sensory proteins often containing heme cofactors. Here, we identify a new class of heme-binding oxygen sensors, reveal their unusual phylogenetic origin, and propose a sensing mode of a member of this class. We show that heme is bound noncovalently to the central region of AppA, an oxygen and light sensor from Rhodobacter sphaeroides. The addition of oxygen to ferrous AppA discoordinated the heme, and subsequent oxygen removal fully restored the heme coordination. In vitro, the extent of heme discoordination increased gradually with the rise in oxygen levels over a broad concentration range. This response correlated well with the gradual decrease in transcription of photosynthesis genes regulated by AppA and its partner repressor PpsR. We conclude that the AppA-PpsR regulatory system functions as an oxygen-dependent transcriptional rheostat. We identified a new domain embedded in the central region of AppA and designated it SCHIC for sensor containing heme instead of cobalamin. A phylogenetic analysis revealed that SCHIC domain proteins form a distinct cluster within a superfamily that includes vitamin B(12)-binding proteins and other proteins that may bind other kinds of tetrapyrroles.
Collapse
Affiliation(s)
- Oleg V Moskvin
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071
| | - Samuel Kaplan
- Department of Microbiology and Molecular Genetics, The University of Texas Medical School, Houston, Texas 77030
| | - Marie-Alda Gilles-Gonzalez
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Mark Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming 82071.
| |
Collapse
|
48
|
Kirienko NV, Fay DS. Transcriptome profiling of the C. elegans Rb ortholog reveals diverse developmental roles. Dev Biol 2007; 305:674-84. [PMID: 17368442 PMCID: PMC2680605 DOI: 10.1016/j.ydbio.2007.02.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 02/14/2007] [Indexed: 11/25/2022]
Abstract
LIN-35 is the single C. elegans ortholog of the mammalian pocket protein family members, pRb, p107, and p130. To gain insight into the roles of pocket proteins during development, a microarray analysis was performed with lin-35 mutants. Stage-specific regulation patterns were revealed, indicating that LIN-35 plays diverse roles at distinct developmental stages. LIN-35 was found to repress the expression of many genes involved in cell proliferation in larvae, an activity that is carried out in conjunction with E2F. In addition, LIN-35 was found to regulate neuronal genes during embryogenesis and targets of the intestinal-specific GATA transcription factor, ELT-2, at multiple developmental stages. Additional findings suggest that LIN-35 functions in cell cycle regulation in embryos in a manner that is independent of E2F. A comparison of LIN-35-regulated genes with known fly and mammalian pocket protein targets revealed a high degree of overlap, indicating strong conservation of pocket protein functions in diverse phyla. Based on microarray results and our refinement of the C. elegans E2F consensus sequence, we were able to generate a comprehensive list of putative E2F-regulated genes in C. elegans. These results implicate a large number of genes previously unconnected to cell cycle control as having potential roles in this process.
Collapse
Affiliation(s)
- Natalia V. Kirienko
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| | - David S. Fay
- University of Wyoming, College of Agriculture, Department of Molecular Biology, Dept 3944, 1000 E. University Avenue, Laramie, WY 82071
| |
Collapse
|
49
|
Braatsch S, Bernstein JR, Lessner F, Morgan J, Liao JC, Harwood CS, Beatty JT. Rhodopseudomonas palustris CGA009 has two functional ppsR genes, each of which encodes a repressor of photosynthesis gene expression. Biochemistry 2007; 45:14441-51. [PMID: 17128983 DOI: 10.1021/bi061074b] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The PpsR protein is a regulator of redox-dependent photosystem development in purple phototrophic bacteria. In contrast to most species, Rhodopseudomonas palustris contains two ppsR genes. We show that the inactivation of each of the R. palustris strain CGA009 ppsR genes results in an elevated level of formation of the photosystem under dark aerobic conditions. Absorption spectra of the two PpsR mutants revealed qualitative and quantitative differences in light-harvesting peak amplitude increases. A sequence difference in the helix-turn-helix DNA binding motif of PpsR2 (Arg 439 to Cys) between R. palustris strains CEA001 and CGA009 is shown to be a natural polymorphism that does not inactivate the repressor activity of the protein. To evaluate which photosynthesis genes are regulated by the two PpsR proteins, transcriptome profiles of the CGA009 and PpsR mutant strains were analyzed in microarray experiments. Transcription of most but not all photosystem genes was derepressed in the mutant strains to levels consistent with the in vivo absorption spectra, mathematical analyses of peak shapes and amplitudes, reaction center protein levels, and real-time PCR of selected mRNAs. Closely spaced PpsR binding motif repeats were identified 5' of genes that were derepressed in the transcriptome analysis of PpsR mutants. This work shows that both the PpsR1 and PpsR2 proteins from R. palustris strain CGA009 function as oxygen-responsive transcriptional repressors.
Collapse
Affiliation(s)
- Stephan Braatsch
- Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | | | | | |
Collapse
|
50
|
Jäger A, Braatsch S, Haberzettl K, Metz S, Osterloh L, Han Y, Klug G. The AppA and PpsR proteins from Rhodobacter sphaeroides can establish a redox-dependent signal chain but fail to transmit blue-light signals in other bacteria. J Bacteriol 2007; 189:2274-82. [PMID: 17209035 PMCID: PMC1899404 DOI: 10.1128/jb.01699-06] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The AppA protein of Rhodobacter sphaeroides has the unique ability to sense and transmit redox and light signals. In response to decreasing oxygen tension, AppA antagonizes the transcriptional regulator PpsR, which represses the expression of photosynthesis genes, including the puc operon. This mechanism, which is based on direct protein-protein interaction, is prevented by blue-light absorption of the BLUF domain located in the N-terminal part of AppA. In order to test whether AppA and PpsR are sufficient to transmit redox and light signals, we expressed these proteins in three different bacterial species and monitored oxygen- and blue-light-dependent puc expression either directly or by using a luciferase-based reporter construct. The AppA/PpsR system could mediate redox-dependent gene expression in the alphaproteobacteria Rhodobacter capsulatus and Paracoccus denitrificans but not in the gammaproteobacterium Escherichia coli. Analysis of a prrA mutant strain of R. sphaeroides strongly suggests that light-dependent gene expression requires a balanced interplay of the AppA/PpsR system with the PrrA response regulator. Therefore, the AppA/PpsR system was unable to establish light signaling in other bacteria. Based on our data, we present a model for the interdependence of AppA/PpsR signaling and the PrrA transcriptional activator.
Collapse
Affiliation(s)
- Andreas Jäger
- Institut für Mikrobiologie und Molekularbiologie, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|